[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4080149B2 - Work head moving device - Google Patents

Work head moving device Download PDF

Info

Publication number
JP4080149B2
JP4080149B2 JP2000209425A JP2000209425A JP4080149B2 JP 4080149 B2 JP4080149 B2 JP 4080149B2 JP 2000209425 A JP2000209425 A JP 2000209425A JP 2000209425 A JP2000209425 A JP 2000209425A JP 4080149 B2 JP4080149 B2 JP 4080149B2
Authority
JP
Japan
Prior art keywords
linear motion
linear
working head
drive mechanism
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000209425A
Other languages
Japanese (ja)
Other versions
JP2002026596A (en
Inventor
亮一 入田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000209425A priority Critical patent/JP4080149B2/en
Publication of JP2002026596A publication Critical patent/JP2002026596A/en
Application granted granted Critical
Publication of JP4080149B2 publication Critical patent/JP4080149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)
  • Control Of Position Or Direction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品実装用装置に用いられ、電子部品移載ヘッドなどの作業ヘッドを直動方向に移動させる作業ヘッドの移動装置に関するものである。
【0002】
【従来の技術】
電子部品実装用装置においては、電子部品を移送する移載ヘッドなどの各種の作業ヘッドが用いられ、これらの作業ヘッドは一般に移動テーブルによって駆動される。これらの移動テーブルの大部分は直線状のスライドガイドによる直動機構を備えている。この直動機構によって駆動される作業ヘッドなどの被駆動部が直動方向と直交する方向に長いスパンを有する場合には、直動機構には通常複数のスライドガイドが用いられる。そしてこの被駆動部を、ボールねじなどの直動駆動機構によって駆動することにより、作業ヘッドが複数のスライドガイドによってガイドされ直動方向に移動する。
【0003】
【発明が解決しようとする課題】
ところが上記複数のスライドガイドを用いた直動機構においては、直動駆動手段を必ずしも被駆動部の重心位置、すなわちスライドガイドに対する直動負荷が均一となる位置に配置できない場合が発生する。このような場合には、各スライドガイドに作用する荷重が不均一となる結果、直動方向に対して被駆動部は水平面内でわずかに傾いた状態で移動する。このため、直動駆動機構への位置指示値と作業ヘッドの実際の位置とは正しく一致せず、位置決め精度が低下することとなっていた。
【0004】
そこで本発明は、位置決め精度を確保することができる作業ヘッドの移動装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1記載の作業ヘッドの移動装置は、電子部品実装用装置において作業ヘッドを水平面内でXY方向に移動させる作業ヘッドの移動装置であって、前記水平面内のY方向に相互に平行に配列された第1直動ガイド部および第2直動ガイド部と、これらの第1直動ガイド部および第2直動ガイド部に沿ってそれぞれ水平面内で移動する第1直動スライド部および第2直動スライド部と、これらの第1直動スライド部および第2直動スライド部のY方向の位置YL,YRをそれぞれ検出する第1位置検出手段および第2位置検出手段と、第1直動スライド部および第2直動スライド部を連結し前記作業ヘッドが結合された連結部と、この連結部のX方向における一方の側に偏った位置に結合されてこの連結部をY方向に駆動する第1直動駆動機構と、前記第1位置検出手段と第2位置検出手段の配設ピッチP、前記作業ヘッドのX方向の位置である前記第1位置検出手段からの距離X並びに前記第1位置検出手段および第2位置検出手段の位置検出結果YL,YRに基づいて前記作業ヘッドのY方向の位置補正量ΔyをΔy=(YL−YR)×X/Pから求め、この位置補正量Δyだけ前記作業ヘッドをY方向に移動させるように前記第1直動駆動機構を制御する制御手段とを備えた。
【0006】
請求項2記載の作業ヘッドの移動装置は、請求項1記載の作業ヘッドの移動装置であって、前記連結部は、前記Y方向と直交するX方向に移動する第2直動駆動機構を備え、前記作業ヘッドはこの第2直動駆動機構を介して連結部と結合されている。
請求項3記載の作業ヘッドの移動装置は、電子部品実装用装置において作業ヘッドを水平面内でXY方向に移動させる作業ヘッドの移動装置であって、前記水平面内のY方向に相互に平行に配列された第1直動ガイド部および第2直動ガイド部と、これらの第1直動ガイド部および第2直動ガイド部に沿ってそれぞれ水平面内で移動する第1直動スライド部および第2直動スライド部と、これらの第1直動スライド部又は第2直動スライド部のY方向の位置YL’,YRを検出する位置検出手段と、第1直動スライド部および第2直動スライド部を連結し前記作業ヘッドが結合された連結部と、前記第1直動スライド部に近接して設けられ前記連結部をY方向に駆動する第1直動駆動機構と、前記位置検出手段と前記第1直動駆動機構の距離P’、前記作業ヘッドの前記第1直動駆動機構からのX方向の距離X’並びに前記第1直動駆動機構および前記位置検出手段の位置検出結果YL’,YRに基づいて前記作業ヘッドのY方向の位置補正量Δy’をΔy’=(YL’−YR)×X’/Pから求め、この位置補正量Δy’だけ前記作業ヘッドをY方向に移動させるように前記第1直動駆動機構を制御する制御手段とを備えた。
【0009】
本発明によれば、相互に平行に配列された第1直動ガイド部および第2直動ガイド部に沿って水平面内で移動する第1直動スライド部および第2直動スライド部の位置をそれぞれ第1位置検出手段および第2位置検出手段によって検出し、作業ヘッドが結合され前記第1直動スライド部および第2直動スライド部を連結する連結部を第1直動駆動手段によって方向に駆動する際に、位置検出結果に基づいて直動駆動手段を制御して前記作業ヘッドの方向の位置ずれ誤差を補正することにより、直動駆動機構が被駆動部の重心位置に配置されていない場合においても作業ヘッドの位置決め精度を確保することができる。
【0010】
【発明の実施の形態】
まず本発明の実施の形態を図面を参照して説明する。図1は本発明の一実施の形態の電子部品実装装置の平面図、図2、図3は本発明の一実施の形態の電子部品実装装置の移載ヘッド移動機構の位置補正の説明図である。
【0011】
まず図1、図2を参照して電子部品実装装置について説明する。図1において、基台1の中央部には、X方向に搬送路2が配設されている。搬送路2は、基板3を搬送し位置決めする位置決め部となっている。搬送路2の手前側には、電子部品の供給部4が配置されており、供給部4にはテーピングされた電子部品を供給するテープフィーダ5が多数並設されている。
【0012】
基台1上面の両端部には、それぞれガイドレール6A,6BがY方向に水平に配設されている。ガイドレール6A,6Bは、それぞれ第1方向(Y方向)に相互に平行に配列された第1直動ガイド部および第2直動ガイド部となっている。ガイドレール6A,6Bには、それぞれスライドブロック7A,7Bが摺動自在に嵌合している。スライドブロック7A,7Bは、第1直動ガイド部および第2直動ガイド部に沿って水平面内で移動する第1直動スライド部および第2直動スライド部となっている。
【0013】
スライドブロック7A,7Bは、連結部8によって連結されており、連結部8には中心線から左側に偏った位置に、ナット部材9が結合されており、ナット部材9にはモータ10によって回転駆動される送りねじ11が螺合している。したがって、モータ10を駆動することにより連結部8はY方向に移動する。モータ10、送りねじ11及びナット部材9は、連結部8を第1方向に駆動する第1直動駆動機構となっている。
【0014】
ガイドレール6A,6Bに沿って、リニアスケール17A,17Bが配設されており、リニアスケール17A,17Bは、スライドブロック7A,7BのY方向の位置をそれぞれ検出する。したがってリニアスケール17A,17Bは、それぞれ第1直動スライド部および第2直動スライド部の第1方向の位置を検出する第1位置検出手段、第2位置検出手段となっている。リニアスケール17A,17Bは、原点位置が厳密に一致するように設定され、機械座標系に対して正しいY方向の位置を検出できるようになっている。位置検出結果は、制御部18(制御手段)に送られる。制御部18は、これらの位置検出結果に基づいて、モータ10を制御する。
【0015】
連結部8にはX方向にスライド自在に移動ブロック12が設けられており、移動ブロック12には作業ヘッドである移載ヘッド16が装着されている。移動ブロック12を挿通して設けられたナット部材13には、モータ15によって回転駆動される送りねじ14が螺合している。モータ15を駆動することにより、移載ヘッド16はX方向に移動する。したがって、モータ15、送りねじ14及びナット部材13は、連結部8に備えられ、移載ヘッド16をX方向(第2方向)に移動させる第2直動駆動機構となっている。
【0016】
上記構成により、移載ヘッド16は供給部4及び搬送路2上をXY方向に移動し、供給部4のテープフィーダ5から電子部品を取り出して、搬送路2上に位置決めされた基板3上に移動し、基板3の実装点に電子部品を実装する実装動作が可能となっている。この実装動作において、移載ヘッド16がY方向に移動する際には、連結部8のX方向における一方の側である左側部分に偏った位置に結合された第1直動駆動機構によって駆動される。このため、Y方向の直動駆動力は、連結部8が連結されたスライドブロック7A,7Bに対して左右対称には伝達されない。
【0017】
この結果図2に示すように、スライドブロック7A,7BのY方向の位置YL,YRは必ずしも一致せず、連結部8に結合された移載ヘッド16の実際の位置は、指令位置からΔyだけずれる。この位置ずれは、スライドブロック7A,7Bとガイドレール6A,6Bとの嵌合隙間に起因するガタや、連結部8の撓み変形などによって生じるものである。
【0018】
この位置ずれを補正するため、本実施の形態では以下に説明する方法で位置補正を行う。すなわち、モータ10を駆動して移載ヘッド16のY方向移動を行う際には、リニアスケール17A,17Bによってスライドブロック7A,7Bの位置YL,YRを検出し、位置検出結果を制御部18に送る。制御部18は、モータ15に設けられたエンコーダからのパルス信号によって移載ヘッド16のX方向の位置(一方のリニアスケール17Aからの距離)Xを常に把握しており、Y方向の位置計測点間寸法、すなわちリニアスケール17A,17Bの配設ピッチPと、これらの位置検出結果YL,YR,Xから、(数1)によって移載ヘッド16のY方向の位置補正量Δyを計算によって求める。
【0019】
【数1】

Figure 0004080149
【0020】
そしてモータ10を駆動して、求められた位置補正量Δyだけスライドブロック7A、7Bを移動させる。すなわち移載ヘッド16が結合された連結部8をモータ10を駆動してY方向に駆動する際に、前記位置検出結果に基づいてモータ10を制御部18によって制御することにより、移載ヘッド16のY方向の位置ずれ誤差を補正する。これにより、駆動力の伝達位置が左右対称でないことによるY方向の位置ずれを正しく補正することができる。
【0021】
上記実施の形態では、移載ヘッド16は連結部8に備えられた第2直動駆動機構によってX方向に移動可能となっており、Y方向の位置ずれ誤差の補正量は、移載ヘッド16のX方向の位置に応じて自動的に変えられるようになっている。移載ヘッド16が連結部8に固定的に結合されている場合には、上記X寸法は固定寸法となる。
【0022】
なお、上記実施の形態では、位置検出手段として2つのリニアスケール17A,17Bを用いる例を示したが、連結部8における第1直動駆動機構の配設位置が、いずれかのスライドブロックに近接して設けられている場合には、モータ10のエンコーダからのパルス信号をY方向の位置検出手段からの検出信号の代用として用いてもよい。
【0023】
すなわち、図3に示すように、送りねじ11とリニアスケール17Bとの距離P’、送りねじ11からの移載ヘッド16のX方向との距離X’を、それぞれ前述のP,Xとして置き換え、移載ヘッド16のY方向の位置補正量Δy’を上記(数1)と同様にΔy’=(YL’−YR)×X’/Pより求める。YL’は、上記のようにモータ10のエンコーダからのパルス信号から送られた送りねじ11の位置検出結果であって、図2に示すリニアスケール17Aによる上記検出結果YLの代用となるものである。これにより、Y方向位置検出用のリニアスケールはモータ10による直動駆動機構の反対側のみに設ければよく、機構の簡略化を図ることができる。
【0024】
なお、上記実施の形態では、作業ヘッドとして電子部品実装装置における移載ヘッドの例を示したが、本発明の適用対象はこれに限定されず、ボンド塗布装置や印刷装置など、直動機構を備えた装置であればよい。
【0025】
【発明の効果】
本発明によれば、相互に平行に配列された第1直動ガイド部および第2直動ガイド部に沿って水平面内で移動する第1直動スライド部および第2直動スライド部の位置をそれぞれ第1位置検出手段および第2位置検出手段によって検出し、作業ヘッドが結合され第1直動スライド部および第2直動スライド部を連結する連結部を直動駆動手段によって第1方向に駆動する際に、位置検出結果に基づいて直動駆動手段を制御して作業ヘッドの第1方向の位置ずれ誤差を補正するようにしたので、直動駆動手段が被駆動部の重心位置に配置されていない場合においても作業ヘッドの位置決め精度を確保することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の電子部品実装装置の平面図
【図2】本発明の一実施の形態の電子部品実装装置の移載ヘッド移動機構の位置補正の説明図
【図3】本発明の一実施の形態の電子部品実装装置の移載ヘッド移動機構の位置補正の説明図
【符号の説明】
6A,6B ガイドレール
7A,7B スライドブロック
8 連結部
9 ナット
10 モータ
11 送りねじ
16 移載ヘッド
18 制御部[0001]
BACKGROUND OF THE INVENTION
The present invention is used in the electronic component mounting apparatus, in which relates the working head of an electronic component transfer head to move equipment of the working head is moved in linear direction.
[0002]
[Prior art]
In an electronic component mounting apparatus, various working heads such as a transfer head for transferring electronic components are used, and these working heads are generally driven by a moving table. Most of these moving tables are provided with a linear motion mechanism using a linear slide guide. When a driven part such as a work head driven by the linear motion mechanism has a long span in a direction orthogonal to the linear motion direction, a plurality of slide guides are usually used for the linear motion mechanism. Then, by driving the driven portion by a linear motion drive mechanism such as a ball screw, the work head is guided by a plurality of slide guides and moves in the linear motion direction.
[0003]
[Problems to be solved by the invention]
However, in the linear motion mechanism using the plurality of slide guides, there are cases where the linear motion driving means cannot always be arranged at the position of the center of gravity of the driven portion, that is, the position where the linear motion load on the slide guide is uniform. In such a case, as a result of non-uniform loads acting on the slide guides, the driven part moves with a slight inclination in the horizontal plane with respect to the linear movement direction. For this reason, the position instruction value for the linear drive mechanism and the actual position of the work head do not match correctly, and the positioning accuracy is reduced.
[0004]
The present invention aims to provide a mobile equipment working head can be secured positioning accuracy.
[0005]
[Means for Solving the Problems]
The working head moving device according to claim 1, wherein the working head moving device in the electronic component mounting device moves the working head in the X and Y directions in a horizontal plane, and is arranged in parallel to the Y direction in the horizontal plane. The first linear motion guide portion and the second linear motion guide portion, and the first linear motion slide portion and the second linear motion guide portion that move in the horizontal plane along the first linear motion guide portion and the second linear motion guide portion, respectively. Linear motion slide parts, first position detection means and second position detection means for detecting Y-direction positions YL and YR of the first linear motion slide part and the second linear motion slide part, respectively, and first linear motion A connecting portion where the slide head and the second linearly moving slide portion are connected and the working head is connected, and the connecting portion is connected to a position biased to one side in the X direction of the connecting portion to drive the connecting portion in the Y direction. First linear motion drive And structure, arrangement pitch P of the first position detecting means and the second position detecting means, a distance X and the first position detection means from the first position detecting means X is the direction of the position of the working head and the The position correction amount Δy in the Y direction of the working head is obtained from Δy = (YL−YR) × X / P based on the position detection results YL and YR of the two position detecting means, and the working head is moved by this position correction amount Δy. And control means for controlling the first linear drive mechanism so as to move in the Y direction.
[0006]
The working head moving device according to claim 2 is the working head moving device according to claim 1, wherein the connecting portion includes a second linear drive mechanism that moves in an X direction orthogonal to the Y direction. The working head is coupled to the connecting portion through the second linear drive mechanism.
The working head moving device according to claim 3, wherein the working head moving device in the electronic component mounting device moves the working head in the XY direction in a horizontal plane, and is arranged parallel to the Y direction in the horizontal plane. The first linear motion guide portion and the second linear motion guide portion, and the first linear motion slide portion and the second linear motion guide portion that move in the horizontal plane along the first linear motion guide portion and the second linear motion guide portion, respectively. Linear motion slide portions, position detection means for detecting Y-direction positions YL ′ and YR of the first linear motion slide portion or the second linear motion slide portion, the first linear motion slide portion and the second linear motion slide A connecting portion in which the working heads are connected to each other, a first linear drive mechanism that is provided in the vicinity of the first linear slide portion and drives the connecting portion in the Y direction, and the position detecting means. The distance P of the first linear drive mechanism ', Based on the X-direction distance X' of the working head from the first linear drive mechanism and the position detection results YL 'and YR of the first linear drive mechanism and the position detecting means. The first linear drive mechanism is obtained so that a position correction amount Δy ′ in the direction is obtained from Δy ′ = (YL′−YR) × X ′ / P, and the work head is moved in the Y direction by this position correction amount Δy ′. And control means for controlling.
[0009]
According to the present invention, the positions of the first linear motion slide portion and the second linear motion slide portion that move in the horizontal plane along the first linear motion guide portion and the second linear motion guide portion arranged in parallel to each other are determined. Detected by the first position detecting means and the second position detecting means, respectively, and a connecting portion to which the work head is coupled and connects the first linear motion slide portion and the second linear motion slide portion is connected to the Y direction by the first linear motion driving device. When driving, the linear drive mechanism is arranged at the center of gravity of the driven part by controlling the linear drive means based on the position detection result to correct the positional deviation error of the working head in the Y direction. Even when not, the positioning accuracy of the work head can be ensured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of an electronic component mounting apparatus according to an embodiment of the present invention, and FIGS. 2 and 3 are explanatory diagrams of position correction of a transfer head moving mechanism of the electronic component mounting apparatus according to an embodiment of the present invention. is there.
[0011]
First, an electronic component mounting apparatus will be described with reference to FIGS. In FIG. 1, a transport path 2 is arranged in the X direction at the center of a base 1. The transport path 2 is a positioning unit that transports and positions the substrate 3. An electronic component supply unit 4 is disposed on the front side of the transport path 2, and a number of tape feeders 5 for supplying the taped electronic components are arranged in parallel in the supply unit 4.
[0012]
Guide rails 6A and 6B are horizontally disposed in the Y direction at both ends of the upper surface of the base 1, respectively. The guide rails 6A and 6B are a first linear motion guide portion and a second linear motion guide portion that are arranged in parallel to each other in the first direction (Y direction). Slide blocks 7A and 7B are slidably fitted to the guide rails 6A and 6B, respectively. The slide blocks 7A and 7B are a first linear motion slide portion and a second linear motion slide portion that move in a horizontal plane along the first linear motion guide portion and the second linear motion guide portion.
[0013]
The slide blocks 7 </ b> A and 7 </ b> B are connected by a connecting portion 8, and a nut member 9 is coupled to the connecting portion 8 at a position deviated to the left from the center line. The nut member 9 is rotationally driven by a motor 10. The feed screw 11 is screwed. Accordingly, by driving the motor 10, the connecting portion 8 moves in the Y direction. The motor 10, the feed screw 11 and the nut member 9 form a first linear motion drive mechanism that drives the connecting portion 8 in the first direction.
[0014]
Linear scales 17A and 17B are disposed along the guide rails 6A and 6B, and the linear scales 17A and 17B detect the positions of the slide blocks 7A and 7B in the Y direction, respectively. Accordingly, the linear scales 17A and 17B serve as a first position detection unit and a second position detection unit that detect the positions of the first linear slide part and the second linear slide part in the first direction, respectively. The linear scales 17A and 17B are set so that the origin positions exactly coincide with each other, and can detect a correct position in the Y direction with respect to the machine coordinate system. The position detection result is sent to the control unit 18 (control means). The control unit 18 controls the motor 10 based on these position detection results.
[0015]
The connecting portion 8 is provided with a moving block 12 slidable in the X direction, and a moving head 16 as a work head is mounted on the moving block 12. A feed screw 14 that is rotationally driven by a motor 15 is screwed into a nut member 13 that is inserted through the moving block 12. By driving the motor 15, the transfer head 16 moves in the X direction. Therefore, the motor 15, the feed screw 14, and the nut member 13 are provided in the connecting portion 8, and serve as a second linear drive mechanism that moves the transfer head 16 in the X direction (second direction).
[0016]
With the above configuration, the transfer head 16 moves in the X and Y directions on the supply unit 4 and the conveyance path 2, takes out the electronic components from the tape feeder 5 of the supply unit 4, and is placed on the substrate 3 positioned on the conveyance path 2. The mounting operation of moving and mounting the electronic component on the mounting point of the substrate 3 is possible. In this mounting operation, when the transfer head 16 moves in the Y direction, the transfer head 16 is driven by a first linear drive mechanism coupled to a position biased to the left side portion, which is one side of the connecting portion 8 in the X direction. The For this reason, the linear motion driving force in the Y direction is not transmitted symmetrically with respect to the slide blocks 7A and 7B to which the connecting portion 8 is connected.
[0017]
As a result, as shown in FIG. 2, the Y-direction positions YL and YR of the slide blocks 7A and 7B do not necessarily coincide with each other, and the actual position of the transfer head 16 coupled to the connecting portion 8 is only Δy from the command position. Shift. This misalignment is caused by looseness caused by the fitting gap between the slide blocks 7A and 7B and the guide rails 6A and 6B, bending deformation of the connecting portion 8, and the like.
[0018]
In order to correct this misalignment, the present embodiment performs position correction by the method described below. That is, when the motor 10 is driven to move the transfer head 16 in the Y direction, the positions YL and YR of the slide blocks 7A and 7B are detected by the linear scales 17A and 17B, and the position detection result is sent to the control unit 18. send. The control unit 18 always knows the X-direction position (distance from one linear scale 17A) X of the transfer head 16 based on the pulse signal from the encoder provided in the motor 15, and the Y-direction position measurement point. A position correction amount Δy in the Y direction of the transfer head 16 is calculated by (Equation 1) from the space dimension, that is, the arrangement pitch P of the linear scales 17A and 17B and the position detection results YL, YR, and X.
[0019]
[Expression 1]
Figure 0004080149
[0020]
Then, the motor 10 is driven to move the slide blocks 7A and 7B by the obtained position correction amount Δy. That is, when the connecting portion 8 to which the transfer head 16 is coupled is driven in the Y direction by driving the motor 10, the transfer head 16 is controlled by the control unit 18 based on the position detection result. The Y position misalignment error is corrected. As a result, it is possible to correctly correct the positional deviation in the Y direction due to the fact that the transmission position of the driving force is not symmetrical.
[0021]
In the above embodiment, the transfer head 16 can be moved in the X direction by the second linear drive mechanism provided in the connecting portion 8, and the correction amount of the misalignment error in the Y direction is the transfer head 16. It can be automatically changed according to the position in the X direction. When the transfer head 16 is fixedly coupled to the connecting portion 8, the X dimension is a fixed dimension.
[0022]
In the above-described embodiment, an example in which the two linear scales 17A and 17B are used as the position detection unit has been described. However, the arrangement position of the first linear drive mechanism in the connecting portion 8 is close to one of the slide blocks. In this case, the pulse signal from the encoder of the motor 10 may be used as a substitute for the detection signal from the position detection means in the Y direction.
[0023]
That is, as shown in FIG. 3, the distance P ′ between the feed screw 11 and the linear scale 17B and the distance X ′ from the feed screw 11 to the X direction of the transfer head 16 are replaced with the aforementioned P and X, respectively. The position correction amount Δy ′ in the Y direction of the transfer head 16 is obtained from Δy ′ = (YL′−YR) × X ′ / P in the same manner as in (Expression 1). YL ′ is a position detection result of the feed screw 11 sent from the pulse signal from the encoder of the motor 10 as described above, and is a substitute for the detection result YL by the linear scale 17A shown in FIG. . As a result, the linear scale for detecting the Y-direction position only needs to be provided on the opposite side of the linear drive mechanism by the motor 10, and the mechanism can be simplified.
[0024]
In the above embodiment, an example of the transfer head in the electronic component mounting apparatus is shown as the work head. However, the application target of the present invention is not limited to this, and a linear motion mechanism such as a bond coating apparatus or a printing apparatus is used. Any device may be used.
[0025]
【The invention's effect】
According to the present invention, the positions of the first linear motion slide portion and the second linear motion slide portion that move in the horizontal plane along the first linear motion guide portion and the second linear motion guide portion arranged in parallel to each other are determined. Detected by the first position detecting means and the second position detecting means, respectively, and the connecting portion connecting the work head and connecting the first linear motion slide portion and the second linear motion slide portion is driven in the first direction by the linear motion driving device. In this case, since the linear motion driving means is controlled based on the position detection result to correct the positional deviation error in the first direction of the work head, the linear motion driving means is arranged at the center of gravity of the driven part. Even when not, the positioning accuracy of the work head can be ensured.
[Brief description of the drawings]
FIG. 1 is a plan view of an electronic component mounting apparatus according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of position correction of a transfer head moving mechanism of the electronic component mounting apparatus according to an embodiment of the present invention. An explanatory diagram of position correction of a transfer head moving mechanism of an electronic component mounting apparatus according to an embodiment of the present invention
6A, 6B Guide rails 7A, 7B Slide block 8 Connecting part 9 Nut 10 Motor 11 Feed screw 16 Transfer head 18 Control part

Claims (3)

電子部品実装用装置において作業ヘッドを水平面内でXY方向に移動させる作業ヘッドの移動装置であって、前記水平面内のY方向に相互に平行に配列された第1直動ガイド部および第2直動ガイド部と、これらの第1直動ガイド部および第2直動ガイド部に沿ってそれぞれ水平面内で移動する第1直動スライド部および第2直動スライド部と、これらの第1直動スライド部および第2直動スライド部のY方向の位置YL,YRをそれぞれ検出する第1位置検出手段および第2位置検出手段と、第1直動スライド部および第2直動スライド部を連結し前記作業ヘッドが結合された連結部と、この連結部のX方向における一方の側に偏った位置に結合されてこの連結部をY方向に駆動する第1直動駆動機構と、前記第1位置検出手段と第2位置検出手段の配設ピッチP、前記作業ヘッドのX方向の位置である前記第1位置検出手段からの距離X並びに前記第1位置検出手段および第2位置検出手段の位置検出結果YL,YRに基づいて前記作業ヘッドのY方向の位置補正量ΔyをΔy=(YL−YR)×X/Pから求め、この位置補正量Δyだけ前記作業ヘッドをY方向に移動させるように前記第1直動駆動機構を制御する制御手段とを備えたことを特徴とする作業ヘッドの移動装置。A working head moving device for moving a working head in an XY direction in a horizontal plane in an electronic component mounting apparatus, wherein the first linear motion guide unit and the second linear guide unit are arranged in parallel to each other in the Y direction in the horizontal plane. The first linear motion slide portion and the second linear motion slide portion that move in the horizontal plane along the first linear motion guide portion and the second linear motion guide portion, respectively, and the first linear motion The first position detecting means and the second position detecting means for detecting the Y-direction positions YL and YR of the slide portion and the second linear motion slide portion, respectively, and the first linear motion slide portion and the second linear motion slide portion are connected. A coupling portion to which the working head is coupled, a first linear drive mechanism coupled to a position biased to one side of the coupling portion in the X direction and driving the coupling portion in the Y direction, and the first position. Detection means and second position Arrangement pitch P in detecting means, the position detection result of the distance X and the first position detection means and the second position detecting means from the first position detecting means X is the direction of the position of the working head YL, based on YR The position correction amount Δy in the Y direction of the work head is obtained from Δy = (YL−YR) × X / P, and the first linear drive is performed so that the work head is moved in the Y direction by the position correction amount Δy. A working head moving device comprising: control means for controlling the mechanism. 前記連結部は、前記Y方向と直交するX方向に移動する第2直動駆動機構を備え、前記作業ヘッドはこの第2直動駆動機構を介して連結部と結合されていることを特徴とする請求項1記載の作業ヘッドの移動装置。The connecting portion includes a second linear drive mechanism that moves in an X direction orthogonal to the Y direction, and the working head is coupled to the connecting portion via the second linear drive mechanism. The working head moving device according to claim 1. 電子部品実装用装置において作業ヘッドを水平面内でXY方向に移動させる作業ヘッドの移動装置であって、前記水平面内のY方向に相互に平行に配列された第1直動ガイド部および第2直動ガイド部と、これらの第1直動ガイド部および第2直動ガイド部に沿ってそれぞれ水平面内で移動する第1直動スライド部および第2直動スライド部と、これらの第1直動スライド部又は第2直動スライド部のY方向の位置YL’,YRを検出する位置検出手段と、第1直動スライド部および第2直動スライド部を連結し前記作業ヘッドが結合された連結部と、前記第1直動スライド部に近接して設けられ前記連結部をY方向に駆動する第1直動駆動機構と、前記位置検出手段と前記第1直動駆動機構の距離P’、前記作業ヘッドの前記第1直動駆動機構からのX方向の距離X’並びに前記第1直動駆動機構および前記位置検出手段の位置検出結果YL’,YRに基づいて前記作業ヘッドのY方向の位置補正量Δy’をΔy’=(YL’−YR)×X’/Pから求め、この位置補正量Δy’だけ前記作業ヘッドをY方向に移動させるように前記第1直動駆動機構を制御する制御手段とを備えたことを特徴とする作業ヘッドの移動装置。A working head moving device for moving a working head in an XY direction in a horizontal plane in an electronic component mounting apparatus, wherein the first linear motion guide unit and the second linear guide unit are arranged in parallel to each other in the Y direction in the horizontal plane. The first linear motion slide portion and the second linear motion slide portion that move in the horizontal plane along the first linear motion guide portion and the second linear motion guide portion, respectively, and the first linear motion A position detecting means for detecting Y-direction positions YL ′ and YR of the slide part or the second linear motion slide part, and a connection in which the first linear motion slide part and the second linear motion slide part are coupled and the working head is coupled. A first linear motion drive mechanism provided in the vicinity of the first linear motion slide portion and driving the connecting portion in the Y direction, a distance P ′ between the position detection means and the first linear motion drive mechanism, The first linear drive machine of the working head The position correction amount Δy ′ in the Y direction of the working head is expressed as Δy ′ = (YL) based on the distance X ′ in the X direction from the position X and the position detection results YL ′ and YR of the first linear drive mechanism and the position detecting means. And a control means for controlling the first linear drive mechanism so as to move the working head in the Y direction by the position correction amount Δy obtained from “−YR) × X ′ / P. To move the working head.
JP2000209425A 2000-07-11 2000-07-11 Work head moving device Expired - Fee Related JP4080149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000209425A JP4080149B2 (en) 2000-07-11 2000-07-11 Work head moving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000209425A JP4080149B2 (en) 2000-07-11 2000-07-11 Work head moving device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002356427A Division JP4080315B2 (en) 2002-12-09 2002-12-09 How to move the work head

Publications (2)

Publication Number Publication Date
JP2002026596A JP2002026596A (en) 2002-01-25
JP4080149B2 true JP4080149B2 (en) 2008-04-23

Family

ID=18705837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000209425A Expired - Fee Related JP4080149B2 (en) 2000-07-11 2000-07-11 Work head moving device

Country Status (1)

Country Link
JP (1) JP4080149B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357198B2 (en) * 2019-05-10 2023-10-06 パナソニックIpマネジメント株式会社 Work system, correction method, and evaluation system
JP7291586B2 (en) * 2019-09-19 2023-06-15 ファスフォードテクノロジ株式会社 Die bonding apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2002026596A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
US6526651B1 (en) Printed circuit board transferring apparatus of a surface mounter
US6971158B2 (en) Electric-component mounting system including movable substrate-holding device
KR100389755B1 (en) Equipment and method for mounting electronic components
US7036215B2 (en) Method and program for obtaining positioning errors of printed-wiring board, and electronic-circuit-component mounting system
US8635766B2 (en) Component supplying apparatus
WO2014037993A1 (en) Work device
US8823220B2 (en) Positioning system for positioning a positioning unit along a longitudinal axis
KR20010090483A (en) Components mounting apparatus
JP5495260B2 (en) Parts mounting machine
JP4712819B2 (en) Electronic component mounting method
JP4080149B2 (en) Work head moving device
US8244387B2 (en) Operation control method, operating device, and circuit-board working apparatus
JP4080315B2 (en) How to move the work head
JP3095512B2 (en) Electronic component automatic mounting device
US11185001B2 (en) Component placing device
JP2666368B2 (en) Screen printing machine
CN111165085B (en) Substrate processing system
US20030116339A1 (en) Electric-component mounting system, and printed-circuit board fabricating process
CN112106461B (en) Side fastening device
KR100395538B1 (en) Conveyor width adjusting apparatus of sruface mounting device and method thereof
JP2005216974A (en) Method for controlling move of moving block in electronic component mounting device, and matrix board used therefor
JP2729845B2 (en) Electronic component mounting equipment
US11129321B2 (en) Movement error detection apparatus of mounting head, and component mounting apparatus
JP4860936B2 (en) Surface mount machine
JP2740682B2 (en) Electronic component mounting equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees