JP4079202B2 - Method for producing wear-resistant article made of high manganese steel - Google Patents
Method for producing wear-resistant article made of high manganese steel Download PDFInfo
- Publication number
- JP4079202B2 JP4079202B2 JP20606796A JP20606796A JP4079202B2 JP 4079202 B2 JP4079202 B2 JP 4079202B2 JP 20606796 A JP20606796 A JP 20606796A JP 20606796 A JP20606796 A JP 20606796A JP 4079202 B2 JP4079202 B2 JP 4079202B2
- Authority
- JP
- Japan
- Prior art keywords
- article
- work
- affected layer
- processing means
- surface hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、土木建築機械のような激しい摩耗環境に使用される耐摩耗性の改善された高マンガン鋼製耐摩耗物品、特に、表面に加工変質層を形成することにより耐摩耗性を改善した高マンガン鋼製耐摩耗物品及びその製造方法に関するものである。
【0002】
【従来の技術】
土木工事や建築工事などに使用される物品は、土砂などにより激しい摩耗作用を受けるため、その耐摩耗性は極めて重要である。しかしながら、前記のような用途に使用される物品は、安価であるうえに大きく且つ破損し難い特性を求められるために、耐磨耗性に優れたセラミックス等の所謂新素材を産業規模で採用した例は見受けられず、例えば、JISでSCMNH1〜21として規定される所謂高マンガン鋼で造られることが一般的である。ところが、高マンガン鋼はSS材やSK材等の一般的に使用される鉄系の構造材料に比べると耐摩耗性に優れてはいるものの、前記のような激しい摩耗環境において使用される場合にはその耐摩耗性はなお充分ではなく、安価であって且つ摩耗の少ない材料の開発が待望されている。
【0003】
一般に高マンガン鋼製物品の表面を強化する方法としては、例えば、室化処理や窒化チタンコーティング処理等を施す物理化学的処理法や、超硬或いはセラミックス等の耐摩耗性の高い材料で物品表面を覆う方法が採用されているが、従来行われているこれら方法はおしなべて製造コストの高騰を招くものであって、土木工事や建築工事などに使用される物品のような大型の物品には採用することができない。また、高マンガン鋼製物品の表面に物理力伝達媒体を作用させて被処理物品の表面に母材よりも硬度の高い加工変質層を形成し、物品の耐摩耗性を改善する方法も知られているが、この目的には所謂物理的効果を生ぜせしむるための一般的な加工方法を採用し得るが、後に例示するようにそれらには―長―短があって何れも一層の改善が求められているのである。
【0004】
すなわち、加工変質層の形成法は、比較的小さな速度で物理力を加える方法(静圧法と呼ぶ)と、比較的大きな速度で物理力を加える方法(動圧法と呼ぶ)に大別することができる。そして、静圧法の代表的なものには、ローラを物品の表面に抑圧せしめて加工変質層を形成するローラ処理法がある。この方法によれば、比較的安価に例えば深さ3mm程度の深い加工変質層を形成できるが、加工変質層の表面硬度は所詮Hv400程度であって、その耐摩耗性向上効果は満足できるものではなかった。一方、動圧法の代表的なものには、硬質の小粒体を高速で被処理物品の表面に衝突させて加工変質層を形成する所謂ショットピーニング法がある。この方法によれば、比較的安価に例えばHv500程度の加工変質層を形成できるが、その深さは所詮1mm程度以下であって、その耐摩耗性向上効果も満足できるものではなかった。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとするところは前記のような問題を解決して、特殊な材料を用いることなく耐摩耗性を著しく改善して土木・建築機械のような激しい摩耗環境における使用にも適したものを安価に製造できる高マンガン鋼製耐摩耗物品及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記の問題点を解決した本発明は、物品表面に厚さが3mm以上で表面硬度がHV500以上の加工変質層を少なくとも2段階の異なる加工手段によって形成する高マンガン鋼製耐摩耗物品の製造方法であって、まず、物品の加工しようとする所要表面に対して、その部分に対しては、先端が球形の圧子を物品に食込ませて加工変質層を形成する押込法、物品全体に対しては、物品の幅より大きな幅のローラを使用して所定圧力で物品の全面を加圧するローラ法による2000MPa以上の静圧力を、表層に厚さ3mm以上で表面硬度HV400程度の加工変質層が形成されるまで加える第1の加工手段を施したのち、この第1の加工手段によって形成された加工変質層の表面硬度がHV500以上となるまで前記加工変質層の表面に対してブラスティング装置を用いて表面硬度HV400〜HV800の硬質金属粒体を30m/秒〜90m/秒の速度で衝突させる第2の加工手段を施すことを特徴とする高マンガン鋼製耐摩耗物品の製造方法高マンガン鋼製耐摩耗物品の製造方法を請求項1に係る発明とし、この請求項1の発明において、油圧プレスを使用して先端が球形の圧子を物品に食込ませる高マンガン鋼製耐摩耗物品の製造方法を請求項2に係る発明とし、前記した請求項1または請求項2の発明の第2の加工手段により表面硬度がHV500以上に高められた加工変質層の表面に対してブラスティング装置を用いて前記した第2の加工手段で用いた硬質金属粒体よりも細かい表面硬度HV1000以上の硬質金属粒体を30m/秒〜90m/秒の速度で衝突させる第3の加工手段を施して前記加工変質層の表面硬度をさらに高める高マンガン鋼製耐摩耗物品の製造方法を請求項3に係る発明とするものである。
【0007】
前記したような高マンガン鋼製耐摩耗物品は、耐摩耗性を改善するため、物品表面に厚さが3mm以上の加工変質層を形成してあるので、加工変質層の厚さが1mm以下、数百ミクロンであるに過ぎないショットピーニング法により加工された耐摩耗物品に比ベて著しく耐摩耗性が改善されており、また、その表面硬度がHV500以上に高められているので、せいぜいHV400程度に過ぎないローラ処理法により加工された耐摩耗物品に比べても著しく耐摩耗性が改善できるのである。また、前記したような高マンガン鋼製耐摩耗物品の製造方法は、少なくと2段階の異なる簡単な加工手段を採用することとしたので、新たに特別の大型機械を開発することなしに従来の製造設備を利用して加工変質層を形成することが可能となるのである。そして、第1の加工手段として到達表面硬度はHV400程度ではあるが加工変質層を深く形成することができる静圧法を採用したうえにその加工圧力を2000MPa以上としたので、先ず、第1手段により加工変質層の深さを3mm以上とすることができる。このように第1の加工手段としては、2000MPa以上の静圧力を被加工物品の表面に加えるのであるが、このような静圧法としては、単純な形状の物品に対しては例えばローラプレスが好適に利用できる。なお、ここで第1の加工手段として静圧法を採用せずに動圧法を採用すると、物品には静圧法による到達硬度以上の表面硬度の浅い加工変質層が形成されることとなってしまうので、所期の目的を達成することができず、従って、第1の加工手段としては静圧法に限定する必要がある。
【0008】
次に、第2、第3の加工手段に採用する動圧法は、多数の硬質の小粒体を高速で物品の表面に衝突させさせるものであって、加工変質層の厚さを1mm以上とすることは困難であるものの、物品の形状によらずに安価にその表面硬度を高めることが可能であり、表面硬度がHV400の硬質金属粒体を採用すると著しい粒体の損耗を招くことなしに物品の表面硬度をHV400以上に高めることが可能となる。なお、衝突させる小粒体を硬質金属粒体に限定したのは、金属粒体はガラスビーズ等に比べて靱性が高くて損耗が少ないので安価な製造に好適であるからであり、また、セラミックスビーズより安価に購入することができるからであって、一般的に市販されている直径2mm前後の鋳鉄製の球体等がこの目的に利用できる。また、衝突速度を30m/秒以上としたのは、それ以下ではHV500以上の表面硬度を得ることが困難であるという経験的に導かれた限界速度であって、それ以上であれば構わないが、衝突速度に伴った物品の表面硬度改善の幅はさほど大きくなく、一方、衝突速度の高速化は金属粒体の激しい損耗を招くので70m/秒〜90m/秒程度とすれば好適に本発明を実施することができる。
【0009】
また、前記した少なくとも3段階の異なる加工手段を採用する方法では、第2の加工手段において安価で損耗の少ない表面硬度がHV400〜HV800の硬質金属粒体を採用して加工変質層の表面硬度をHV500〜600程度に高め、続いて、第3の加工手段として、表面硬度がHv1000以上の硬質金属粒体を30m/秒以上の速度で被加工物品の表面に衝突させるようにしたので、これにより第2の加工手段でHV500〜600程度に高められた加工変質層の表面硬度をHV700以上にまで高めることができることとなるのである。
【0010】
【発明の実施の形態】
以下に、本発明の好ましい実施の形態を実施例により示す。
〔実施例1〕
加工変質層の厚さ及び表面硬度と、物品の寿命に付いて行った実験結果を表1に示した。
【表1】
ここで、「寿命比」とは、後に詳しく説明する使用に供した物品の重量減を測定し、比較例Aに記した加工変質層を形成しない状態の高マンガン鋼製耐摩耗物品の重量減との比を計算した値であって、加工変質層の耐摩耗性改善の程度を示し、その数値が大きいほど耐摩耗性が高いことを示す。
この表1によれば、厚さ3mmの加工変質層を形成しても表面硬度がHv500未満であれば物品の寿命比は殆ど改善されず(比較例B)、また、表面硬度をHv500以上としても加工変質層の厚さが3mm未満であれば物品の寿命比は改善されない(比較例C)が、実施例No.1の結果から明らかなように、3mm以上の厚さでHv500以上の表面硬度である加工変質層を形成すれば、物品の寿命比は大幅に改善されることが判る。
また、実施例No.2乃至No.4の結果から明かなように、更に加工変質層を厚くすることにより寿命比は改善され、或いは、実施例No.5乃至No.7の結果から明らかなように、更に加工変質層の表面硬度を高めることにより寿命比は改善される傾向があり、価格の上昇を補い得る用途に対しては、所定の加工変質層の厚さ及び表面硬度が得られる加工条件を適宜選定すれば足りるのである。
【0011】
なお、前記した実施例および比較例では、表2に示した化学成分を含み、残部は実質的にFeである高マンガン鋼を採用して鋳造法により衝撃式破砕機の打撃板を形成し、所定の加工変質層を形成したのち、平均直径15mmの石灰岩破砕作業を行い、その結果の打撃板の重重減少量を比較する方法により表1の結果を得たものであり、また、加工変質層の形成には後に詳しく説明するような少なくとも2段階の異なる加工手段を採用した。
【表2】
【0012】
〔実施例2〕
第1の加工手段における静圧力と加工変質層の厚さの関係の実験結果を表3に示した。
【表3】
表3によれば、比較例Dのように1000MPaの静圧力を加えても、比較例Eのように1500MPaの静圧力を加えても、3mm以上の厚さの加工変質層を形成することはできず、3mm以上の厚さの加工変質層を形成するには、実施例No.8〜12のように2000MPa以上の静圧力が不可欠であることが明らかである。
なお、加工変質層の形成には、後に具体的に説明する押込法によってもローラ法によっても2000MPa以上の静圧力であれば同じように厚さが3mmの加工変質層を形成することができ、従って、静圧を加える手段は加工形態に応じて適宜選定すれば足りる。
また、実施例No.8〜12から明かなように、更に加える静圧力を大きくすることにより加工変質層を厚くすることができるから、そのための価格の上昇を補い得る用途に対しては適宜所定の加工変質層の厚さに応じた静圧力を選定すれば足りるのである。
なお、前記した実施例および比較例では、表2に示した化学成分を含み、残部は実質的にFeである高マンガン鋼を採用し、また、押込法は、油圧プレスを使用して先端が球形である圧子を物品に食込ませて加工変質層を形成する方法であって、その1個当りの投影面積が20mm2 、総面積割合が78%となるように条件を選んで加工した。また、ローラ法は、物品の幅より大きな幅であるローラを使用して所定圧力で物品の全面を加圧する方法を採用した。
【0013】
〔実施例3〕
前記した第1の加工手段により加工して厚さが3mm以上で表面硬度がHv400とした後に施す第2の加工手段および第3の加工手段における加工条件と加工変質層の表面硬度と寿命比の関係を表4に示した。なお、表中の実施例13、14、15と、比較例F、Gはいずれも第1の加工手段後に第2の加工手段を施した場合であり、実施例16、17は第2の加工手段後にさらに第3の加工手段を施した場合である。
【表4】
なお、上表において、「金属粒体種類」のイ、ロ、ハ、ニは、表5に示す。
表4によれば、第1の加工手段による加工を施した高マンガン鋼製耐摩耗物品に第2の加工手段として表面硬度HV400以上の金属粒体を30m/秒以上の速度で衝突させれば、表面硬度がHV400以上の加工変質層を形成することができ、その結果、寿命比で1.5以上に耐摩耗性が改善されることが明かである。なお、物品表面に衝突させる金属粒体の表面硬度の影響に付いて詳しく比較すれば、表面硬度がHV460である金属粒体イを用いた場合(実施例No.14 )や表面硬度がHV710である金属粒体ロを用いた場合(実施例No.15 )は、何れも物品の表面硬度がHV500以上であって、寿命比が1.5以上であるに対して、表面硬度がHV200である金属粒体ニを用いた場合(比較例G)では寿命比が全く改善されない。
また、金属粒体の物品への衝突速度に付いて詳しく比較すれば、衝突速度が20m/秒である比較例Fでは加工変質層の表面硬度がHV455でHV500に達しておらず、一方、衝突速度が30m/秒である実施例No.13 では、加工変質層の表面硬度がHV510で、寿命比も1.5と高くすることが可能となった。従って、衝突速度は30m/秒以上であれば構わないが、衝突速度が大きくなるに連れて表面硬度の向上がみられるものの、金属粒体の損耗が激しくなる理由から、経験的に採用されることの多い70m/秒であっても構わない。
【0014】
次に、第3の加工手段を採用した実施例No.16 及び実施例No.17 についてその効果を見てみれば、表面硬度がHV1400である超硬粒体ハを30m秒以上の速度で物品に衝突させれば、表面硬度をHV700程度にまで高めることが可能で、寿命比にも2〜3倍と大きく故善することが可能となる。
なお、前記した実施例および比較例では、表2に示した化学成分を含み、残部は実質的にFeである高マンガン鋼を採用した。また、第1の加工手段は先に説明した押込法を採用してその厚さが3.0mmとなるように加工変質層を形成した。さらに、寿命比の測定は既に実施例1において説明した方法と同じ方法による。また、第2の加工手段及び第3の加工手段では、表5に示した金属粒体を採用して一般に市販されているブラスティング装置を用いて行った。
【表5】
【0015】
【発明の効果】
本発明は前記説明から明らかなように、物品母材に比較的安価であって従来から使用実績の多い高マンガン鋼を採用し、且つ、従来から加工変質層を形成するために利用されている汎用的な加工手段を採用しながら、安価に従来の物品に比べて著しく耐摩耗性を向上させることができる。
従って、本発明は特殊な材料を用いることなく耐摩耗性を著しく改善して土木・建築機械のような激しい摩耗環境における使用にも適したものを安価に製造できる高マンガン鋼製耐摩耗物品及びその製造方法として業界の発展に寄与するところ極めて大きいものがある。[0001]
BACKGROUND OF THE INVENTION
The present invention improves wear resistance by forming a work-affected layer on the surface of a wear-resistant article made of high manganese steel with improved wear resistance used in severe wear environments such as civil engineering and construction machinery. The present invention relates to a high manganese steel wear-resistant article and a method for producing the same.
[0002]
[Prior art]
Since articles used for civil engineering work and construction work are subjected to severe wear by earth and sand, their wear resistance is extremely important. However, since the articles used for the above-mentioned applications are inexpensive and require characteristics that are large and difficult to break, so-called new materials such as ceramics having excellent wear resistance are employed on an industrial scale. An example is not seen, for example, it is common to make with what is called high manganese steel prescribed | regulated as SCMNH1-21 by JIS. However, although high manganese steel is superior in wear resistance compared to commonly used iron-based structural materials such as SS materials and SK materials, it is used when used in such a severe wear environment. However, its wear resistance is still insufficient, and development of a material that is inexpensive and has low wear is awaited.
[0003]
In general, as a method for strengthening the surface of an article made of high manganese steel, for example, a physicochemical treatment method such as a chambering treatment or a titanium nitride coating treatment, or a material surface having a high wear resistance such as cemented carbide or ceramics is used. However, these methods that have been used in the past generally lead to a rise in manufacturing costs, and are used for large items such as those used in civil engineering and construction work. Can not do it. Also known is a method of improving the wear resistance of an article by forming a work-affected layer having a higher hardness than the base material on the surface of the article to be treated by applying a physical force transmission medium to the surface of the article made of high manganese steel. However, for this purpose, it is possible to adopt a general processing method for producing a so-called physical effect. However, as will be exemplified later, they have both a long and a short and both are further improved. Is demanded.
[0004]
That is, the method of forming a work-affected layer can be broadly divided into a method of applying physical force at a relatively low speed (called a static pressure method) and a method of applying physical force at a relatively high speed (called a dynamic pressure method). it can. A representative example of the static pressure method is a roller processing method in which a roller is suppressed on the surface of an article to form a work-affected layer. According to this method, a deep work-affected layer having a depth of, for example, about 3 mm can be formed at a relatively low cost. However, the surface hardness of the work-affected layer is about Hv400, and the effect of improving the wear resistance is not satisfactory. There wasn't. On the other hand, a typical example of the dynamic pressure method is a so-called shot peening method in which hard small particles are collided with the surface of an article to be processed at high speed to form a work-affected layer. According to this method, a work-affected layer of about Hv500, for example, can be formed at a relatively low cost, but the depth is about 1 mm or less, and the effect of improving the wear resistance is not satisfactory.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve the above-mentioned problems, and to improve the wear resistance without using special materials, and is suitable for use in severe wear environments such as civil engineering and construction machinery. An object of the present invention is to provide a high-manganese-steel wear-resistant article that can be manufactured at low cost and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
The present invention that has solved the above problems is a method for producing a high-manganese-steel wear-resistant article in which a work-affected layer having a thickness of 3 mm or more and a surface hardness of HV500 or more is formed on the article surface by at least two stages of different processing means. First, with respect to the required surface of the article to be processed, for that portion, the indentation method in which a spherical indenter is bitten into the article to form a work-affected layer, and the whole article In this case, a static pressure of 2000 MPa or more by a roller method in which the entire surface of the article is pressed with a predetermined pressure using a roller having a width larger than the width of the article, and a surface damaged layer having a thickness of 3 mm or more and a surface hardness of about HV400 is applied to the surface layer. Is applied to the surface of the work-affected layer until the surface hardness of the work-affected layer formed by the first work means reaches HV500 or higher. Production of wear-resistant article made of high manganese steel, characterized in that a second processing means is applied to collide hard metal particles having a surface hardness of HV400 to HV800 at a speed of 30 m / sec to 90 m / sec using a blasting apparatus. and the invention according to the manufacturing method of a method and high manganese steel wear article in claim 1, this and had us to the invention of claim 1, the high manganese steel tip using a hydraulic press causes bite the indenter spherical article The manufacturing method of the wear-resistant article is the invention according to claim 2, and the surface of the work-affected layer whose surface hardness is increased to HV500 or more by the second processing means of the invention of claim 1 or claim 2 described above. third impinging at a rate of the above-described second machining fine surface hardness than the hard metal granules used in the means HV1000 or more hard metal granules of 30 m / sec ~90M / sec by using a blasting apparatus Te It is an invention relating subjected to processing means further enhance the surface hardness of the work-affected layer manufacturing method of the high manganese steel wear article in claim 3.
[0007]
In order to improve the wear resistance of the high manganese steel wear-resistant article as described above, a work-affected layer having a thickness of 3 mm or more is formed on the surface of the article. Therefore, the thickness of the work-affected layer is 1 mm or less, Compared to wear-resistant articles processed by the shot peening method, which is only a few hundred microns, the wear resistance is remarkably improved and the surface hardness is increased to HV500 or higher, so that it is at most about HV400. Thus, the wear resistance can be remarkably improved as compared with the wear-resistant article processed by the only roller processing method. In addition, since the manufacturing method for wear-resistant articles made of high manganese steel as described above employs at least two different simple processing means, the conventional method can be used without newly developing a special large machine. It is possible to form a work-affected layer using manufacturing equipment. And as the first processing means, although the ultimate surface hardness is about HV400, the static pressure method capable of forming the work-affected layer deeply is adopted and the processing pressure is set to 2000 MPa or more. Thus, the depth of the work-affected layer can be 3 mm or more. As described above, as the first processing means, a static pressure of 2000 MPa or more is applied to the surface of the article to be processed. As such a static pressure method, for example, a roller press is used for an article having a simple shape. It can be suitably used. If the dynamic pressure method is used instead of the static pressure method as the first processing means, a work-affected layer having a shallow surface hardness equal to or higher than the ultimate hardness by the static pressure method is formed on the article. , can not be achieved the intended purposes, therefore, the first processing means need to be restricted to the static pressure method.
[0008]
Next, the dynamic pressure method employed in the second and third processing means is to make a large number of hard small particles collide with the surface of the article at high speed, and the thickness of the work-affected layer is 1 mm or more. Although it is difficult, it is possible to increase the surface hardness at a low cost regardless of the shape of the article, and when a hard metal particle having a surface hardness of HV400 is adopted, the article is not caused without significant particle wear. It becomes possible to raise the surface hardness of HV400 or more. The reason why the small particles to be collided are limited to the hard metal particles is that the metal particles have high toughness and less wear compared to glass beads and the like, and are suitable for inexpensive production. This is because it can be purchased at a lower cost, and a commercially available cast iron sphere having a diameter of about 2 mm can be used for this purpose. Further, the impact speed of 30 m / sec or more is an empirically derived limit speed that it is difficult to obtain a surface hardness of HV500 or less below that, and may be any value beyond that. The range of improvement in the surface hardness of the article accompanying the collision speed is not so large. On the other hand, the increase in the collision speed causes severe wear of the metal particles, so that the present invention is preferably set to about 70 m / second to 90 m / second. Can be implemented.
[0009]
Further, in the above-described method using at least three different processing means, the second processing means employs hard metal particles having a surface hardness of HV400 to HV800 that is inexpensive and has little wear, thereby increasing the surface hardness of the work-affected layer. As a third processing means, the hard metal particles having a surface hardness of Hv1000 or higher are collided with the surface of the article to be processed at a speed of 30 m / second or more. The surface hardness of the work-affected layer that has been increased to about HV500 to 600 by the second processing means can be increased to HV700 or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described by way of examples.
[Example 1]
Table 1 shows the results of experiments conducted on the thickness and surface hardness of the work-affected layer and the life of the article.
[Table 1]
Here, the “life ratio” means the weight loss of the wear-resistant article made of high-manganese steel in which the weight loss of the article used for use, which will be described in detail later, is measured and the work-affected layer described in Comparative Example A is not formed. This ratio is a calculated value of the ratio, and indicates the degree of improvement in the wear resistance of the work-affected layer. The larger the value, the higher the wear resistance.
According to Table 1, even when a 3 mm thick work-affected layer is formed, if the surface hardness is less than Hv500, the life ratio of the article is hardly improved (Comparative Example B), and the surface hardness is set to Hv500 or more. However, if the thickness of the work-affected layer is less than 3 mm, the life ratio of the article is not improved (Comparative Example C). However, as is clear from the results of Example No. 1, the surface has a thickness of 3 mm or more and Hv 500 or more. It can be seen that if a work-affected layer having a hardness is formed, the life ratio of the article is greatly improved.
Further, as is clear from the results of Examples No. 2 to No. 4, the life ratio is improved by further thickening the work-affected layer, or it is clear from the results of Examples No. 5 to No. 7. Thus, the life ratio tends to be improved by further increasing the surface hardness of the work-affected layer, and for applications that can compensate for the increase in price, a predetermined thickness and surface hardness of the work-affected layer can be obtained. It is sufficient to appropriately select the processing conditions.
[0011]
In the above-described Examples and Comparative Examples, the impact components of the impact type crusher are formed by casting using a high manganese steel containing the chemical components shown in Table 2 and the balance being substantially Fe. After forming the predetermined work-affected layer, the limestone crushing operation with an average diameter of 15 mm was performed, and the results shown in Table 1 were obtained by comparing the resulting weight reduction of the striking plate. For the formation, different processing means of at least two stages as described in detail later were adopted.
[Table 2]
[0012]
[Example 2]
Table 3 shows the experimental results of the relationship between the static pressure and the thickness of the work-affected layer in the first processing means.
[Table 3]
According to Table 3, the addition of static pressure of 100 0MPa as in Comparative Example D, the addition of 150 static pressure 0MPa as in Comparative Example E, to form a damaged layer of 3mm or more thick In order to form a work-affected layer having a thickness of 3 mm or more, it is apparent that a static pressure of 2000 MPa or more is indispensable as in Examples Nos. 8-12.
For the formation of the work-affected layer, a work-affected layer having a thickness of 3 mm can be formed in the same manner as long as the static pressure is 2000 MPa or more by a pressing method and a roller method, which will be described in detail later. Therefore, it is sufficient to appropriately select the means for applying the static pressure according to the processing form.
Further, as is clear from Examples Nos. 8 to 12, the work-affected layer can be thickened by increasing the applied static pressure, so that it is appropriately specified for applications that can compensate for the increase in price. It is sufficient to select a static pressure corresponding to the thickness of the work-affected layer.
In the above-described examples and comparative examples, high manganese steel containing the chemical components shown in Table 2 and the balance being substantially Fe is adopted, and the indentation method uses a hydraulic press and the tip is used. In this method, a spherically shaped indenter is bitten into an article to form a work-affected layer, which is processed under conditions such that the projected area per piece is 20 mm 2 and the total area ratio is 78%. The roller method employs a method in which the entire surface of the article is pressed with a predetermined pressure using a roller having a width larger than the width of the article.
[0013]
Example 3
The processing conditions in the second processing means and the third processing means applied after processing by the first processing means described above after the thickness is 3 mm or more and the surface hardness is Hv400, the surface hardness and life ratio of the work-affected layer. The relationship is shown in Table 4. Note that Examples 13, 14, and 15 and Comparative Examples F and G in the table are cases where the second processing means is applied after the first processing means, and Examples 16 and 17 are the second processing. This is a case where third processing means is further applied after the means.
[Table 4]
In the above table, “metal particle type” a, b, c, and d are shown in Table 5.
According to Table 4, if a metal particle having a surface hardness of HV400 or more is collided at a speed of 30 m / second or more as a second processing means to a wear-resistant article made of high manganese steel subjected to processing by the first processing means. It is clear that a work-affected layer having a surface hardness of HV400 or more can be formed, and as a result, the wear resistance is improved to 1.5 or more in terms of the life ratio. In addition, when the effect of the surface hardness of the metal particles colliding with the surface of the article is compared in detail, the case where the metal particles a having a surface hardness of HV460 (Example No. 14) or the surface hardness of HV710 is used. When using certain metal particles (Example No. 15), the surface hardness of the article is HV500 or more, and the life ratio is 1.5 or more, whereas the surface hardness is HV200. In the case of using metal particles (Comparative Example G), the life ratio is not improved at all.
Further, comparing the collision speed of the metal particles to the article in detail, in Comparative Example F in which the collision speed is 20 m / sec, the surface hardness of the work-affected layer is HV455 and does not reach HV500, In Example No. 13 where the speed was 30 m / sec, the surface hardness of the work-affected layer was HV510, and the life ratio could be increased to 1.5. Accordingly, the collision speed may be 30 m / second or more, but although the surface hardness is improved as the collision speed increases, it is adopted empirically because the wear of the metal particles becomes severe. Often 70 m / sec may be used.
[0014]
Next, the article in the third If you look at the effect for Example No.16 and Example No.17 employs processing means, the carbide granules Ha surface hardness of HV1400 above 30m sec Speed The surface hardness can be increased to about HV700, and the life ratio can be greatly improved by 2 to 3 times.
In the above-described examples and comparative examples, high manganese steel containing the chemical components shown in Table 2 and the balance being substantially Fe was employed. The first processing means employs the indentation method described above and forms a work-affected layer so that its thickness is 3.0 mm. Furthermore, the life ratio is measured by the same method as that already described in the first embodiment. The second processing means and the third processing means were performed using a commercially available blasting apparatus employing the metal particles shown in Table 5.
[Table 5]
[0015]
【The invention's effect】
As is apparent from the above description, the present invention employs high manganese steel, which is relatively inexpensive and has been used for a long time, and is used to form a work-affected layer. While adopting a general-purpose processing means, the wear resistance can be remarkably improved compared with conventional articles at a low cost.
Therefore, the present invention is a high manganese steel wear-resistant article that can significantly improve wear resistance without using a special material and can be manufactured at low cost that is suitable for use in severe wear environments such as civil engineering and construction machinery. There is a very large manufacturing method that contributes to the development of the industry.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20606796A JP4079202B2 (en) | 1996-08-05 | 1996-08-05 | Method for producing wear-resistant article made of high manganese steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20606796A JP4079202B2 (en) | 1996-08-05 | 1996-08-05 | Method for producing wear-resistant article made of high manganese steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1044043A JPH1044043A (en) | 1998-02-17 |
JP4079202B2 true JP4079202B2 (en) | 2008-04-23 |
Family
ID=16517298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20606796A Expired - Lifetime JP4079202B2 (en) | 1996-08-05 | 1996-08-05 | Method for producing wear-resistant article made of high manganese steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4079202B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3327153T3 (en) * | 2016-11-23 | 2021-05-17 | Outokumpu Oyj | Method for manufacturing a complex-formed component |
-
1996
- 1996-08-05 JP JP20606796A patent/JP4079202B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1044043A (en) | 1998-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qutaba et al. | A review on peening processes and its effect on surfaces | |
US6658907B2 (en) | Method of shot peening processing and article processed thereby, and peening material and use thereof | |
KR19980081249A (en) | Powder metallurgy cold oral steel with high impact toughness and wear resistance and manufacturing method | |
JPH1029160A (en) | Highly hard metal product shot peening method and highly hard metal product | |
CN101184868A (en) | Superfinishing of high density carbides | |
JP2008207279A (en) | Surface refining method of metal mold and metal mold | |
JP4079202B2 (en) | Method for producing wear-resistant article made of high manganese steel | |
JP2009533554A (en) | Cold work steel | |
US6394881B1 (en) | Cut-wire type ferrous shot for blasting and a process of using a cut-wire type ferrous shot for blasting | |
US2059915A (en) | Method of cleaning metal and material therefor | |
AU684632B2 (en) | High carbon content steel, method of manufacture thereof, and use as wear parts made of such steel | |
JPS58153774A (en) | Preparation of hard coating member | |
JPH10217122A (en) | Treatment method for metal mold surface | |
JPH10100069A (en) | Shot peening method and treated article | |
JP2005095980A (en) | Steel plate punching tool, and method for punching the same | |
JPH10180632A (en) | Wear resisting article and its manufacture | |
JP2003191166A (en) | Method for improving metal mold serviceable life and metal mold | |
JP3435742B2 (en) | Forging tool and its manufacturing method | |
JPH0413573A (en) | Finishing method for surface of metal product | |
CA1191497A (en) | Wearing surface for a crusher and a method for manufacturing the same | |
Woguang et al. | The influence of forging on the structure and properties of some manganese white cast irons | |
Kagaya et al. | Fine particle bombarding technology and functional development of metal surface | |
JP4821978B2 (en) | Press tool surface treatment method and press tool surface-treated by the method | |
JP2002143909A (en) | Roll made of high speed tool steel having high spalling resistance and its production method | |
JP2021088742A (en) | Partial composite steel material and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140215 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |