[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4075863B2 - 電動トルク使用型車両 - Google Patents

電動トルク使用型車両 Download PDF

Info

Publication number
JP4075863B2
JP4075863B2 JP2004168609A JP2004168609A JP4075863B2 JP 4075863 B2 JP4075863 B2 JP 4075863B2 JP 2004168609 A JP2004168609 A JP 2004168609A JP 2004168609 A JP2004168609 A JP 2004168609A JP 4075863 B2 JP4075863 B2 JP 4075863B2
Authority
JP
Japan
Prior art keywords
motor
voltage
torque
command value
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168609A
Other languages
English (en)
Other versions
JP2005348580A (ja
Inventor
貴敏 高井
武志 伊藤
浩也 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004168609A priority Critical patent/JP4075863B2/ja
Priority to US11/146,155 priority patent/US7005819B2/en
Publication of JP2005348580A publication Critical patent/JP2005348580A/ja
Application granted granted Critical
Publication of JP4075863B2 publication Critical patent/JP4075863B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ハイブリッド車、電動車など走行トルクをモータにより発生する電動トルク使用型車両に関する。
走行エネルギーを出力するモータ(以下、走行モータとも言う)により駆動されて走行する電動トルク使用型車両として、ハイブリッド車、二次電池又は燃料電池により駆動される電気自動車等がある。
この種の走行モータの制御による車両走行制御のために、電動トルク使用型車両は、交流電動機である走行モータへ印加するモータ電圧を制御するモータ制御装置と、少なくともアクセルペダル及びブレーキペダルからの入力情報に基づいてトルク指令値を算出してモータ制御装置に送信する車両用電子制御装置(車両ECU)とを備えるのが通常である。また、モータ制御装置は、外部から入力されたトルク指令値と前記走行モータの回転数とに基づいて電流指令値を演算する電流指令値演算部と、検出した走行モータの電流と電流指令値との偏差に基づいてこの偏差を0に収束させるために走行モータへ出力する電圧指令値を演算する電圧指令値演算部と、電圧指令値に対応するモータ電圧を走行モータに印加するインバータ部と有するのが通常である。この種のモータ制御装置としてはたとえば下記の特許文献1などに記載されている。
特開2003−009573号公報
しかしながら、上記した従来の電動トルク使用型車両において、車輪に掛かる走行負荷が急変すると、車輪を駆動する走行モータの出力特にその回転数が急変して車両運転制御に違和感が生じると言う問題があった。
更に説明すると、従来の電動トルク使用型車両では、車両ECUが車速またはモータ回転数に応じて必要なモータのトルク指令値を算出してそれをモータ制御装置に送信し、モータ制御装置が、受信したトルク指令値に対応する電流指令値にモータ電流を収束させる電流フィードバックを実施して、トルク指令値に対応するトルクをモータに発生させている。したがって、上記したように走行負荷が急変した場合、それを補償するためには車両ECUが出力するトルク指令値を変更せざるを得ないが、この場合、車両ECUやモータ制御装置の演算や相互間の通信のための時間遅れ(約20ms)が生じ、その結果、モータ回転数が急激に変化してしまい、運転フィーリングが悪化するという問題があった。
本発明は上記問題点に鑑みなされたものであり、走行負荷の急変による車両の運転フィーリングの悪化を回避可能な電動トルク使用型車両を提供することをその目的としている。
上記課題を解決する本発明の電動トルク使用型車両は、走行トルクを発生する交流電動機である走行モータと、前記走行モータへ印加するモータ電圧を制御するモータ制御装置と、少なくともアクセルペダル及びブレーキペダルからの入力情報に基づいて前記トルク指令値を算出して前記モータ制御装置に送信する車両用電子制御装置とを備え、前記モータ制御装置が、外部から入力されたトルク指令値と前記走行モータの回転数とに基づいて電流指令値を演算し、検出した前記走行モータの電流と前記電流指令値との偏差に基づいて前記偏差を0に収束させるために前記走行モータへ出力する電圧指令値を演算する制御部と、前記電圧指令値に対応するモータ電圧を前記走行モータに印加するインバータ部とを有する電動トルク使用型車両において、前記制御部が、前記走行モータの運転状態に関連する所定の電気量と前記走行モータの好適電圧範囲との関係を記憶し、入力されるか又は演算した前記電気量並びに記憶する前記関係とから前記走行モータの好適電圧範囲を演算し、前記電圧指令値を前記好適電圧範囲の範囲内に規制し、前記モータ電圧が前記好適電圧範囲を逸脱した場合に、前記モータ電圧が前記好適電圧範囲内に復帰する向きに前記復帰が可能な量だけ前記電流指令値のうちのq軸電流指令値を調整することを特徴としている。
すなわち、この発明は、走行モータの電圧を規定するためにモータ制御装置が出力する電圧指令値を、走行モータの運転状態に関連するこの走行モータの電気パラメータの関数値としての好適電圧範囲の範囲内に規制するフィードバック制御を行う。
このようにすれば、上記した車両の走行負荷(車輪負荷)が急変したとしても、それによりモータ電圧及びモータ出力が急変するのを速やかに抑止することができるので、走行負荷の急変による運転フィーリングの悪化すなわち走行モータの運転指令追従性の悪化を良好に防止することができる。
更に説明すると、走行負荷の急変は、走行モータの回転数変化に逆起電力すなわち速度起電力の変化を生じる。走行モータは、モータインピーダンスと逆起電力源との直列接続回路として等価されるから、逆起電力の変化はモータ電圧(モータへの入力電圧)の変化を招く。たとえば、走行負荷が急減するとモータ電圧が急減し、モータ電圧が急減するとモータ出力は急減しようとする。ところが、モータ電圧は、トルク指令値に対応するモータ電圧指令とモータ回転数などのモータ運転状態により所定の電圧範囲に本来収まるはずである。したがって、もしモータ電圧がこの予め予想する電圧範囲(好適電圧範囲)から逸脱したことを検出した場合には、それは走行負荷の急変によるモータの速度起電力の急変にて生じたと推定することができるため、それによるモータ電圧(通常Vで示される)やモータ出力(通常P=Tωで示される)の不所望な急変を抑止して運転フィーリングを改善することができる。なお、上記においてTはモータのトルク、ωはその角速度である。
本発明によれば更に、簡素な制御により演算処理量を抑止しつつ精度よく走行モータの電圧の過大化又は過小化を抑止して、モータ消費電力又はモータ発生動力の急変を抑止し、走行負荷の急変による運転フィーリングの悪化を防止することができる。
好適な態様において、前記電気量は、前記走行モータの回転数又はそれと連動する電気量を含むことを特徴とする。このようにすれば、走行モータ回転数に応じて変化するモータ電圧の変化を良好に織り込むことができるため、上記効果を一層促進することができる。
好適な態様において、前記電気量は、前記走行モータへ給電可能な電力と前記走行モータの回転数を含む。このようにすれば、上記走行負荷の急変にもかかわらず、モータ電圧とモータ電流との積であるモータ消費電力が走行モータへの給電可能な電力を超えることがないため、バッテリなどに過重な負担を掛けることがない。
好適な態様において、前記電気量は、前記車両用電子制御装置から入力する前記トルク指令値と前記走行モータの回転数とを含むことを特徴としている。このようにすれば、トルク指令値と走行モータの回転数との積がモータの走行動力すなわちモータ消費電力に関連する物理量となるため、モータ電圧をその好適電圧範囲に規制することによりモータ消費電力を好適範囲に規制することができ、上記したモータ消費電力の急変による運転フィーリングの悪化抑止に加えて、モータ消費電力の過大化による電源系の負担増大を抑止することができる。
好適な態様において、前記電気量は、前記トルク指令値、前記走行モータの回転数及び前記インバータ部の電源電圧を含むことを特徴としている。このようにすれば、モータの機械動力に関連する電気量としてのトルク指令値と走行モータの回転数に加えてその消費電力に関連する電気量としてのインバータ部の電源電圧を含むので、上記したモータ消費電力の急変による運転フィーリングの悪化抑止に加えて、モータ消費電力の過大化による電源系の負担増大を抑止することができる。
本発明の電動トルク使用型車両の好適な実施態様を以下に説明する。ただし、本発明は下記の実施態様に限定されるものではなく、本発明の技術思想を他の公知技術又はそれと同等機能を有する技術を組み合わせて実施してもよい。
(回路構成の説明)
この電動トルク使用型車両の走行モータ制御系を図1に示すブロック図を参照して説明する。
この実施例の電動トルク使用型車両の走行用電気系統図を図1に示す。1は三相ブラシレスモータにより構成されて車輪に連結された走行モータ、2は走行モータ1と電力授受する双方向性で三相のインバータ、3は走行モータ1のロータ回転位置を検出する ロータ回転位置検出器、4、5は走行モータ1の相電流を検出する電流センサである。
6はエンジンと連結された三相ブラシレスモータにより構成された発電電動機、7は発電電動機6と電力授受する双方向性で三相のインバータ、8は発電電動機6のロータ回転位置を検出する回転角センサ、9、10は走行モータ1の相電流を検出する電流センサである。
11は走行モータ1及び発電電動機6を制御するモータECU、12はアクセルペダル13からの出力信号などに基づいて演算した走行モータ1へのトルク指令をモータECU11に出力する車両ECU(HV-ECUとも言う)、14はインバータ2、7とバッテリ15との間の直流電力授受を制御する昇圧コンバータである。昇圧コンバータ14は、約300Vのバッテリ電圧を約700Vに昇圧してインバータ2、7に印加し、インバータ2、7はそれを三相交流電圧に変換する。
HV−ECU12は、アクセルペダルやブレーキペダルの操作量に応じて走行モータ1が発生するべきトルク値に相当するトルク指令を所定の通信周期にてモータECU11に出力する。モータECU11は、ロータ回転位置検出器3からの情報によりモータ回転角とモータ回転数とを求め、HV−ECU12で算出したトルク指令に対応した電流指令を算出し、この電流指令値と、電流センサ4、5から得た走行モータ1の相電流とに基づいて算出したdq軸の電流値の偏差を0にするようにインバータ2の出力電圧をフィードバック制御する。
上記したハイブリッド車の走行モータ制御系自体はもはやよく知られているため、これ以上の回路構成の詳細説明は省略する。なお、モータECU11は、マイコンにより構成されているが、ハードウエア回路により構成することもできることはもちろんである。
(制御動作の説明)
次に、モータECU11によりなされる走行モータ1制御ルーチンのうち、特に本発明に関連する部分を図2、図3に示すフローチャートを参照して以下に具体的に説明する。
まず、HV−ECU12からの既述のトルク指令と回転数とインバータ電圧からあらかじめROMに記憶しておいた電流指令(Id*、Iq*)、電圧指令上下限値(Vmax*、Vmin*)を算出する(s100,s102)。なお、ここで言う回転数とは走行モータ1のモータ回転数であり、インバータ電圧とは昇圧コンバータ14からインバータ2へ印加される直流電源電圧であり、以下、インバータ電源電圧とも言う。マップには、トルク指令と回転数とインバータ電圧と電流指令(Id*、Iq*)と電圧指令上下限値(Vmax*、Vmin*)との関係が記載されている。電流指令(Id*、Iq*)及び電圧指令上下限値(Vmax*、Vmin*)の意味については後述する。
その後、後述するトルク抑制制御実施要求フラグ(exe)がONかどうかを調べ(s104)、ONであればトルク抑制制御実施カウンタ(exe_cnt)をインクリメントし(s106)する。
次に、電圧指令上限リミット要求フラグ(Vmax_gard)がONかどうかを調べ(s108)、ONであれば、q軸電流指令補正値Iqh*の前回値に定数Aを乗算しq軸電流指令補正値(iqh*)を算出し(s110)、s122に進む。定数Aは0〜1の範囲とされ、これによりトルク成分であるq軸電流指令補正値をトルク絶対値が小さくなる方向へ推移させることができる。
s108にて電圧指令上限リミット要求フラグ(Vmax_gard)がOFFならば、電圧指令下限リミット要求フラグ(Vmin_gard)がONかどうかを調べ(s112)、ONであれば、q軸電流指令補正値Iqh*に定数Bを乗算してq軸電流指令補正値(iqh*)を算出し(s114)、s122に進む。定数Bは1以上の値とされ、これにより、トルク成分であるq軸電流指令補正値をトルク絶対値が大きくなる方向へ推移させることができる。
電圧指令上限リミット要求フラグ(Vmax_gard)及び電圧指令下限リミット要求フラグ(Vmin_gard)が共にOFFの場合は、q軸電流指令補正値(iqh*)としてその前回値に設定し(s116)、s122に進む。
s104にてトルク抑制制御を実施要求がない場合(exeがOFF)には、q軸電流指令補正値Iqh*を通常のIq*に戻し(s118)、トルク抑制制御実施カウンタ(exe_cnt)をクリアしてs122に進む。この場合、時定数を設けて滑らかに戻した方がトルク変動が生じないため一層良い。
s122では、電流センサ4、5の出力信号をAD変換して求めた各相電流から実電流(Id、Iq)を算出し、数1に示すフィードバック方程式により、d軸電圧指令(vd)とq軸電圧指令(vq)とを算出し(s124)、求めたd軸電圧指令(vd)とq軸電圧指令(vq)から電圧指令振幅(V)を算出する(s126)。
Figure 0004075863
次に、電圧指令振幅(V)が、s102で求めた電圧指令上限値Vmaxより大きいかどうかを調べ(s128)、大きい場合には、電圧指令上限リミット要求フラグ(Vmax_gard)をONし(s130)、トルク抑制制御フラグ(exe)をONし(s140)、ステップs142に進む。
ステップs128にて、電圧指令振幅(V)が、s102で求めた電圧指令上限値Vmaxより大きくなければ、電圧指令振幅(V)が、s102で求めた電圧指令下限値Vminより小さいかどうかを調べ(s132)、小さい場合には、電圧指令下限リミット要求フラグ(Vmin_gard)をONし(s134)、トルク抑制制御フラグ(exe)をONし(s140)、ステップs142に進む。
電圧指令振幅(V)が通常範囲すなわち電圧指令上限値Vmaxと電圧指令下限値Vminとの間にある場合には、トルク抑制制御実施カウンタ(exe_cnt)が一定時間C経過しているかどうかを調べ(s136)、超過している場合には、トルク抑制制御フラグ(exe)をOFFし、ステップs142に進む。
ステップs142では、ステップs124で求めたd軸電圧指令(vd)とq軸電圧指令(vq)とをdq/3相電圧変換する。次に、求めた三相電圧指令に対応する各相PWM電圧のDuty値を算出し(s144)、説明省略するメインルーチンにリターンする。
(実施例効果の説明)
すなわち、この実施例によれば、HV−ECU12から入力されたトルク指令と読み込んだ回転数とインバータ電圧とをマップに代入して電圧指令上下限値(Vmax*、Vmin*)を求める。次に、フィードバック制御のために電流指令(Id*、Iq*)から演算した電圧指令(Vd、Vq)から求めたその振幅Vが電圧指令上下限値(Vmax*、Vmin*)の範囲内かどうかを調べ、範囲内であればトルク抑制制御を解除(トルク抑制制御実施要求フラグ(exe)をOFF)し、範囲外であればトルク抑制制御を実施(トルク抑制制御実施要求フラグ(exe)をON)する。
このトルク抑制制御は、電圧指令振幅Vが電圧指令上限値(Vmax*)より大きければq軸電流指令補正値Iqh*を本来の値よりも小さく補正し、電圧指令振幅Vが電圧指令上限値(Vmax*)より小さければq軸電流指令補正値Iqh*を本来の値よりも大きく補正し、この補正したq軸電流指令補正値Iqh*に基づいて、d、q軸電圧指令Vd、Vqを演算する。
このようにすれば、たとえば路面摩擦係数の急変などにより車輪に加わる走行負荷が急変し、これにより走行モータ1の速度が急変し、これによりモータ電圧が急変しても、それによるモータ出力の急変を速やかに抑制することができるので、走行負荷の急変による運転フィーリングの悪化を防止することができる。
路面摩擦係数が急減した場合について更に具体的に説明する。路面摩擦係数の急減により車輪とそれに連結された走行モータ1の回転数は急増し、走行モータ1の逆起電圧(速度起電力)が増大し、走行モータ1の端子電圧は増大する。
従来では、モータECU11は、走行モータ1へ給電する電流を電流指令値に収束させるフィードバック制御(電流フィードバック制御とも言う)、言い換えれば走行モータ1の発生トルクをトルク指令値に収束させるフィーバック制御を高速に行っているため、このフィードバック制御系は、この走行モータ1の逆起電圧の増大による電流急減を防止するべくq軸電圧指令(vq)及びd軸電圧指令(vd)を増大させるが、その結果として走行モータ1への給電電流は電流指令値に維持され、モータ電圧が急増した分だけモータ出力が急増してしまう。
これに対して、この実施例では、モータECU11は、走行モータ1の端子電圧に対応するq軸電圧指令(vq)及びd軸電圧指令(vd)のベクトル振幅(電圧指令振幅)が、運転状況(トルク指令、回転数、インバータ電圧)から通常発生可能な範囲を超えて変化した場合に、モータトルクに関連するq軸電流をこの変化を抑制する向きに変化させる。これにより、路面摩擦係数の急減により過剰となり回転数の増大に消費される走行モータ1のトルクが減少することになり、走行モータの出力の急増と走行モータの回転数の急増とを抑止することが可能となる。路面摩擦係数が急増した場合については上記と逆であるために説明を省略する。
この実施例を他の観点から見ると、走行負荷の急減に伴って走行モータ1の発生トルクのうちで過剰となって走行モータ1の加速に向かう過剰トルク成分、又は、走行負荷の急増に伴って走行モータ1の発生トルクのうちで不足となって走行モータ1の減速に向かう不足トルク成分を、走行モータ1のトルクに対応するq軸電流指令補正値Iqh*で補正し、d軸電流指令値については補正を行わないため、制御や演算を複雑化することなく上記効果を実現することができるわけである。
(変形態様)
上記実施例から、モータ電圧が運転条件により規定される所定の範囲内にあるように、q軸電圧指令(vq)、又は、q軸電圧指令(vq)とd軸電圧指令(vd)とを調整すればよいことがわかる。したがって、q軸電流指令Iq*を補正する代わりに他の方法によりq軸電圧指令(vq)やd軸電圧指令(vd)を調整してもよい。たとえば、電圧指令振幅Vがその電圧指令上下限値(Vmax*、Vmin*)から逸脱したら、上記逸脱を抑制する向きに定数を変更してq軸電圧指令(vq)を調整してもよい。
(変形態様)
その他、モータ電圧がその上下限値により規定される好適電圧範囲から逸脱したかどうかを判定して上記制御を行う代わりに、検出したd軸電圧が運転条件により規定される所定の範囲内にあるように、q軸電圧指令(vq)やd軸電圧指令(vd)を調整したり、検出したq軸電圧が運転条件により規定される所定の範囲内にあるように、q軸電圧指令(vq)やd軸電圧指令(vd)を調整したりしてもよい。
(変形態様)
上記実施例では、図1に示した昇圧式ハイブリッド方式を採用したが、本発明がたとえば図4〜図7に示されるようなその他の公知のハイブリッド方式に適用できることは当然である。また、それ以外に、二次電池搭載式又は燃料電池搭載式の電気自動車や、主として内燃機関により駆動されるもののトルクアシストや回生制動用の回転電機を有する自動車にも適用できることは当然である。
(変形態様)
上記実施例では、HV−ECU12から入力されるトルク指令と、検出した走行モータ1の回転数と、検出したインバータ2の電源電圧と、電圧指令上下限値(Vmax*、Vmin*)との関係をマップに記憶し、トルク指令と回転数と電源電圧とをこのマップに代入して電圧指令上下限値(Vmax*、Vmin*)を求めたが、その代わりに、走行モータの回転数又はそれと連動する電気量と電圧指令上下限値(Vmax*、Vmin*)との関係に基づいて電圧指令上下限値(Vmax*、Vmin*)を求めてもよい。このようにすれば、走行モータ回転数に応じて変化するモータ電圧の変化を良好に織り込むことができるため、上記効果を一層促進することができる。
(変形態様)
その他、走行モータ1へ給電可能な電力と走行モータ1の回転数と電圧指令上下限値(Vmax*、Vmin*)との関係に基づいて電圧指令上下限値(Vmax*、Vmin*)を求めてもよい。このようにすれば、上記走行負荷の急変にもかかわらず、モータ電圧とモータ電流との積であるモータ消費電力が走行モータへの給電可能な電力を超えることがないため、バッテリなどに過重な負担を掛けることがない。
(変形態様)
その他、トルク指令値と走行モータの回転数と電圧指令上下限値(Vmax*、Vmin*)との関係に基づいて電圧指令上下限値(Vmax*、Vmin*)を求めてもよい。ステップs102にて用いるトルク指令と回転数と電圧指令上下限値(Vmax*、Vmin*)との関係を示すマップ(インバータ電圧が一定)を図8に示す。なお、図8において、Ta、Tb、Tcは各トルク値であるが、実際にはもっと多数の値を記憶しておくことができる。ただし、図8の縦軸に示す電圧指令振幅値Vは、0.5×(電圧指令上限値(Vmax*)+電圧指令下限値(Vmin*))に相当する。
このようにすれば、トルク指令値と走行モータの回転数との積がモータの走行動力すなわちモータ消費電力に関連する物理量となるため、モータ電圧をその好適電圧範囲に規制することによりモータ消費電力を好適範囲に規制することができ、上記したモータ消費電力の急変による運転フィーリングの悪化抑止に加えて、モータ消費電力の過大化による電源系の負担増大を抑止することができる。
(変形態様)
その他、インバータ電圧と走行モータの回転数と電圧指令上下限値(Vmax*、Vmin*)との関係に基づいて電圧指令上下限値(Vmax*、Vmin*)を求めてもよい。ステップs102にて用いる回転数とインバータ電圧と電圧指令上下限値(Vmax*、Vmin*)との関係を示すマップ(トルク指令が一定)を図9に示す。なお、図9において、Va、Vb、Vcは各トルク値であるが、実際にはもっと多数の値を記憶しておくことができる。ただし、図9の縦軸に示す電圧指令振幅値Vは、0.5×(電圧指令上限値(Vmax*)+電圧指令下限値(Vmin*))に相当する。
このようにすれば、上記したモータ消費電力の急変による運転フィーリングの悪化抑止のための電圧規制範囲をインバータ電圧変動に応じて適切に変更することができる。
実施例の電動トルク使用型車両の電気系統を示すブロック図である。 図1に示すモータECUによる走行モータ制御例の一部を示すフローチャートである。 図1に示すモータECUによる走行モータ制御例の残部を示すフローチャートである。 実施例の走行モータ制御を適用可能な他のハイブリッド方式の電気系統を示すブロック図である。 実施例の走行モータ制御を適用可能な他のハイブリッド方式の電気系統を示すブロック図である。 実施例の走行モータ制御を適用可能な他のハイブリッド方式の電気系統を示すブロック図である。 実施例の走行モータ制御を適用可能な他のハイブリッド方式の電気系統を示すブロック図である。 インバータ電圧が一定である場合のトルク指令と回転数と電圧指令上下限値との関係を示すマップである。 回転数とインバータ電圧と電圧指令上下限値との関係を示すマップである。
符号の説明
1 走行モータ
2 インバータ(モータ制御装置のインバータ部)
3 ロータ回転位置検出器
4 電流センサ
5 電流センサ
11 モータECU(モータ制御装置の制御部)
12 HV−ECU(車両用電子制御装置)
13 アクセルペダル
14 昇圧コンバータ
15 バッテリ

Claims (5)

  1. 走行トルクを発生する交流電動機である走行モータと、
    前記走行モータへ印加するモータ電圧を制御するモータ制御装置と、
    少なくともアクセルペダルからの入力情報に基づいて前記トルク指令値を算出して前記モータ制御装置に送信する車両用電子制御装置と、
    を備え、
    前記モータ制御装置は、
    外部から入力されたトルク指令値と前記走行モータの回転数とに基づいて電流指令値を演算し、検出した前記走行モータの電流と前記電流指令値との偏差に基づいて前記偏差を0に収束させるために前記走行モータへ出力する電圧指令値を演算する制御部と、前記電圧指令値に対応するモータ電圧を前記走行モータに印加するインバータ部とを有する電動トルク使用型車両において、
    前記制御部は、
    前記走行モータの運転状態に関連する所定の電気量と前記走行モータの好適電圧範囲との関係を記憶し、
    入力されるか又は演算した前記電気量並びに記憶する前記関係とから前記走行モータの好適電圧範囲を演算し、
    前記電圧指令値を前記好適電圧範囲の範囲内に規制し、
    前記モータ電圧が前記好適電圧範囲を逸脱した場合に、前記モータ電圧が前記好適電圧範囲内に復帰する向きに前記復帰が可能な量だけ前記電流指令値のうちのq軸電流指令値を調整することを特徴とする電動トルク使用型車両。
  2. 請求項1記載の電動トルク使用型車両において、
    前記電気量は、
    前記走行モータの回転数又はそれと連動する電気量を含むことを特徴とする電動トルク使用型車両。
  3. 請求項2記載の電動トルク使用型車両において、
    前記電気量は、
    前記走行モータへ給電可能な電力と前記走行モータの回転数を含むことを特徴とする電動トルク使用型車両。
  4. 請求項2記載の電動トルク使用型車両において、
    前記電気量は、
    前記車両用電子制御装置から入力する前記トルク指令値と前記走行モータの回転数とを含むことを特徴とする電動トルク使用型車両。
  5. 請求項4記載の電動トルク使用型車両において、
    前記電気量は、
    前記トルク指令値、前記走行モータの回転数及び前記インバータ部の電源電圧を含むことを特徴とする電動トルク使用型車両
JP2004168609A 2004-06-07 2004-06-07 電動トルク使用型車両 Expired - Fee Related JP4075863B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004168609A JP4075863B2 (ja) 2004-06-07 2004-06-07 電動トルク使用型車両
US11/146,155 US7005819B2 (en) 2004-06-07 2005-06-07 Control apparatus for controlling traction motor equipped in vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168609A JP4075863B2 (ja) 2004-06-07 2004-06-07 電動トルク使用型車両

Publications (2)

Publication Number Publication Date
JP2005348580A JP2005348580A (ja) 2005-12-15
JP4075863B2 true JP4075863B2 (ja) 2008-04-16

Family

ID=35446945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168609A Expired - Fee Related JP4075863B2 (ja) 2004-06-07 2004-06-07 電動トルク使用型車両

Country Status (2)

Country Link
US (1) US7005819B2 (ja)
JP (1) JP4075863B2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460918B2 (en) * 2004-06-10 2008-12-02 Moteurs Leroy-Somer Devices and methods for updating the programming of a system for controlling an electric rotary machine
JP4400389B2 (ja) * 2004-09-21 2010-01-20 株式会社デンソー 駆動モータ制御装置
US7161316B2 (en) * 2004-11-02 2007-01-09 General Electric Company Method and apparatus for discrete speed compensated torque step motor control
JP4295734B2 (ja) * 2005-02-25 2009-07-15 三菱重工業株式会社 バッテリー駆動車両及びその制御方法
US7291934B2 (en) * 2005-08-30 2007-11-06 Caterpillar Inc. Machine with an electrical system
JP4727354B2 (ja) * 2005-09-07 2011-07-20 本田技研工業株式会社 電動車両の制御装置
JP5033662B2 (ja) * 2008-01-31 2012-09-26 株式会社日立製作所 電動機駆動システム
US7759966B2 (en) * 2008-08-25 2010-07-20 Gm Global Technology Operations, Inc. Methods and systems for evaluating permanent magnet motors
US20100108417A1 (en) * 2008-10-31 2010-05-06 Curt Douglas Gilmore Parallel power supplies for hev applications
US8774994B2 (en) * 2009-07-15 2014-07-08 General Electric Company System and method for vehicle performance control
JP5351002B2 (ja) * 2009-12-10 2013-11-27 三菱電機株式会社 モータ制御装置
US8395335B2 (en) * 2010-08-20 2013-03-12 Caterpillar Inc. Method and system for eliminating fuel consumption during dynamic braking of electric drive machines
EP2621079B1 (en) * 2010-09-24 2020-08-26 Nissan Motor Co., Ltd Inverter control device and inverter control method
CN102198805B (zh) * 2011-03-09 2016-09-28 王子辉 一种永磁电机驱动的纯电动汽车坡道驻坡方法
US8857542B2 (en) * 2011-12-08 2014-10-14 Caterpillar Inc. Method and apparatus to eliminate fuel use for electric drive machines during trolley operation
JP5538657B2 (ja) * 2012-03-21 2014-07-02 三菱電機株式会社 モータ制御装置
JP5595437B2 (ja) * 2012-03-21 2014-09-24 三菱電機株式会社 モータ制御装置
JP5519734B2 (ja) * 2012-06-26 2014-06-11 ファナック株式会社 モータの駆動の準備の完了時にデータの通信速度を変更するマスタ装置
CN104044484B (zh) * 2013-03-15 2018-03-27 通用电气公司 驱动系统及驱动方法
US9372234B2 (en) 2013-08-27 2016-06-21 Ford Global Technologies, Llc Detection method of current sensor faults in the e-drive system by using the voltage command error
MX357492B (es) * 2014-02-28 2018-07-11 Bae Sys Controls Inc Limitador de voltaje de cuatro cuadrantes para control de maquina de rotor de flujo orientado.
US9866163B2 (en) * 2015-03-16 2018-01-09 Thunder Power New Energy Vehicle Development Company Limited Method for controlling operating speed and torque of electric motor
US9768719B2 (en) * 2015-09-18 2017-09-19 Faraday&Future Inc. Methods and apparatus for generating current commands for an interior permanent magnet (IPM) motor
US9762164B2 (en) * 2015-09-18 2017-09-12 Faraday & Future Inc. Methods and apparatus for generating current commands for an interior permanent magnet (IPM) motor
WO2017090155A1 (ja) 2015-11-26 2017-06-01 株式会社東芝 電力制御装置、および電力制御システム
JP6717025B2 (ja) * 2016-04-19 2020-07-01 トヨタ自動車株式会社 車載バッテリ冷却システム
JP6812895B2 (ja) * 2017-04-25 2021-01-13 トヨタ自動車株式会社 ハイブリッド車両
DE102018122674B4 (de) * 2018-09-17 2022-06-09 Volkswagen Aktiengesellschaft Verfahren zum Steuern eines Elektromotors
CN110492811B (zh) * 2019-07-18 2021-06-22 华为技术有限公司 驻坡能力提升方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023083A (en) * 1975-04-14 1977-05-10 General Electric Company Torque regulating induction motor system
JPH05176418A (ja) * 1991-03-25 1993-07-13 Hitachi Ltd 電気自動車制御装置
JP3232823B2 (ja) * 1993-11-16 2001-11-26 株式会社日立製作所 電気自動車の回生制動制御方法
US5739664A (en) * 1996-02-05 1998-04-14 Ford Global Technologies, Inc. Induction motor drive controller
US5925993A (en) * 1996-05-02 1999-07-20 Chrysler Corporation Power control architecture for a hybrid power source
KR100303011B1 (ko) * 1998-12-12 2002-05-09 장병우 엘리베이터의운전제어장치
JP3952490B2 (ja) 2000-03-16 2007-08-01 マツダ株式会社 ハイブリッド車両の走行制御装置
JP2003009573A (ja) 2001-06-20 2003-01-10 Denso Corp 車両用同期機の制御装置
JP3627706B2 (ja) 2002-01-09 2005-03-09 日産自動車株式会社 前後輪駆動車の制御装置

Also Published As

Publication number Publication date
US20050269983A1 (en) 2005-12-08
US7005819B2 (en) 2006-02-28
JP2005348580A (ja) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4075863B2 (ja) 電動トルク使用型車両
JP4386451B2 (ja) 電動車両の制御装置
JP5407322B2 (ja) 交流電動機の制御システム
CN105723610B (zh) 电机控制装置以及电机控制方法
JP4774975B2 (ja) 電動機の制御装置
EP2953261B1 (en) Synchronous motor control device for electric automobile
US7729842B2 (en) Electronic four-wheel drive control
WO2010082368A1 (ja) 交流電動機の制御装置および電動車両
JP4400389B2 (ja) 駆動モータ制御装置
US7441616B2 (en) Generated power control system
US5877607A (en) Electric motor controller capable of performing stable current control during load disturbance and/or a regenerating mode
JP2006187090A (ja) 発電機電力制御装置
JP5696607B2 (ja) 交流電動機の制御装置および制御方法
JP5969382B2 (ja) 交流電動機の制御システム
JP5293159B2 (ja) 交流電動機の制御システム
JP4747961B2 (ja) 車両用駆動制御装置
JP2007245967A (ja) 車両用駆動制御装置
JP3578612B2 (ja) 電気車の制御装置
JP2015023611A (ja) 電動車両
JP4702120B2 (ja) 車両用駆動制御装置
JPH07143606A (ja) 電気自動車の制御装置
JP5023717B2 (ja) 車両の駆動力制御装置
JP2010088240A (ja) 交流電動機の制御システム
JP2007245762A (ja) 車両用駆動制御装置
JP2024011931A (ja) 電動車両の制御方法、及び、電動車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees