JP4075596B2 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- JP4075596B2 JP4075596B2 JP2002359614A JP2002359614A JP4075596B2 JP 4075596 B2 JP4075596 B2 JP 4075596B2 JP 2002359614 A JP2002359614 A JP 2002359614A JP 2002359614 A JP2002359614 A JP 2002359614A JP 4075596 B2 JP4075596 B2 JP 4075596B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- power generation
- amount
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の属する技術分野】
本発明は、タービンの回転を利用して発電を行うことのできる発電機を備えたターボチャージャを有する内燃機関の制御装置に関する。
【0002】
【従来の技術】
エンジン(内燃機関)の吸入空気をターボチャージャで過給して、高出力(あるいは、低燃費)を得ようとする試みは以前から常用されている。ターボチャージャの改善が要望されている点の一つとして、低回転域の過給圧の立ち上がりが悪く、低回転域でのエンジン出力特性が良好でないというものがある。これは、排気エネルギーを利用して吸入空気を過給するというターボチャージャの原理上、排気エネルギーの少ない低回転域で発生する現象であった。
【0003】
これを改善するために、ツインターボ化などが一般に行われているが、タービン/コンプレッサにモータ(ターボモータ)を組み込んで強制的にタービン/コンプレッサを駆動して所望の過給圧を得ようとする試みもなされている。このような場合は、排気エネルギーを利用してターボモータに回生発電を行わせることも可能である。このときのターボモータは発電機として機能している。このようなモータ付ターボチャージャを有する内燃機関としては、[特許文献1]に記載のようなものがある。
【0004】
また、近年になって、リーンバーンエンジンによって燃費向上や出力向上を実現しようとする内燃機関も実用化されて一般的となってきている。リーンバーンエンジンでは、通常空燃比20以上の希薄燃焼を行っており、成層燃焼させることで空燃比40程度の超希薄燃焼も可能としている。このようなリーンバーンエンジンでは、リーン燃焼であっても空燃比16〜18程度の燃焼は行わないようにしているのが普通である。空燃比16〜18程度の燃焼では燃費向上効果がほとんど得られないだけでなく排ガス中の窒素酸化物NOxの量が多くなってしまうので、メリットがほとんどないからである。空燃比20以上のリーン燃焼でもNOx発生量は増加するがこの領域であれば燃費向上効果が得られるのでメリットがあり、発生した過剰なNOxはNOx吸着材などを利用して浄化している。
【0005】
【特許文献1】
特開平5−240058号公報
【0006】
【発明が解決しようとする課題】
モータ付ターボチャージャを用いて回生発電を行う場合、排気エネルギーの一部で発電を行うので、その分だけ過給効果が減少する。このため、モータ付ターボチャージャを有すると共にリーンバーンが可能な内燃機関においてリーンバーン中にモータターボで回生発電を行うと、過給される空気量が減ってリーンバーン中の空燃比がやや小さくなり(リッチ側に移行し)、上述したメリットのほとんどない空燃比(16〜18程度)での燃焼に移行してしまうことが懸念される。従って、本発明の目的は、発電機付ターボチャージャでの発電によるエネルギー効率向上と、リーンバーンによる燃費向上性能とをバランス良く運用することの可能な内燃機関の制御装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の内燃機関の制御装置は、内燃機関に付随して配設されたターボチャージャと、排気流によって該ターボチャージャのタービン/コンプレッサを回転させて発電を行い得る発電機と、発電機の発電を制御する発電機制御手段とを備え、発電機制御手段が、発電機による発電後の空燃比が発電機による発電によってリッチ寄りになった結果として理論空燃比に近い値にて空燃比をフィードバック制御させると共に回生発電を実行継続する運転と、理論空燃比に近い値よりリーン側であり、且つ、エンジンの燃焼によって発生する窒素酸化物の量が所定量を超える所定空燃比以下である場合又は所定空燃比以下であると予測される場合には発電機の発電量を低減させる運転とを発電機による発電後の空燃比に応じて選択的に実行することを特徴としている。なお、ここに言う「低減」には、完全に停止させることも当然含む。また、予測に基づく場合では、ここに言う「低減」には、低減させた発電量で発電を実行する場合と、発電を実行しない場合とを含む。
【0008】
また、請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、窒素酸化物量が所定量を超える空燃比を18として設定することを特徴としている。
【0009】
【発明の実施の形態】
本発明の制御装置の一実施形態について以下に説明する。本実施形態の制御装置を有するエンジン1を図1に示す。
【0010】
本実施形態で説明するエンジン1は、多気筒エンジンであるが、ここではそのうちの一気筒のみが断面図として図1に示されている。エンジン1は、インジェクタ2によってシリンダ3内のピストン4の上面に燃料を噴射するタイプのエンジンである。このエンジン1は、成層燃焼が可能であり、いわゆるリーンバーンエンジンである。後述するターボチャージャによってより多くの吸入空気を過給してリーンバーンを行うことによって、低燃費化に加えて高出力化も実現し得るものである。
【0011】
エンジン1は、吸気通路5を介してシリンダ3内に吸入した空気をピストン4によって圧縮し、ピストン4の上面に形成された窪みの内部に燃料を噴射して濃い混合気を点火プラグ7近傍に集め、これに点火プラグ7で着火させて燃焼させ得る(成層燃焼)。吸気行程に燃料噴射すれば、通常の均質燃焼も行える。シリンダ3の内部と吸気通路5との間は、吸気バルブ8によって開閉される。燃焼後の排気ガスは排気通路6に排気される。シリンダ3の内部と排気通路6との間は、排気バルブ9によって開閉される。吸気通路5上には、上流側からエアクリーナ10、エアフロメータ27、ターボユニット11、インタークーラー12、スロットルバルブ13などが配置されている。
【0012】
エアクリーナ10は、吸入空気中のゴミや塵などを取り除くフィルタである。本実施形態のエアフロメータ27は、ホットワイヤ式のものであり、吸入空気量を質量流量として検出するものである。ターボユニット11は、吸気通路5と排気通路6との間に配され、過給を行うものである。本実施形態のターボユニット11においては、タービン側インペラーとコンプレッサ側インペラーとが回転軸で連結されている(以下、この部分を単にタービン/コンプレッサ11aと言うこととする)。
【0013】
また、本実施形態のターボチャージャは、タービン/コンプレッサ11aの回転軸が出力軸となるようにターボモータ11bが組み込まれているモータ付ターボチャージャである。ターボモータ11bを駆動することで、過給をアシストすることが可能である。また、ターボモータ11bは、排気エネルギーを用いて発電する発電機としても機能し得るもので、モータと発電機の機能を備えているためにモータジェネレータと呼ばれることもある。また、ターボユニット11は、ターボモータ11bによってアシストすることなく、排気エネルギーのみによって過給を行う通常のターボチャージャとしても機能し得る。ターボモータ11bは、タービン/コンプレッサ11aの回転軸に固定されたロータと、その周囲に配置されたステータとを主たる構成部分として有している。
【0014】
吸気通路5上のターボユニット11の下流側には、ターボユニット11による過給で圧力上昇に伴って温度が上昇した吸入空気の温度を下げる空冷式インタークーラー12が配されている。インタークーラー12によって吸入空気の温度を下げ、充填効率を向上させる。インタークーラー12の下流側には、吸入空気量を調節するスロットルバルブ13が配されている。
【0015】
本実施形態のスロットルバルブ13は、いわゆる電子制御式スロットルバルブであり、アクセルペダル14の操作量をアクセルポジショニングセンサ15で検出し、この検出結果と他の情報量とに基づいてECU16がスロットルバルブ13の開度を決定するものである。スロットルバルブ13は、これに付随して配設されたスロットルモータ17によって開閉される。また、スロットルバルブ13に付随して、その開度を検出するスロットルポジショニングセンサ18も配設されている。
【0016】
スロットルバルブ13の下流側には、吸気通路5内の圧力(過給圧・吸気圧)を検出する圧力センサ19が配設されている。これらのセンサ15,18,19,27はECU16に接続されており、その検出結果をECU16に送出している。ECU16は、CPU,ROM,RAM等からなる電子制御ユニットである。ECU16には、上述したインジェクタ2、点火プラグ7や、ターボモータ11b、等が接続されており、これらはECU16からの信号によって制御されている。
【0017】
ECU16には、このほかにも、吸気バルブ8の開閉タイミングを制御する可変バルブタイミング機構20の油圧や、ターボモータ11bと接続されたコントローラ21、バッテリ22なども接続されている。コントローラ21は、ターボモータ11bの駆動を制御するだけでなく、バッテリ22の直流電流を交流電流に変換してターボモータ11bに印可するインバータとしての機能も有している。また、ターボモータ11bが回生発電した電力の交流−直流変換を行う整流器としての機能も有している。これらのECU16及びコントローラ21は、ターボモータの発電(及び駆動)を制御しており、発電機制御手段として機能している。
【0018】
排気通路6上には、ターボユニット11の上流側に、排気空燃比を検出する空燃比センサ28が配されている。本実施形態の空燃比センサ28は、排気ガスの排気空燃比をリニアに検出し得る、いわゆるリニア空燃比センサである。空燃比センサ28の上述したECU16に接続されており、その検出結果をECU16に送出している。また、ターボユニット11の下流側には、排気ガスを浄化する排気浄化触媒23が取り付けられている。そして、排気通路6(空燃比センサ28の上流側)から吸気通路5(圧力センサ19の下流側に形成されたサージタンク部)にかけて排気ガスを還流させるためのEGR(Exhaust Gas Recirculation)通路24が配設されている。
【0019】
EGR通路24上には、排気ガス還流量を調節するEGRバルブ25が取り付けられている。EGRバルブ25の開度制御も上述したECU16によって行われる。エンジン1のクランクシャフト近傍には、クランクシャフトの回転位置を検出するクランクポジショニングセンサ26が取り付けられている。クランクポジショニングセンサ26は、クランクポジションの位置からエンジン回転数を検出することもできる。
【0020】
上述した内燃機関における制御について説明する。図2に、第一実施形態における制御のフローチャートを示す。
【0021】
まず、回生発電条件が成立しているか否かが判定される(ステップ200)。回生発電条件が成立しているばあいは、発電要求があるとも言える。エンジン1の制御全般はECU16によって行われており、ターボモータ11bの制御はこのECU16とコントローラ21とによって協調制御されている。ECU16は、エンジン1の状態を上述した各種センサによって検出されるエンジン回転数や吸入空気量、スロットル開度などの情報量から判断しており、ターボモータ11bによって回生発電をさせてエネルギーを回収するか否かの判断もしている。
【0022】
回生条件を構成する条件の具体例を挙げると以下のようなものがある。○アクセルペダルが踏まれていない[出力維持又は増大時ではないので、排気エネルギーで発電して電気エネルギーとして回収するのに適した状態である]。○スロットル開度が全開である[排気エネルギーの一部を過給でなく発電に回しても、出力的に許容できる状態である]。○ターボモータ11bの温度が所定温度以下である[回生発電を行っても過熱のおそれがない]。回生発電条件は、このような条件から構成されている。
【0023】
回生発電条件が成立していない場合、即ち、ステップ200が否定される場合は、ターボモータ11bによる回生発電は行われず、図2のフローチャートの制御を終える。一方、ECU16によって、回生発電条件が成立していると判断された場合には、ターボモータ11bによる回生発電が実行される(ステップ210)。回生発電が実行されることで、タービン/コンプレッサ11aを回転させる排気エネルギーの一部が発電に用いられるため、過給効果が減って吸入空気量が減る。この結果、空燃比はややリッチ側に移行する。
【0024】
そこで、回生発電の実行後、空燃比センサ29によって、排気空燃比を検出し(ステップ220)、検出した空燃比が18以下であるか否かを判定する(ステップ230)。ステップ230における空燃比18は、エンジン1の燃焼によって発生する窒素酸化物NOxの量が所定量を超える空燃比として設定されている。ステップ230において、空燃比が18を超える場合は、燃費向上効果が得られるので図2に示されるフローチャートの制御を終える。即ち、この場合は、回生発電はそのままである。一方、ステップ230において空燃比が18以下である場合は、次に空燃比が16以下であるか否かを判定する(ステップ240)。
【0025】
ステップ230が肯定され、ステップ240が否定される場合は、16<検出空燃比≦18である。この場合は、上述しように、燃費向上効果があまり無く、かつ、排出NOx量も増えるので、ターボモータ11bによる回生発電を停止する(ステップ260)。回生発電を行うことで空燃比がリッチ寄りとなって上述した範囲(16<検出空燃比≦18)内となる場合(リーンバーン中などに回生発電が行われた場合)は、燃費向上効果が得られなくなり、かつ、排出NOx量が増えてしまうので、この場合は回生発電を停止させることとしている。
【0026】
なお、ステップ260においては、発電停止ではなく発電量を低減させるだけでもよい。発電量を低減させると、その分の排気エネルギーが過給に用いられるため、吸入空気量が増えて空燃比はリーン側に移行する。ターボモータ11bの回生発電量を低減させるには、例えば、発電状態と非発電状態とを繰り返す(デューティー制御を行う)ことで発電状態が連続する場合に比べて発電量を低減させることができる。
【0027】
一方、ステップ230が肯定され、ステップ240も肯定される場合は、検出空燃比は16以下である。この場合は、回生発電によって空燃比がリッチ寄りになった結果として理論空燃比(ストイキ)に近い値となった場合である。このような場合は、空燃比がストイキとなるような空燃比フィードバック制御を行うと共に、回生発電制御はそのままとされる(ステップ250)。この結果、回生発電によってエネルギー回収を行うと共に、ストイキ燃焼によって排気ガス中の酸化すべき炭化水素HC及び一酸化炭素COと排気ガス中の還元すべきNOxとを過不足なく反応させて排ガス浄化率を良好に維持することができる。
【0028】
なお、上述した第一実施形態では、検出空燃比が所定空燃比(18)以下である場合に、その空燃比がストイキ近傍であれば回生発電をそのままとしてストイキを目標空燃比とする空燃比フィードバックに移行した。ここで、検出空燃比が所定空燃比(18)以下であれば、必ず回生発電を停止(あるいは発電量を低減)するようにしてもよい。この場合の制御(第二実施形態)のフローチャートを図3に示す。ステップ300〜ステップ330は、上述した第一実施形態におけるステップ200〜ステップ230と全く同一であるため、その説明を省略する。
【0029】
そして、ステップ330において、空燃比が18を超える場合は、燃費向上効果が得られるので、回生発電はそのまま持続されたまま、図3に示されるフローチャートの制御を終える。一方、ステップ330において空燃比が18以下である場合は、燃費向上効果があまり無く、かつ、排出NOx量も増えるので、ターボモータ11bによる回生発電を停止する(ステップ340)。このようにすれば、回生発電によって燃費性能悪化及びNOx排出量増加を抑止することができる。あるいは、ステップ330以前にリーンバーン中であるか否かの判断をし、リーンバーン中にのみステップ330が実行されるようにしても良い。また、ステップ340では、発電を停止させるのではなく発電量を低減するようにしても良い。
【0030】
上述した第一及び第二実施形態では、実際に回生発電を行った後に排気空燃比を空燃比センサ29によって直接検出し、検出された空燃比に基づいて制御を行った。しかし、空燃比を直接検出せずに、各種情報量から推定して推定された空燃比に基づいて制御を行っても良い。次に説明する第三実施形態は、推定空燃比に基づく制御を用いた場合である。図4にこの制御のフローチャートを示す。この第三実施形態では、回生発電後の空燃比を予測(推定)し、予測された空燃比によっては回生発電が行われない場合もある。以下、第三実施形態の制御について説明する。
【0031】
まず、回生発電条件が成立しているか否かが判定される(ステップ400)。回生発電条件については第一実施形態の制御についての説明時に述べたとおりである。回生発電条件が成立していない場合、即ち、ステップ400が否定される場合は、ターボモータ11bによる回生発電は行われず、図4のフローチャートの制御を終える。一方、ECU16によって、回生発電条件が成立していると判断された場合には、まずクランクポジショニングセンサ26によってその時点でのエンジン回転数を検出すると共に、エンジン負荷が算出される(ステップ410)。エンジン負荷は、吸入空気量やスロットル開度に基づいて算出される。吸入空気量は、エアフロメータ27にて測定されるか、圧力センサ19の検出結果から推定される。スロットル開度は、スロットルポジショニングセンサ18によって検出される。
【0032】
検出・算出されたエンジン回転数とエンジン負荷に基づいて、マップから回生発電を実行した場合の空燃比(発電実行後空燃比)を予測する(ステップ420)。このマップの例を図5(a)及び図5(b)に示す。これらのマップはエンジン回転数とエンジン負荷とから予測空燃比を決定する二次元マップであり、実際に発電を行った実験値に基づいて予測空燃比値がマッピングされる。
【0033】
ここで、図5(a)はターボチャージャの過給容量が小さい場合を示しており、図5(b)は過給容量が大きい場合を示している。図5(a)から分かるように、過給容量が小さい場合は、エンジン回転数が高い程空燃比は小さくなる。これは、過給容量が小さい場合は、エンジン回転数が高くなると過給が追いつかずに吸入空気量が不足気味となり、空燃比が小さく(リッチ寄りに)なる傾向があるからである。図5(a)では、エンジン負荷が大きくなると空燃比は小さくなるが、これはエンジン1の吸入空気量が最大(=一定)となっても燃料噴射量が増大するためである。
【0034】
一方、図5(b)から分かるように、過給容量が大きい場合は、エンジン回転数が低い程空燃比は小さくなる。これは、過給容量が大きい場合は、タービン/コンプレッサ11aの慣性質量が大きく、エンジン回転数が低いと十分な過給が行えなえずに吸入空気量が不足気味となり、空燃比が小さく(リッチ寄りに)なる傾向があるからである。図5(b)でも、エンジン負荷が大きくなると空燃比は小さくなるが、これもエンジン1の吸入空気量が最大(=一定)となっても燃料噴射量が増大するためである。
【0035】
あるいは、図5(a)や図5(b)に換えて、図6に示すようなグラフを用いても良い(計算式として算出しても良い)。図6に示されるグラフでは、エンジン負荷のみから発電実行後空燃比を予測している。図6でも、エンジン負荷が大きくなると空燃比は小さくなるが、これも上述したように、エンジン1の吸入空気量が最大(=一定)となっても燃料噴射量が増大するためである。
【0036】
ただし、図6のようにエンジン負荷のみから発電実行後空燃比を予測する場合の精度は、図5(a)や図5(b)のようにエンジン回転数とエンジン負荷とから予測する場合の精度に比べて劣る。このため、ここでは、図6のマップで空燃比が18であると予測されても実際の空燃比が18からずれている場合も考慮して、予測空燃比16〜18よりもやや広めの範囲(図6中の範囲Y)に対応するエンジン負荷領域を回生発電量を低減させる領域(予測空燃比16〜18に対応する範囲Xより広めとなる)として設けている。
【0037】
ステップ420の後、予測された発電実行後空燃比が18以下となるか否かを判定する(ステップ430)。ステップ430における空燃比18は、エンジン1の燃焼によって発生する窒素酸化物NOxの量が所定量を超える空燃比として設定されている。ステップ430において、予測空燃比が18を超える場合は、燃費向上効果が得られるのでそのまま回生発電を実行する(ステップ440)。一方、ステップ430が肯定される場合は、次に予測空燃比が16以下となるか否かを判定する(ステップ450)。
【0038】
ステップ430が肯定され、ステップ450が否定される場合は、16<予測空燃比≦18[図5(a)及び図5(b)の場合はハッチングされた領域、図6の場合は範囲Yに対応する範囲のとき]である。この場合は、上述しように、回生発電を実行したとしても燃費向上効果があまり無く、かつ、排出NOx量も増えるので、ターボモータ11bによる回生発電を行わない(ステップ470)。回生発電を行うことで空燃比がリッチ寄りとなって上述した範囲(16<検出空燃比≦18)内となると予測される場合(リーンバーン中などに回生発電を行おうとしている場合)は、回生発電を実行すると、燃費向上効果が得られなくなり、かつ、排出NOx量が増えてしまうことが予測されるので、この場合は回生発電を行わないこととしている。
【0039】
なお、ステップ470においては、発電を全く行わないのではなく、発電量を低減させてから実行するようにしてもよい。発電量を低減させればその分の排気エネルギーが過給に用いられるため、吸入空気量が増えて空燃比はリーン側に移行する。ターボモータ11bの回生発電量を低減させる具体的な方法は、第一実施形態において述べたのと同様である。
【0040】
一方、ステップ430が肯定され、ステップ450も肯定される場合は、予測空燃比は16以下となる。この場合は、回生発電を行うと空燃比がリッチ寄りになって理論空燃比(ストイキ)に近い値となると予測される。このような場合は、回生発電実行後に空燃比がストイキとなるような空燃比フィードバック制御を行いつつ、回生発電を実行する(ステップ460)。このようにすれば、回生発電によってエネルギー回収を行うと共に、ストイキ燃焼によって排気ガス中の酸化すべき炭化水素HC及び一酸化炭素COと排気ガス中の還元すべきNOxとを過不足なく反応させて排ガス浄化率を良好に維持することができる。
【0041】
なお、上述した第三実施形態では、予測空燃比が所定空燃比(18)以下である場合に、その予測空燃比がストイキ近傍であればストイキを目標空燃比とする空燃比フィードバックを行いつつ、回生発電を実行した。ここで、予測空燃比が所定空燃比(18)以下の場合は全て回生発電を行わない(あるいは発電量を低減してから実行する)ようにしてもよい。この場合の制御(第四実施形態)のフローチャートを図7に示す。ステップ700〜ステップ740は、上述した第三実施形態におけるステップ400〜ステップ440と全く同一であるため、その説明を省略する。
【0042】
そして、ステップ730において、予測空燃比が18以下となる場合は、回生発電を行ったとしても燃費向上効果があまり無く、かつ、排出NOx量も増えると予測されるので、ターボモータ11bによる回生発電を行わない(ステップ750)。このようにすれば、回生発電による燃費性能悪化及びNOx排出量増加を発生させることがない。なお、ステップ730以前にリーンバーン中であるか否かの判断をし、リーンバーン中にのみステップ730が実行されるようにしても良い。また、ステップ750では、発電を実行しないのではなく発電量を低減させてから実行するようにしても良い。
【0043】
なお、上述した各実施形態において、回生発電を行った後に空燃比を検出する場合には、回生発電実行時の目標発電量の決定は、図5(a)又は図5(b)のマップを利用している。即ち、まず、図5(a)又は図5(b)のマップに基づいて予測空燃比が18をやや上回る発電量を取得し、その発電量を目標発電量として設定して回生発電を実行する(ステップ210,310など)。そして、回生発電後に実空燃比を検出し、検出された実空燃比によっては発電量が低減される(ステップ260,340など)。
【0044】
なお、本発明は上述した実施形態に限定されるものではない。例えば、上述した実施形態においては、圧力センサ19とエアフロメータ27とが併用されていた。しかし、吸気管内圧から吸入空気量を推定するようなシステムが構築できるのであれば、必ずしもエアフロメータ27を設けなくても良い。あるいは、エアフロメータ27のみで制御が可能であるなら、圧力センサ19を設けなくても良い。
【0045】
【発明の効果】
本発明の内燃機関の制御装置は、発電機による発電後の空燃比が所定空燃比以下である場合には発電機の発電量を低減させる(停止させる場合を含む)。あるいは、発電機による発電後の空燃比が所定空燃比以下となると予測される場合には発電機による発電量を低減させて発電を実行する(実行しない場合を含む)。このようにすることで、発電機付ターボチャージャでの発電によるエネルギー効率向上と、リーンバーンによる燃費向上性能とをバランス良く運用することができる。
【図面の簡単な説明】
【図1】本発明の制御装置の一実施形態を有する内燃機関(エンジン)の構成を示す構成図である。
【図2】本発明の制御装置の第一実施形態による回生発電時の内燃機関制御のフローチャートである。
【図3】本発明の制御装置の第二実施形態による回生発電時の内燃機関制御のフローチャートである。
【図4】本発明の制御装置の第三実施形態による回生発電時の内燃機関制御のフローチャートである。
【図5】エンジン負荷及びエンジン回転数から空燃比を求めるためのマップであり、(a)はターボユニットの容量が小さい場合、(b)は容量が大きい場合である。
【図6】空燃比とエンジン負荷との関係を示すグラフである。
【図7】本発明の制御装置の第四実施形態による回生発電時の内燃機関制御のフローチャートである。
【符号の説明】
1…エンジン、2…インジェクタ、3…シリンダ、4…ピストン、5…吸気通路、6…排気通路、7…点火プラグ、8…吸気バルブ、9…排気バルブ、10…エアクリーナ、11…ターボユニット、11a…タービン、11b…ターボモータ、12…インタークーラー、13…エアクリーナ、13…スロットルバルブ、14…アクセルペダル、15…アクセルポジショニングセンサ、16…ECU、17…スロットルモータ、18…スロットルポジショニングセンサ、19…圧力センサ、20…可変バルブタイミング機構、21…コントローラ、22…バッテリ、23…排気浄化触媒、24…EGR通路、25…EGRバルブ、26…クランクポジショニングセンサ、27…エアフロメータ、28…空燃比センサ。
Claims (2)
- 内燃機関に付随して配設されたターボチャージャと、排気流によって該ターボチャージャのタービン/コンプレッサを回転させて発電を行い得る発電機と、前記発電機の発電を制御する発電機制御手段とを備え、
前記発電機制御手段が、前記発電機による発電後の空燃比が前記発電機による発電によってリッチ寄りになった結果として理論空燃比に近い値にて空燃比をフィードバック制御させると共に回生発電を実行継続する運転と、前記理論空燃比に近い値よりリーン側であり、且つ、前記内燃機関の燃焼によって発生する窒素酸化物の量が所定量を超える所定空燃比以下である場合又は所定空燃比以下であると予測される場合には前記発電機の発電量を低減させる運転とを前記発電機による発電後の空燃比に応じて選択的に実行することを特徴とする内燃機関の制御装置。 - 窒素酸化物量が所定量を超える前記空燃比が18として設定されることを特徴とする請求項1に記載の内燃機関の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002359614A JP4075596B2 (ja) | 2002-12-11 | 2002-12-11 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002359614A JP4075596B2 (ja) | 2002-12-11 | 2002-12-11 | 内燃機関の制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004190579A JP2004190579A (ja) | 2004-07-08 |
JP4075596B2 true JP4075596B2 (ja) | 2008-04-16 |
Family
ID=32758969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002359614A Expired - Fee Related JP4075596B2 (ja) | 2002-12-11 | 2002-12-11 | 内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4075596B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5691400B2 (ja) * | 2010-10-28 | 2015-04-01 | いすゞ自動車株式会社 | 過給制御装置 |
JP6350304B2 (ja) * | 2015-01-26 | 2018-07-04 | トヨタ自動車株式会社 | リーンバーンエンジン |
US11585264B2 (en) * | 2021-06-23 | 2023-02-21 | Transportation Ip Holdings, Llc | Methods and systems for aftertreatment performance |
-
2002
- 2002-12-11 JP JP2002359614A patent/JP4075596B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004190579A (ja) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6880337B2 (en) | Control device for turbocharger with electric motor and control method of same | |
JP4380674B2 (ja) | 過給圧制御装置 | |
JP3843932B2 (ja) | ターボチャージャ | |
JP3994855B2 (ja) | 内燃機関の制御装置 | |
JP4289194B2 (ja) | 多気筒内燃機関の過給装置 | |
US8117829B2 (en) | Exhaust emission control device and method for internal combustion engine, and engine control unit | |
JP4048828B2 (ja) | 内燃機関の制御装置 | |
JP2003239754A (ja) | 過給圧制御装置 | |
JP4380701B2 (ja) | 電動過給機付内燃機関の制御装置 | |
US20080120969A1 (en) | Exhaust emission control device and method for internal combustion engine, and engine control unit | |
JP4075596B2 (ja) | 内燃機関の制御装置 | |
JP2004208420A (ja) | 車両制御装置 | |
JP2006238700A (ja) | 車両制御装置 | |
JP4013816B2 (ja) | 電動機付過給機の制御装置 | |
JP2006322398A (ja) | 内燃機関 | |
JP2003322038A (ja) | 内燃機関制御装置 | |
JP4510654B2 (ja) | 内燃機関の排ガス浄化装置 | |
JP3551790B2 (ja) | 内燃機関 | |
JP4042546B2 (ja) | 内燃機関の制御装置 | |
JP4510655B2 (ja) | 内燃機関の排ガス浄化装置 | |
JP3994867B2 (ja) | 内燃機関の制御装置 | |
JP4013893B2 (ja) | 電動機付過給機を有する内燃機関の制御装置 | |
JP2005291019A (ja) | 多気筒内燃機関の過給装置 | |
JP2004197653A (ja) | 車両制御装置 | |
JP7395007B2 (ja) | 車両の制御方法及び車両の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |