[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4073445B2 - Evaporative gas supply system for liquefied natural gas carrier - Google Patents

Evaporative gas supply system for liquefied natural gas carrier Download PDF

Info

Publication number
JP4073445B2
JP4073445B2 JP2005177515A JP2005177515A JP4073445B2 JP 4073445 B2 JP4073445 B2 JP 4073445B2 JP 2005177515 A JP2005177515 A JP 2005177515A JP 2005177515 A JP2005177515 A JP 2005177515A JP 4073445 B2 JP4073445 B2 JP 4073445B2
Authority
JP
Japan
Prior art keywords
evaporative gas
gas
forced
liquefied natural
bog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005177515A
Other languages
Japanese (ja)
Other versions
JP2006349084A (en
Inventor
惟命 加来
一也 小林
一秀 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Zosen KK
Original Assignee
Kawasaki Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Zosen KK filed Critical Kawasaki Zosen KK
Priority to JP2005177515A priority Critical patent/JP4073445B2/en
Publication of JP2006349084A publication Critical patent/JP2006349084A/en
Application granted granted Critical
Publication of JP4073445B2 publication Critical patent/JP4073445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

この発明は、タンクを搭載し液化天然ガス(以下、LNGともいう)を運搬する液化天然ガス運搬船(LNGタンカーとも称される)において、タンク内に貯留されている液化天然ガスから自然発生する、メタンを主成分とする蒸発ガス(以下、BOGともいう)を燃料として使用するガスエンジンなどの主推進機関に前記蒸発ガスを供給するとともに、その蒸発ガスが不足する場合に前記液化天然ガスを蒸発器で強制的に蒸発させた蒸発ガスを燃料として使用可能な蒸発ガス供給システムに関するものである。   The present invention naturally occurs from liquefied natural gas stored in a tank in a liquefied natural gas carrier ship (also referred to as LNG tanker) that carries a liquefied natural gas (hereinafter also referred to as LNG) by mounting a tank. The evaporative gas is supplied to a main propulsion engine such as a gas engine that uses evaporative gas (hereinafter also referred to as BOG) as a main component of methane, and the liquefied natural gas evaporates when the evaporative gas is insufficient. The present invention relates to an evaporative gas supply system that can use evaporative gas that is forcibly evaporated by a vessel as fuel.

タンク内に貯留されているLNGからBOGが自然に発生する。このため、従来は、BOGを蒸気ボイラーに供給して燃焼させ、蒸気を発生させてその蒸気を蒸気タービンの主機へ供給してLNG運搬船を航行させている。しかし、蒸気タービンはBOGをいったん蒸気に変換して使用することから燃料効率が悪い。そこで、BOGを直接に燃料として使用できるガスエンジンを備えたLNG運搬船が開発されている。つまり、主推進機関にガス焚きディーゼルエンジンやガスタービンエンジンなどのガスエンジンを使用するものである。   BOG is naturally generated from the LNG stored in the tank. For this reason, conventionally, BOG is supplied to a steam boiler for combustion, steam is generated, and the steam is supplied to the main engine of the steam turbine to navigate an LNG carrier. However, since a steam turbine uses BOG once converted into steam, fuel efficiency is low. Therefore, an LNG carrier equipped with a gas engine that can directly use BOG as fuel has been developed. That is, a gas engine such as a gas-fired diesel engine or a gas turbine engine is used as the main propulsion engine.

ところで、主推進機関が蒸気タービンの場合には、蒸気ボイラーへ供給されるBOGの圧力は2barA程度であり、1bar程度加圧すればよく、BOG加圧用の圧縮機には専ら単段の圧縮行程からなる遠心式圧縮機が用いられている。遠心式圧縮機は、蒸気ボイラーへBOGを連続的に供給でき、かつ回転数や入り口および出口のベーン操作で流量や吐出圧力を比較的容易に制御できるため、ほぼ全ての蒸気タービン主推進機関を備えたLNG運搬船に用いられている。   By the way, when the main propulsion engine is a steam turbine, the pressure of the BOG supplied to the steam boiler is about 2 barA, and it is sufficient to pressurize about 1 bar. A compressor for BOG pressurization is exclusively a single stage compression stroke. A centrifugal compressor is used. Centrifugal compressors can supply BOG continuously to steam boilers, and the flow rate and discharge pressure can be controlled relatively easily by the rotation speed and vane operation at the inlet and outlet. It is used for the LNG carrier equipped.

先行技術として、LNGタンカーの発電システムにBOGを供給する設備で、モータによって駆動され、かつ入り口がタンク内の液面の上で吸引を行い、その出口が発電システムの供給マニホールド内に放出を行うコンプレッサ、およびタンクの底部で蒸発器の入り口にパイプによって接続された液中ポンプを有し、蒸発器の出口が前記マニホールドに接続され、液体をタンクに戻し、かつ調節バルブを装備した帰還パイプが、液中ポンプを蒸発器に接続するパイプに接続された構造のものが提案されている。この設備は特にコンプレッサの電力を低減することを目的としている(例えば、特許文献1参照)。   As a prior art, a facility for supplying BOG to a power generation system of an LNG tanker, which is driven by a motor, and the inlet performs suction on the liquid level in the tank, and the outlet discharges into the supply manifold of the power generation system. A return pipe having a compressor and a submerged pump connected by a pipe to the evaporator inlet at the bottom of the tank, the evaporator outlet being connected to the manifold, returning the liquid to the tank and equipped with a regulating valve; A structure in which a submerged pump is connected to a pipe that connects to an evaporator has been proposed. This equipment is particularly intended to reduce the power of the compressor (see, for example, Patent Document 1).

また、図7に示すように、2基のタンク53内に貯留されたLNGから自然発生するBOGをLNGスプレー冷却器55で冷却した後、2段の遠心式圧縮機54に供給して加圧し、蒸気加熱器56および海水使用の冷却器57でディーゼルエンジン52の要求する温度に調整し、4台のディーゼルエンジン52へBOGを供給する蒸発ガス供給システム51が提案されている(例えば、非特許文献1参照)。なお、図8は図7の蒸発ガス供給システムのより基本的な系統図を示すもので、同図のように、BOG圧縮機54へタンク53内から自然発生したBOGを供給する配管60のBOG圧縮機54の上流側にBOG冷却器57が介設され、タンク53内に貯留されているLNGをスプレーポンプ58により汲み上げて強制蒸発器56およびBOG冷却器57へ供給し、一部を流量調整用戻りライン61にてタンク53へ戻せるように構成したBOG供給システムが考えられる。LNGはBOG冷却器57内でBOG中に噴霧されることにより、BOGおよび強制蒸発器59で蒸発させたBOGを冷却してBOG圧縮機54へ供給するようになっている。その他の構成は、図7の供給システム51に共通するので、説明を省略し、共通の構成部材は同一の符号を用いて示す。
特開2004−36608(2頁・4〜5頁および図1) フランス国アルストーム社2005年GASTECH(平成17年3月公表、系統図)
Further, as shown in FIG. 7, BOG naturally generated from the LNG stored in the two tanks 53 is cooled by the LNG spray cooler 55 and then supplied to the two-stage centrifugal compressor 54 for pressurization. An evaporative gas supply system 51 that adjusts the temperature required by the diesel engine 52 with a steam heater 56 and a seawater-use cooler 57 and supplies BOG to the four diesel engines 52 has been proposed (for example, non-patented). Reference 1). FIG. 8 shows a more basic system diagram of the evaporative gas supply system of FIG. 7. As shown in FIG. 8, the BOG of the pipe 60 for supplying BOG naturally generated from the tank 53 to the BOG compressor 54 is shown. A BOG cooler 57 is interposed on the upstream side of the compressor 54. The LNG stored in the tank 53 is pumped up by the spray pump 58 and supplied to the forced evaporator 56 and the BOG cooler 57, and a part of the flow rate is adjusted. A BOG supply system configured to be able to return to the tank 53 via the return line 61 can be considered. The LNG is sprayed into the BOG in the BOG cooler 57 to cool the BOG and the BOG evaporated by the forced evaporator 59 and supply the BOG to the BOG compressor 54. Since the other configuration is common to the supply system 51 of FIG. 7, the description thereof is omitted, and common constituent members are denoted by the same reference numerals.
JP-A-2004-36608 (2 pages, 4-5 pages and FIG. 1) Alstorm, France 2005 GASTECH (published March 2005, system diagram)

ところで、BOGはタンク内のLNGから自然に発生したばかりの状態では、LNG並の極低温(−150〜−130℃前後)であるが、このBOGがガス供給管を通って吸引され、BOG圧縮機に到達するときには周辺からガス供給管への侵入熱によって加熱され、BOGの流量によって概ね−120〜−80℃まで温度が上昇する。しかし、このように温度が上昇すると、一定の質量のガスを一定の吐出圧に加圧して送給するための圧縮機に必要な動力も増加することから、BOG圧縮機の入り口のBOG温度はできるだけ低い方が望ましい。   By the way, in the state where BOG has just been generated naturally from LNG in the tank, it is extremely low temperature (around −150 to −130 ° C.) as LNG, but this BOG is sucked through the gas supply pipe and compressed by BOG When reaching the machine, it is heated by the intrusion heat from the surroundings into the gas supply pipe, and the temperature rises to approximately −120 to −80 ° C. depending on the flow rate of BOG. However, when the temperature rises in this way, the power necessary for the compressor to pressurize and feed a certain mass of gas to a certain discharge pressure also increases, so the BOG temperature at the inlet of the BOG compressor is The lowest possible is desirable.

また、主推進機関が上記タービン以外の、上記のようなガスエンジンの場合には、主推進機関の手前(上流側)でBOGの圧力を5〜7barA程度まで加圧する必要がある。しかしながら、遠心式圧縮機を用いて5〜7barA程度まで加圧しようとすると、下記のような点で改良の余地がある。   When the main propulsion engine is a gas engine other than the turbine described above, it is necessary to increase the pressure of the BOG to about 5 to 7 barA before the main propulsion engine (upstream side). However, there is room for improvement in the following points when trying to pressurize to about 5-7 barA using a centrifugal compressor.

・主推進機関で要求されるBOGの圧力が従来の一般的な蒸気タービンに比べて高く、圧縮機の圧縮比(吐出圧)が高いため、吐出口でのBOG温度が従来より上昇して、圧縮機の安全運転可能な範囲を超える場合がある。これを避けるには、多段圧縮機の各段の圧縮行程の入り口側にガス冷却装置を設けて入り口におけるBOG温度を可能な限り低く抑える必要があるが、取り扱うガスの温度が極低温であるため、BOGの冷却にはLNG以外の極低温冷媒を船上においては入手困難である。   -The BOG pressure required by the main propulsion engine is higher than that of conventional general steam turbines, and the compression ratio (discharge pressure) of the compressor is high, so the BOG temperature at the discharge port is higher than before, It may exceed the range where safe operation of the compressor is possible. In order to avoid this, it is necessary to provide a gas cooling device on the inlet side of the compression stroke of each stage of the multistage compressor to keep the BOG temperature at the inlet as low as possible. However, the temperature of the gas handled is extremely low. It is difficult to obtain a cryogenic refrigerant other than LNG on the ship for cooling the BOG.

・圧縮機入り口のBOGの温度が上昇すると、ガス比重が小さくなりガス容積は膨張して大きくなって、圧縮機に必要な動力が増加する一方で、吐出圧力が低下する傾向にある。これを回避するために圧縮機のベーン開度で吐出圧が一定になるように調整するが、設計点からの差が大きくなると流量制御域が狭くなり、場合によってはガスエンジンが要求する一定吐出圧で運転不能になることがある。   When the temperature of the BOG at the compressor inlet rises, the gas specific gravity decreases, the gas volume expands and increases, and the power required for the compressor increases while the discharge pressure tends to decrease. In order to avoid this, the discharge pressure is adjusted to be constant at the vane opening of the compressor. However, if the difference from the design point increases, the flow control range becomes narrower, and in some cases, the constant discharge required by the gas engine. Operation may become impossible due to pressure.

そこで、上記のような問題を解決するための解決策として、図8に示したように、遠心式圧縮機54の入り口側にBOGを冷却して温度を下げるための、LNGを冷媒として用いた冷却器53を設けることが考えられる。しかし、この種の冷却器53は、LNGを密閉された冷却器本体内のBOG中にスプレーさせ、液滴が蒸発するときの気化潜熱でBOGを冷却する構造からなるので、つぎのような新たな問題がある。   Therefore, as a solution for solving the above problems, as shown in FIG. 8, LNG was used as a refrigerant for cooling the BOG and lowering the temperature on the inlet side of the centrifugal compressor 54. It is conceivable to provide a cooler 53. However, this type of cooler 53 has a structure in which LNG is sprayed into the BOG in the sealed cooler body, and the BOG is cooled by the latent heat of vaporization when the droplets evaporate. There is a problem.

・冷却する際の設定温度が低くなると、スプレー後のLNG中の重質分(エタン、プロパン、ブタンなど)がほとんど蒸発せず、いわゆるドレンとなって冷却器内に溜まるので、溜まったドレンの処理作業およびそのための処理設備が必要になる。   ・ If the set temperature for cooling is lowered, the heavy components (ethane, propane, butane, etc.) in the LNG after spraying hardly evaporate and accumulate in the cooler as so-called drain. Processing work and processing equipment for it are required.

・スプレーした際にガス化したLNG(天然ガス)がBOGに混入することで、BOGの質量(流量)が変化するため、冷却器の出口側でBOGの温度と質量(流量)との両者を統制する複雑な制御が必要になる。   ・ When LNG (natural gas) gasified when sprayed is mixed into the BOG, the mass (flow rate) of the BOG changes, so both the temperature and mass (flow rate) of the BOG at the outlet side of the cooler Complex control is required.

・冷却される側のガス(BOG)と冷却する側のLNGの間の温度差が小さいために、スプレーによる冷却の効率が悪く、スプレーされた後の相当量の液滴が蒸発せずにBOGに混入するおそれがある。このために、LNGの液滴が混入された状態のBOGが圧縮機に吸入されると、圧縮機に悪影響を与える可能性がある。   ・ Because the temperature difference between the gas to be cooled (BOG) and the LNG to be cooled is small, the cooling efficiency by spraying is poor, and a considerable amount of droplets after spraying do not evaporate and BOG There is a risk of contamination. For this reason, if BOG mixed with LNG droplets is sucked into the compressor, the compressor may be adversely affected.

この発明は上述の点に鑑みなされたもので、下記の1)〜5)に述べるような課題を解決できる、液化天然ガス運搬船においてメタンを主成分とするBOGを燃料として使用するガスエンジンにBOGを供給する液化天然ガス運搬船の蒸発ガス供給システムを提供しようとするものである。   The present invention has been made in view of the above points, and can solve the problems described in the following 1) to 5), in a liquefied natural gas carrier ship, in a gas engine using BOG mainly composed of methane as fuel. The evaporative gas supply system of the liquefied natural gas carrier ship which supplies

1) 吐出圧力が5〜7barA前後まで加圧するためのBOG圧縮機の各圧縮行程入り口におけるBOG温度を、LNGの冷熱によりできるだけ低温にして密度を高め、圧縮機に流入するBOGの容積流量を減らすことによって、圧縮機の容積を小さくし、かつ所定の吐出圧力を容易に確保できる。   1) The BOG temperature at the entrance of each compression stroke of the BOG compressor for increasing the discharge pressure to around 5-7 barA is made as low as possible by the cold heat of LNG to increase the density, and the volume flow rate of BOG flowing into the compressor is reduced. Thus, the volume of the compressor can be reduced and a predetermined discharge pressure can be easily secured.

2) LNGを冷媒に用いた熱交換器にBOGを通過させ、各圧縮行程の入り口BOGを流量の大小に拘わらず一定の低温に保たせることにより、ガス密度も高密度に保たせ、吐出圧力を安定させ、BOGの広い流量範囲にわたり吐出圧力の制御を容易にできる。   2) By passing the BOG through a heat exchanger using LNG as the refrigerant and keeping the inlet BOG of each compression stroke at a constant low temperature regardless of the flow rate, the gas density can also be kept high, and the discharge pressure The discharge pressure can be easily controlled over a wide flow range of BOG.

3) 各圧縮行程の出口でのBOG温度を、圧縮機の運転範囲内に余裕を持って入るように低く抑えられ、トリップ等の不具合を避けることができる。   3) The BOG temperature at the exit of each compression stroke can be kept low enough to enter the operating range of the compressor, and troubles such as trips can be avoided.

4) LNGとBOGとの熱交換作業を、それぞれ液体対ガスの状態でかつ非接触で行うことによって、スプレー冷却のような重質分の溜まり(ドレン)の心配がなく、またLNGの液滴が圧縮機に運ばれるおそれがない。   4) By performing heat exchange between LNG and BOG in a liquid-to-gas state and in a non-contact manner, there is no risk of accumulation of heavy components such as spray cooling, and there are no LNG droplets. There is no risk of being carried to the compressor.

5) タンク貯留のLNGを強制的に蒸発器で蒸発させてBOGを発生させ、タンク内で自然発生するBOGだけでは燃料として不足する場合に、LNGの加熱・蒸発に必要な熱源を節約することができる。   5) To save the heat source necessary for heating and evaporation of LNG when the LNG stored in the tank is forcibly evaporated by the evaporator to generate BOG, and the BOG generated in the tank alone is insufficient as fuel. Can do.

上記の各課題を解決するために本発明に係る液化天然ガス運搬船の蒸発ガス供給システムは、液化天然ガス運搬船に搭載されたタンク内に貯留されている液化天然ガスから自然発生する、メタンを主成分とする自然発生蒸発ガスを燃料として使用する主推進機関に前記自然発生蒸発ガスを供給するとともに、その自然発生蒸発ガスが不足する場合に前記液化天然ガスを強制的に蒸発させた強制発生蒸発ガスを燃料として使用する蒸発ガス供給システムにおいて、前記タンクからの前記自然発生蒸発ガスを供給する蒸発ガス供給用配管に、強制蒸発器からの前記強制発生蒸発ガスを供給する強制発生蒸発ガス供給用配管を接続して、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを主推進機関へ燃料として送給するために加圧する圧縮機へ供給し、前記蒸発ガス供給用配管に前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガス冷却用の熱交換器を介設し、前記蒸発ガス供給用配管を前記熱交換器の入り口付近で分岐してバイパスラインを設けるとともに、このバイパスラインの一端を前記熱交換器の出口側と前記圧縮機の入り口側との間を接続する配管に接続したうえ、前記バイパスラインに前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスの温度調節用バイパスバルブを介設し、前記タンクからポンプ装置により汲み出す液化天然ガスを前記熱交換器の冷媒として使用することにより、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを所定の温度まで冷却したのち、前記液化天然ガスを強制蒸発器に導くようにしたことを特徴とする。 In order to solve the above problems, the evaporative gas supply system for a liquefied natural gas carrier according to the present invention mainly uses methane, which is naturally generated from liquefied natural gas stored in a tank mounted on the liquefied natural gas carrier. Forced generation evaporation in which the naturally occurring evaporation gas is supplied to a main propulsion engine that uses natural evaporation gas as a fuel as a fuel, and the liquefied natural gas is forcibly evaporated when the naturally occurring evaporation gas is insufficient In an evaporative gas supply system that uses gas as fuel , a forced evaporative gas supply system that supplies the forced evaporative gas from a forced evaporator to an evaporative gas supply pipe that supplies the naturally generated evaporative gas from the tank. Connecting the piping, the naturally occurring evaporative gas, or the naturally occurring evaporative gas and the forced evaporative gas, Other supplies to the compressor for pressurizing to feeding the spontaneous evaporation gas and the forced generation evaporative gas as fuel to the main propulsion engines, the spontaneous evaporation gas to the vapor supply pipe or the spontaneous, A heat exchanger for cooling the evaporative gas and the forcibly generated evaporative gas is interposed, the evaporative gas supply pipe is branched near the entrance of the heat exchanger, a bypass line is provided, and one end of the bypass line is connected to the heat exchanger. It is connected to a pipe connecting the outlet side of the heat exchanger and the inlet side of the compressor, and the temperature of the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas is adjusted to the bypass line. By using liquefied natural gas pumped from the tank by a pump device as a refrigerant for the heat exchanger, Raw evaporative gas or After cooling the spontaneous evaporation gas and the forced generation evaporated gas to a predetermined temperature, characterized in that to guide the liquefied natural gas to force the evaporator.

上記の構成を有する蒸発ガス供給システムによれば、タンク内に貯留しているLNGを強制蒸発器へ導く前に、圧縮機(例えば遠心式)にて加圧する前のBOGの冷却に使用するので、LNGは配管を通過する間の侵入熱で加熱されるほか、BOGとの熱交換により
加熱される。この結果、LNGを強制蒸発器で蒸発させる際に必要な熱量が低下し、その分だけ蒸気使用量が節約される。また、冷却させたBOGを圧縮機に導入して加圧するので、圧縮機の動力を節約できる上に、圧縮機の各段出口(特に2段目)から吐出するBOGの温度を下げられるので、圧縮機のトリップなどを回避でき、運転を容易にする。
According to the evaporative gas supply system having the above configuration, the LNG stored in the tank is used for cooling the BOG before being pressurized by a compressor (for example, a centrifugal type) before being led to the forced evaporator. LNG is heated by intrusion heat while passing through the pipe, and is also heated by heat exchange with BOG. As a result, the amount of heat required for evaporating LNG with a forced evaporator is reduced, and the amount of steam used is saved correspondingly. Moreover, since the cooled BOG is introduced into the compressor and pressurized, the power of the compressor can be saved and the temperature of the BOG discharged from each stage outlet (particularly the second stage) of the compressor can be lowered. The trip of the compressor can be avoided and the operation becomes easy.

請求項2に記載のように、前記圧縮機を複数段の圧縮行程で行う多段圧縮機から構成し、1段目圧縮機の入り口および多段圧縮機間の少なくとも1箇所に前記熱交換器を設け、
前記液化天然ガスを前記熱交換器の冷媒として使用することにより、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを所定の温度まで冷却したのち、最下流の熱交換器を通した液化天然ガスを前記強制蒸発器に導くようにすることもできる。
3. The compressor according to claim 2, wherein the compressor is a multi-stage compressor that performs a multi-stage compression stroke, and the heat exchanger is provided at least at one position between the inlet of the first-stage compressor and the multi-stage compressor. ,
By using the liquefied natural gas as a refrigerant for the heat exchanger, the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas are cooled to a predetermined temperature, and then the most downstream heat exchanger. The liquefied natural gas that has passed through can be guided to the forced evaporator.

このようにすれば、BOGを例えば遠心式圧縮機により5〜7barA前後まで加圧する場合に、多段圧縮機を使用して熱交換器も各段の圧縮機入り口に設けて十分に冷却し、効率よくBOGを所定圧力まで加圧できる。   In this way, when the BOG is pressurized to, for example, about 5 to 7 barA by a centrifugal compressor, a multi-stage compressor is used and a heat exchanger is also provided at the compressor inlet of each stage to sufficiently cool the efficiency. It is possible to pressurize BOG well to a predetermined pressure.

請求項3に記載の液化天然ガス運搬船の蒸発ガス供給システムは、液化天然ガス運搬船に搭載されたタンク内に貯留されている液化天然ガスから自然発生する、メタンを主成分とする自然発生蒸発ガスを燃料として使用する主推進機関に前記自然発生蒸発ガスを供給するとともに、その自然発生蒸発ガスが不足する場合に前記液化天然ガスを強制的に蒸発させた強制発生蒸発ガスを燃料として使用する蒸発ガス供給システムにおいて、前記タンクからの前記自然発生蒸発ガスを供給する蒸発ガス供給用配管に、強制蒸発器からの前記強制発生蒸発ガスを供給する強制発生蒸発ガス供給用配管を接続して、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを主推進機関へ燃料として送給するために加圧する圧縮機へ供給し、前記蒸発ガス供給用配管に前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガス冷却用の熱交換器を介設するとともに、前記圧縮機を複数段の圧縮行程で行う多段圧縮機から構成し、1段目圧縮機の入り口および多段圧縮機間の少なくとも1箇所に前記熱交換器を設けるとともに、前記熱交換器をプレート・フィンタイプの1台の熱交換器にして共通にし、前記タンクからポンプ装置により汲み出す液化天然ガスを前記熱交換器の冷媒として使用することにより、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを所定の温度まで冷却したのち、最下流の熱交換器を通した液化天然ガスを前記強制蒸発器に導くようにしたことを特徴とする。 The evaporative gas supply system of the liquefied natural gas carrier ship according to claim 3 is a naturally generated evaporative gas mainly composed of methane, which is naturally generated from the liquefied natural gas stored in a tank mounted on the liquefied natural gas carrier ship. Evaporation using forcibly generated evaporative gas, which is obtained by forcibly evaporating the liquefied natural gas when the naturally generated evaporative gas is in short supply, to the main propulsion engine that uses In the gas supply system, the forced generation evaporative gas supply pipe for supplying the forced generation evaporative gas from the forced evaporator is connected to the evaporative gas supply pipe for supplying the naturally generated evaporative gas from the tank, The naturally occurring evaporative gas, or the naturally occurring evaporative gas and the forced evaporative gas, are converted into the naturally occurring evaporative gas or the naturally occurring evaporative gas. And supplying the force generated vapor to the pressurizing compressor to feed the fuel to the main propulsion engines, the spontaneous evaporation gas to the vapor supply pipe or the spontaneous evaporation gas and the forced generation evaporated, A heat exchanger for gas cooling is interposed, and the compressor is composed of a multistage compressor that performs a multistage compression stroke, and the heat is provided at least at one position between the inlet of the first stage compressor and the multistage compressor. By providing a heat exchanger as a single plate-fin type heat exchanger and using liquefied natural gas pumped from the tank by a pump device as a refrigerant for the heat exchanger The naturally occurring evaporative gas, or the naturally occurring evaporative gas and the forced evaporative gas are cooled to a predetermined temperature, and then liquefied through the heat exchanger at the most downstream position. Characterized in that the gas was guided to the forced evaporator.

このようにすれば、LNGによるBOGの冷却を液体ガスの状態でかつ非接触で行うことができ、従来のようにBOG中にLNGを直接に噴霧して冷却する場合と違ってドレンが生じることがなく、そのための処理や処理に必要な設備が不要になり、またLNGの液滴が圧縮機内に入って運転に悪影響を与えることもない。 Thus, it drains unlike the case where it is possible to cool the BOG due to LNG in a liquid state body gas and without contact, cool by spraying with LNG directly into BOG as in the prior art It does not occur, and the processing and equipment necessary for the processing are not required, and the LNG droplet does not enter the compressor and adversely affect the operation.

請求項4に記載のように、前記熱交換器において冷媒として使用した液化天然ガスを、前記強制蒸発器に導く配管を分岐して前記タンクへ戻す循環用配管を設けるとともに、前記配管の分岐位置上流側に切換弁を介設することができる。   According to claim 4, there is provided a circulation pipe for branching a pipe that leads the liquefied natural gas used as a refrigerant in the heat exchanger to the forced evaporator and returning it to the tank, and a branch position of the pipe A switching valve can be interposed upstream.

このようにすれば、主推進機関が低負荷になって燃料として必要なガス量がタンク内で自然発生する蒸発ガスの量を下回り、LNGを強制的に蒸発して使用する必要がない場合に、BOGの冷媒として使用した後のLNGをタンクに戻すことができる。なお、タンクに戻されるLNGは加熱されて温度が上昇しているので、結果的にLNGから自然発生するBOGの量が増えることになる。   In this way, when the main propulsion engine has a low load and the amount of gas required as fuel is less than the amount of naturally occurring evaporative gas in the tank, there is no need to forcibly evaporate LNG. LNG after being used as a refrigerant for BOG can be returned to the tank. Since the LNG returned to the tank is heated and the temperature rises, as a result, the amount of BOG naturally generated from the LNG increases.

本発明に係る液化天然ガス運搬船の蒸発ガス供給システムには、つぎのような優れた効果がある。すなわち、タンクに貯留しているLNGにより、BOG遠心式圧縮機に必要な温度まで冷却し、BOGの加圧を圧縮機にて安全かつ効率よく行うことができ、しかも主推進機関の燃料が自然発生のBOGだけでは不足する場合に蒸発器でLNGを強制的に蒸発して使用する際の加熱用蒸気量を節約でき、LNG運搬船の航行を経済的に遂行できるようにする。   The evaporative gas supply system for a liquefied natural gas carrier according to the present invention has the following excellent effects. That is, the LNG stored in the tank can be cooled to a temperature required for the BOG centrifugal compressor, and the BOG can be pressurized safely and efficiently by the compressor, and the fuel of the main propulsion engine can be naturally When the generated BOG alone is insufficient, the amount of steam for heating when the LNG is forcibly evaporated by the evaporator can be saved, and the LNG carrier can be navigated economically.

以下に、本発明に係る液化天然ガス運搬船の蒸発ガス供給システムについて実施の形態を図面に基づいて説明する。   Embodiments of an evaporative gas supply system for a liquefied natural gas carrier according to the present invention will be described below with reference to the drawings.

図1は本発明の蒸発ガス供給システムの最も基本的な第1実施例を示す系統図である。図1に示すように本実施例のBOG供給システム1は、ガスエンジンとしてDFD(ガス焚きディーゼルエンジン)2をLNG運搬船のエンジンルーム内に備え、貨物部に断熱構造のLNG用タンク3を搭載している。貨物部には遠心式圧縮機4が設置され、タンク3の上端部と遠心式圧縮機4の入り口とがBOG供給用配管11により接続されている。また、遠心式圧縮機4とガスエンジン2とが、BOG供給用配管12により接続されている。遠心式圧縮機4への配管11には、シェルアンドチューブタイプのBOG冷却器(熱交換器)7が介設されている。このBOG冷却器7は、タンク3内に貯留されるLNGを冷媒として例えばチューブ側に流して使用し、シェル側を流すBOGを冷却するものである。また、圧縮機4の出口での吐出圧力の制御を容易にするため、BOG圧縮機4の入り口のガス温度を一定に保てるようにBOG冷却器7の入り口付近で配管11を分岐し、この分岐したバイパスライン13をBOG冷却器7の出口、言い換えれば、BOG圧縮機4の入り口付近において配管11に接続している。さらに、バイパスライン13には、BOGの温度調節用バイパスバルブ8を介設している。   FIG. 1 is a system diagram showing the most basic first embodiment of the evaporative gas supply system of the present invention. As shown in FIG. 1, the BOG supply system 1 of the present embodiment includes a DFD (gas-fired diesel engine) 2 as a gas engine in the engine room of an LNG carrier, and an LNG tank 3 having a heat insulating structure is mounted on the cargo section. ing. A centrifugal compressor 4 is installed in the cargo portion, and an upper end portion of the tank 3 and an inlet of the centrifugal compressor 4 are connected by a BOG supply pipe 11. Further, the centrifugal compressor 4 and the gas engine 2 are connected by a BOG supply pipe 12. A shell and tube type BOG cooler (heat exchanger) 7 is interposed in the pipe 11 to the centrifugal compressor 4. The BOG cooler 7 uses LNG stored in the tank 3 as a refrigerant, for example, by flowing it to the tube side, and cools the BOG flowing through the shell side. Further, in order to easily control the discharge pressure at the outlet of the compressor 4, the pipe 11 is branched near the inlet of the BOG cooler 7 so that the gas temperature at the inlet of the BOG compressor 4 can be kept constant. The bypass line 13 connected to the outlet of the BOG cooler 7, in other words, near the inlet of the BOG compressor 4 is connected to the pipe 11. Further, the bypass line 13 is provided with a bypass valve 8 for adjusting the temperature of the BOG.

さらに、タンク3内の底部付近にスプレーポンプ6が配置され、このスプレーポンプ6の吐出口にLNG供給用配管14の一端が接続され、他端がBOG冷却器7の冷媒入り口に接続されている。BOG冷却器7の冷媒出口にLNG供給用配管15の一端が接続され、他端が強制蒸発器5の入り口に接続されている。強制蒸発器5の出口には強制BOG供給用配管16の一端が接続され、他端がBOG冷却器7の入り口手前(上流側)で配管11に接続されている。また、LNG供給用配管14はBOG冷却器7の冷媒入り口より上流側で分岐され、この分岐された温度調節用循環ライン(循環用配管)17の一端はタンク3のLNGの液中に挿入されている。さらに、温度調節用循環ライン17には、戻り流量調節用バルブ9が介設されている。さらにまた、強制蒸発器5へのLNG供給用配管15を分岐してタンク3への循環ライン(循環用配管)18を設け、この循環ライン18に開閉バルブ10を介設し、強制蒸発器5の入り口手前のLNG供給用配管15に開閉バルブ19を介設している。なお、蒸発器5はシェルアンドチューブタイプの熱交換器であり、温熱・加熱媒体に船内の蒸気が使用される。   Further, a spray pump 6 is disposed near the bottom of the tank 3, one end of the LNG supply pipe 14 is connected to the discharge port of the spray pump 6, and the other end is connected to the refrigerant inlet of the BOG cooler 7. . One end of the LNG supply pipe 15 is connected to the refrigerant outlet of the BOG cooler 7, and the other end is connected to the inlet of the forced evaporator 5. One end of a forced BOG supply pipe 16 is connected to the outlet of the forced evaporator 5, and the other end is connected to the pipe 11 before the upstream side of the BOG cooler 7. The LNG supply pipe 14 is branched upstream from the refrigerant inlet of the BOG cooler 7, and one end of the branched temperature adjusting circulation line (circulation pipe) 17 is inserted into the LNG liquid in the tank 3. ing. Further, a return flow rate adjusting valve 9 is interposed in the temperature adjusting circulation line 17. Furthermore, the LNG supply pipe 15 to the forced evaporator 5 is branched and a circulation line (circulation pipe) 18 to the tank 3 is provided. An open / close valve 19 is provided in the LNG supply pipe 15 before the entrance. The evaporator 5 is a shell-and-tube type heat exchanger, and the steam in the ship is used as the heat / heating medium.

上記のようにして構成される本発明の実施例に係るBOG供給システム1について、BOGの供給態様を図1に基づいて説明する。   The BOG supply system 1 according to the embodiment of the present invention configured as described above will be described with reference to FIG.

図1において、タンク3内のLNGから自然に蒸発して発生するBOGは、圧力1barA・温度(タンク3の頂部で)−130〜−120℃前後であるが、ガスエンジン2の燃料供給部では圧力約6barA・温度0〜50℃のBOGが要求される。そこで、本例では、遠心式圧縮機4を用いてガスエンジン2の要求に対応させている。また、通常のLNGの運搬時には、タンク3内に貯留されているLNGから自然に発生するNBOGでは供給不足になるので、LNGの一部を強制的に蒸発させたFBOGで補っている。   In FIG. 1, BOG generated by spontaneous evaporation from LNG in the tank 3 is about 1 barA · temperature (at the top of the tank 3) −130 to −120 ° C., but in the fuel supply part of the gas engine 2 BOG with a pressure of about 6 barA and a temperature of 0-50 ° C. is required. Therefore, in this example, the centrifugal compressor 4 is used to meet the requirements of the gas engine 2. In addition, since NBOG naturally generated from LNG stored in the tank 3 is insufficiently supplied during normal LNG transportation, a part of the LNG is supplemented with FBOG that is forcibly evaporated.

詳しくは、LNGから自然に発生したNBOGの温度はタンク3の頂部で−130〜−120℃前後で、配管11を通って遠心式圧縮機4へ送られる間に侵入熱で温度が上昇するので、このまま、つまり冷却しない場合には圧縮機4の入り口で−80〜−60℃程度になる。この場合の遠心式圧縮機4では、BOG温度は遠心式圧縮機4の出口でのBOG温度の過度の上昇を防ぐため、入り口で−120℃前後への冷却処理が望まれる。そこで、圧縮機4の入り口の上流側で、BOG冷却器7においてタンク3内に貯留しているLNGの冷熱により非接触でBOGを冷却している。冷却されたBOGは圧縮機4で加圧されるが、BOGの冷却後の温度が低くなり過ぎないように、非冷却のBOGを混合して温度を調節できるようにしており、BOGの混合割合はバイパスバルブ8の開度で調整される。LNGによる冷却器7でのBOGの冷却能力は、温度調節用循環ライン17の戻り流量調節用バルブ9の開度によって調節される。一方、LNGはBOGからの吸熱により温度が上昇し、配管15により強制蒸発器5へ送られる。そして、船内蒸気と非接触で加熱され、蒸発してガス化されてBOGとなる。このFBOGは、タンク3からのNBOGと配管11内で混合され、BOG冷却器7で冷却された後に圧縮機4へ送られる。ここで、圧力6barA程度まで加圧され、温度が上昇した状態でガスエンジン2へ供給される。   Specifically, the temperature of NBOG naturally generated from LNG is around −130 to −120 ° C. at the top of the tank 3, and the temperature rises due to intrusion heat while being sent to the centrifugal compressor 4 through the pipe 11. In this state, that is, when cooling is not performed, the temperature is about −80 to −60 ° C. at the inlet of the compressor 4. In the centrifugal compressor 4 in this case, in order to prevent an excessive increase in the BOG temperature at the outlet of the centrifugal compressor 4, a cooling process to around −120 ° C. is desired at the inlet. Therefore, the BOG is cooled in a non-contact manner by the cold heat of the LNG stored in the tank 3 in the BOG cooler 7 on the upstream side of the inlet of the compressor 4. The cooled BOG is pressurized by the compressor 4, but the temperature is adjusted by mixing uncooled BOG so that the temperature after cooling the BOG does not become too low. Is adjusted by the opening degree of the bypass valve 8. The cooling capacity of the BOG in the cooler 7 by LNG is adjusted by the opening degree of the return flow rate adjusting valve 9 of the temperature adjusting circulation line 17. On the other hand, the temperature of LNG increases due to heat absorption from the BOG, and is sent to the forced evaporator 5 through the pipe 15. Then, it is heated without contact with the inboard steam, evaporated and gasified to become BOG. The FBOG is mixed with the NBOG from the tank 3 in the pipe 11, cooled by the BOG cooler 7, and then sent to the compressor 4. Here, the pressure is increased to about 6 barA, and the temperature is raised and supplied to the gas engine 2.

ただし、タンク3から自然発生するBOGだけでLNG運搬船の航行が可能な場合にはLNG供給用配管15の開閉バルブ19を閉じるとともに、循環ライン18の開閉バルブ10を開放状態にしておくことで、タンク3内のLNGはBOG冷却器7へ送られてBOGの冷却に使用されたのちに、循環ライン18にてタンク3内へ戻される。   However, when the LNG carrier can be navigated only by the BOG that naturally occurs from the tank 3, the open / close valve 19 of the LNG supply pipe 15 is closed and the open / close valve 10 of the circulation line 18 is opened. The LNG in the tank 3 is sent to the BOG cooler 7 and used for cooling the BOG, and then returned to the tank 3 through the circulation line 18.

図2は本発明の蒸発ガス供給システムの第2実施例を示す系統図である。図2に示すように、本実施例のBOG供給システム1−2が上記実施例と相違するところは、2段の遠心式圧縮機4・4を設けて、1段目の圧縮機4の入り口側の配管および1段目と2段目の圧縮機4・4の中間の配管11にBOG冷却器7・7を介設し、各BOG冷却器7の入り口と出口間にはバイパスライン13を設けて、BOGの温度調節用バイパスバルブ8を介設したことである。各BOG冷却器7・7には、タンク3内のLNGを冷媒として使用し、使用後は強制蒸発器5へ導いてガス化し、BOGの不足を補うようにしている。本例の供給システム1−2は、BOGの圧縮能力との関係で単段の遠心圧縮機4ではガスエンジンの要求するBOGを加圧できない場合の実施例である。本例の場合、各圧縮行程での入り口のBOG温度をほぼ一定にするために、温度調整用のバイパスバルブ8を各BOG冷却器7ごとに設けている。これらを使った各圧縮行程の入り口のBOG温度の設定は、圧縮工程間の流量の釣り合いと吐出口のBOG温度が制限値以下となる条件下で決定される。また、開閉バルブ10および開閉バルブ19に代えて、LNG供給用配管15と循環ライン18の分岐部に切換バルブ10’を設けている。その他の構成および供給態様については基本的に共通するので説明を省略し、共通する構成部材は同一の符号を用いて示す。なお、本実施例では2段の圧縮機を示しているが、段数はこれに限らず増やすことができ、その場合はBOG冷却器7も圧縮機の段数に応じて増やす方が望ましい。   FIG. 2 is a system diagram showing a second embodiment of the evaporative gas supply system of the present invention. As shown in FIG. 2, the BOG supply system 1-2 of this embodiment is different from the above embodiment in that a two-stage centrifugal compressor 4 or 4 is provided and an inlet of the first-stage compressor 4 is provided. BOG coolers 7 and 7 are interposed in the side piping and the piping 11 between the first and second stage compressors 4 and 4, and a bypass line 13 is provided between the inlet and outlet of each BOG cooler 7. The BOG temperature adjusting bypass valve 8 is provided. In each of the BOG coolers 7 and 7, LNG in the tank 3 is used as a refrigerant, and after use, the gas is guided to the forced evaporator 5 to make up for the shortage of BOG. The supply system 1-2 of this example is an embodiment in the case where the BOG required by the gas engine cannot be pressurized by the single-stage centrifugal compressor 4 in relation to the compression capacity of the BOG. In the case of this example, in order to make the BOG temperature at the entrance in each compression stroke substantially constant, a bypass valve 8 for temperature adjustment is provided for each BOG cooler 7. The setting of the BOG temperature at the entrance of each compression stroke using these is determined under the condition that the flow rate balance between the compression steps and the BOG temperature at the discharge port are below the limit values. Further, instead of the opening / closing valve 10 and the opening / closing valve 19, a switching valve 10 ′ is provided at a branch portion between the LNG supply pipe 15 and the circulation line 18. Since other configurations and supply modes are basically the same, a description thereof will be omitted, and common constituent members will be denoted by the same reference numerals. Although the present embodiment shows a two-stage compressor, the number of stages is not limited to this, and in that case, it is desirable to increase the BOG cooler 7 in accordance with the number of stages of the compressor.

図3は本発明の蒸発ガス供給システムの第3施例を示す系統図である。図3に示すように、本実施例のBOG供給システム1−3が上記第2実施例と相違するところは、2台のBOG冷却器7・7に代えて1台のBOG冷却器7を使用し、1段目の圧縮機4と2段目の圧縮機4とに供給するBOGを共通のBOG冷却器7を通して冷却するようにしたことである。なお、BOG冷却器7にはプレート・フィンタイプを使用し、BOGとLNGとの接触をなくし、またスプレー冷却器のようなドレンの発生も防止した。本例の場合、2台のBOG冷却器7を1台にまとめたことにより、据え付けスペースを削減できた。またプレート・フィンタイプの熱交換器を採用したことで、熱交換の効率がアップするとともに、熱交換器の小型化が図られ、コストもセーブされた。その他の構成および供給態様については基本的に共通するので、詳しい説明を省略し、共通する構成部材は同一の符号を用いて示す。   FIG. 3 is a system diagram showing a third embodiment of the evaporative gas supply system of the present invention. As shown in FIG. 3, the BOG supply system 1-3 of the present embodiment is different from the second embodiment in that one BOG cooler 7 is used instead of the two BOG coolers 7. In addition, the BOG supplied to the first-stage compressor 4 and the second-stage compressor 4 is cooled through the common BOG cooler 7. The BOG cooler 7 is a plate / fin type, which eliminates the contact between BOG and LNG, and also prevents the generation of drain as in a spray cooler. In this example, the installation space can be reduced by combining two BOG coolers 7 into one. In addition, the adoption of a plate-fin type heat exchanger has improved the efficiency of heat exchange, and has made it possible to reduce the size of the heat exchanger and save costs. Since other configurations and supply modes are basically the same, detailed description thereof is omitted, and common components are denoted by the same reference numerals.

図4は本発明の蒸発ガス供給システムの第4施例を示す系統図である。図4に示すように、本実施例のBOG供給システム1−4が上記第2実施例と相違するところは、BOG冷却器7およびBOG冷却器7の入り口と出口間にはBOGの温度調節用バイパスバルブ8を介設したバイパスライン13を、1段目の圧縮機4と2段目の圧縮機4との間に設けたことである。本例の場合、BOG冷却器7の数を1台に減らしたことによるコストセーブを達成できた。また、BOG冷却器の温度制御については、冷却器の台数が少ないので容易になる。ただし、1段目の圧縮機4の入り口にBOG冷却器がないので、BOGの入り口温度がかなりの範囲で変化し、これに伴ってBOGのガス密度も変わるため、1段目の圧縮行程の容量に余裕を持たせる必要がある。その他の構成および供給態様については基本的に共通するので、説明を省略し、共通する構成部材は同一の符号を用いて示す。   FIG. 4 is a system diagram showing a fourth embodiment of the evaporative gas supply system of the present invention. As shown in FIG. 4, the BOG supply system 1-4 of the present embodiment is different from that of the second embodiment in that the BOG cooler 7 and the BOG cooler 7 between the inlet and the outlet are for adjusting the temperature of the BOG. The bypass line 13 provided with the bypass valve 8 is provided between the first-stage compressor 4 and the second-stage compressor 4. In the case of this example, cost savings can be achieved by reducing the number of BOG coolers 7 to one. Further, the temperature control of the BOG cooler is facilitated because the number of coolers is small. However, since there is no BOG cooler at the inlet of the first stage compressor 4, the inlet temperature of the BOG changes in a considerable range, and the gas density of the BOG also changes accordingly. It is necessary to provide a sufficient capacity. Since other configurations and supply modes are basically the same, description thereof will be omitted, and common components will be denoted by the same reference numerals.

図5は本発明の蒸発ガス供給システムの第5施例を示す系統図である。図5に示すように、本実施例のBOG供給システム1−5が上記第2実施例と相違するところは、BOG冷却器7およびBOG冷却器7の入り口と出口間にはBOGの温度調節用バイパスバルブ8を介設したバイパスライン13を、1段目の圧縮機4の入り口側に設けたことである。本例の場合、BOG冷却器の台数を減らしたことによるコストセーブのほか、1段目の圧縮行程の入り口のBOG温度をほぼ一定に保つことにより、1段目以降は概ね一定のガス密度の圧縮を行うことになるので、上記第4実施例に比べて流量の制御がやや容易になるという利点がある。その他の構成および供給態様については基本的に共通するので、説明を省略し、共通する構成部材は同一の符号を用いて示す。   FIG. 5 is a system diagram showing a fifth embodiment of the evaporative gas supply system of the present invention. As shown in FIG. 5, the BOG supply system 1-5 of the present embodiment is different from the second embodiment in that the BOG cooler 7 and the BOG cooler 7 between the inlet and the outlet are for adjusting the temperature of the BOG. The bypass line 13 provided with the bypass valve 8 is provided on the inlet side of the first stage compressor 4. In the case of this example, in addition to cost savings by reducing the number of BOG coolers, by keeping the BOG temperature at the entrance of the first stage compression stroke almost constant, the gas density of the first stage and thereafter is almost constant. Since compression is performed, there is an advantage that control of the flow rate is somewhat easier than in the fourth embodiment. Since other configurations and supply modes are basically the same, description thereof will be omitted, and common components will be denoted by the same reference numerals.

図6は本発明の蒸発ガス供給システムの第6施例を示す系統図である。図6に示すように、本実施例のBOG供給システム1−6が上記第1実施例と相違するところは、BOG冷却器7で冷媒として使用したLNGを強制蒸発器5で蒸発させてガス化したのち、BOG冷却器7および圧縮機4を通さずにガスエンジン2へ供給するようにしたことである。本例の場合、タンク3内で自然発生するBOGを専らBOG圧縮機4で加圧処理し、主推進機関2の燃料として不足する分を強制蒸発器5で蒸発させて補おうとするものである。したがって、BOG圧縮機4が取り扱うBOGの量が減少し、それに応じて消費動力も減少する。強制蒸発器5へ導くLNGはスプレーポンプ6で液体状態のまま、主推進機関2の燃料として必要な圧力に達するまで少ない動力で昇圧できるので、この圧力を強制蒸発器5で発生させるBOGの圧力として圧縮機4を通さずに燃料として利用できる。その他の構成および供給態様については基本的に共通するので、説明を省略し、共通する構成部材は同一の符号を用いて示す。ただし、この場合には、強制的に蒸発させるBOGの圧力および温度はガスエンジン2の要求する圧力約6barAおよび温度0〜50℃になるように調整する必要がある。 6 is a system diagram showing a sixth real施例off gas supply system of the present invention. As shown in FIG. 6, the BOG supply system 1-6 of the present embodiment is different from the first embodiment in that LNG used as a refrigerant in the BOG cooler 7 is vaporized by the forced evaporator 5 and gasified. After that, the gas is supplied to the gas engine 2 without passing through the BOG cooler 7 and the compressor 4. In the case of this example, the BOG that naturally occurs in the tank 3 is exclusively pressurized by the BOG compressor 4, and the shortage as fuel for the main propulsion engine 2 is evaporated by the forced evaporator 5 to compensate. . Therefore, the amount of BOG handled by the BOG compressor 4 is reduced, and the power consumption is also reduced accordingly. The LNG guided to the forced evaporator 5 can be increased with a small amount of power until it reaches the pressure required as fuel for the main propulsion engine 2 while remaining in the liquid state by the spray pump 6. Therefore, the pressure of the BOG generated by the forced evaporator 5 is increased. Can be used as fuel without passing through the compressor 4. Since other configurations and supply modes are basically the same, description thereof will be omitted, and common components will be denoted by the same reference numerals. However, in this case, it is necessary to adjust the pressure and temperature of the BOG to be forcibly evaporated so that the pressure required by the gas engine 2 is about 6 barA and the temperature is 0 to 50 ° C.

本発明の液化天然ガス運搬船における蒸発ガス供給システムの第1実施例を示す系統図である。1 is a system diagram showing a first embodiment of an evaporative gas supply system in a liquefied natural gas carrier of the present invention. 本発明の液化天然ガス運搬船における蒸発ガス供給システムの第2実施例を示す系統図である。It is a systematic diagram which shows 2nd Example of the evaporative gas supply system in the liquefied natural gas carrier ship of this invention. 本発明の液化天然ガス運搬船における蒸発ガス供給システムの第3実施例を示す系統図である。It is a systematic diagram which shows 3rd Example of the evaporative gas supply system in the liquefied natural gas carrier ship of this invention. 本発明の液化天然ガス運搬船における蒸発ガス供給システムの第4実施例を示す系統図である。It is a systematic diagram which shows 4th Example of the evaporative gas supply system in the liquefied natural gas carrier ship of this invention. 本発明の液化天然ガス運搬船における蒸発ガス供給システムの第5実施例を示す系統図である。It is a systematic diagram which shows 5th Example of the evaporative gas supply system in the liquefied natural gas carrier ship of this invention. 本発明の液化天然ガス運搬船における蒸発ガス供給システムの第6実施例を示す系統図である。It is a systematic diagram which shows 6th Example of the evaporative gas supply system in the liquefied natural gas carrier ship of this invention. アルストーム社により提案されたLNGから自然発生したBOGを用いたディーゼルエンジンへの供給システムを示す系統図である。It is a systematic diagram which shows the supply system to the diesel engine using BOG naturally generated from LNG proposed by Alstorm. 液化天然ガス運搬船における蒸発ガス供給システムの従来例を示す系統図である。It is a systematic diagram which shows the prior art example of the evaporative gas supply system in a liquefied natural gas carrier.

符号の説明Explanation of symbols

1 BOG供給システム
2 ガスエンジン(ガス焚きディーゼルエンジン:主推進機関)
3 LNG用タンク
4 遠心式圧縮機
5 強制蒸発器
6 スプレーポンプ(ポンプ装置)
7 BOG冷却器(熱交換器)
8 温度調節用バイパスバルブ
9 戻り流量調節用バルブ
10 開閉バルブ
10’切換バルブ
11・12・14 BOG供給用配管
13 LNGバイパスライン
15 LNG供給用配管
16 強制BOG供給用配管
17 温度調節用循環ライン(循環用配管)
18 LNG循環ライン(循環用配管)

1 BOG supply system 2 Gas engine (gas-fired diesel engine: main propulsion engine)
3 Tank for LNG 4 Centrifugal compressor 5 Forced evaporator 6 Spray pump (pump device)
7 BOG cooler (heat exchanger)
8 Temperature adjustment bypass valve 9 Return flow rate adjustment valve 10 Open / close valve 10 'switching valve 11, 12, 14 BOG supply piping 13 LNG bypass line 15 LNG supply piping 16 Forced BOG supply piping 17 Temperature adjustment circulation line ( (Circulation piping)
18 LNG circulation line (circulation piping)

Claims (4)

液化天然ガス運搬船に搭載されたタンク内に貯留されている液化天然ガスから自然発生する、メタンを主成分とする自然発生蒸発ガスを燃料として使用する主推進機関に前記自然発生蒸発ガスを供給するとともに、その自然発生蒸発ガスが不足する場合に前記液化天然ガスを強制的に蒸発させた強制発生蒸発ガスを燃料として使用する蒸発ガス供給システムにおいて、
前記タンクからの前記自然発生蒸発ガスを供給する蒸発ガス供給用配管に、強制蒸発器からの前記強制発生蒸発ガスを供給する強制発生蒸発ガス供給用配管を接続して、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを主推進機関へ燃料として送給するために加圧する圧縮機へ供給し、前記蒸発ガス供給用配管に前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガス冷却用の熱交換器を介設し、前記蒸発ガス供給用配管を前記熱交換器の入り口付近で分岐してバイパスラインを設けるとともに、このバイパスラインの一端を前記熱交換器の出口側と前記圧縮機の入り口側との間を接続する配管に接続したうえ、前記バイパスラインに前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスの温度調節用バイパスバルブを介設し、
前記タンクからポンプ装置により汲み出す液化天然ガスを前記熱交換器の冷媒として使用することにより、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを所定の温度まで冷却したのち、前記液化天然ガスを強制蒸発器に導くようにしたこと
を特徴とする液化天然ガス運搬船の蒸発ガス供給システム。
Supplying the naturally-occurring evaporative gas to a main propulsion engine that uses as a fuel a naturally-occurring evaporative gas mainly composed of methane, which is naturally generated from liquefied natural gas stored in a tank mounted on a liquefied natural gas carrier. In addition, in the evaporative gas supply system that uses, as a fuel, forcibly generated evaporative gas obtained by forcibly evaporating the liquefied natural gas when the naturally generated evaporative gas is insufficient,
Connecting the forced generation evaporative gas supply pipe for supplying the forced generation evaporative gas from the forced evaporator to the evaporative gas supply pipe for supplying the naturally generated evaporative gas from the tank; Alternatively, the naturally occurring evaporative gas and the forced evaporative gas are supplied to a compressor that pressurizes the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas to be supplied to the main propulsion engine as fuel. The evaporative gas supply pipe is provided with a heat exchanger for cooling the spontaneously generated evaporative gas, or the naturally generated evaporative gas and the forced evaporative gas, and the evaporative gas supply pipe is connected to the heat exchanger. A branch line is provided near the entrance to provide a bypass line, and one end of the bypass line is connected between the outlet side of the heat exchanger and the inlet side of the compressor. After having connected, the spontaneous vapor or temperature adjusting bypass valve of the spontaneous evaporation gas and the forced generation evaporated gas, the bypass line is interposed,
By using the liquefied natural gas pumped from the tank by the pump device as the refrigerant of the heat exchanger, the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas are cooled to a predetermined temperature. An evaporative gas supply system for a liquefied natural gas carrier, characterized in that the liquefied natural gas is guided to a forced evaporator.
前記圧縮機を複数段の圧縮行程で行う多段圧縮機から構成し、1段目圧縮機の入り口および多段圧縮機間の少なくとも1箇所に前記熱交換器を設け、
前記液化天然ガスを前記熱交換器の冷媒として使用することにより、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを所定の温度まで冷却したのち、最下流の熱交換器を通した液化天然ガスを前記強制蒸発器に導くようにしたこと
を特徴とする請求項1記載の液化天然ガス運搬船の蒸発ガス供給システム。
The compressor is composed of a multistage compressor that performs a multistage compression stroke, and the heat exchanger is provided at least at one location between the inlet of the first stage compressor and the multistage compressor,
By using the liquefied natural gas as a refrigerant for the heat exchanger, the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas are cooled to a predetermined temperature, and then the most downstream heat exchanger. 2. The evaporative gas supply system for a liquefied natural gas carrier according to claim 1, wherein the liquefied natural gas that has passed through is guided to the forced evaporator.
液化天然ガス運搬船に搭載されたタンク内に貯留されている液化天然ガスから自然発生する、メタンを主成分とする自然発生蒸発ガスを燃料として使用する主推進機関に前記自然発生蒸発ガスを供給するとともに、その自然発生蒸発ガスが不足する場合に前記液化天然ガスを強制的に蒸発させた強制発生蒸発ガスを燃料として使用する蒸発ガス供給システムにおいて、
前記タンクからの前記自然発生蒸発ガスを供給する蒸発ガス供給用配管に、強制蒸発器からの前記強制発生蒸発ガスを供給する強制発生蒸発ガス供給用配管を接続して、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを主推進機関へ燃料として送給するために加圧する圧縮機へ供給し、前記蒸発ガス供給用配管に前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガス冷却用の熱交換器を介設するとともに、前記圧縮機を複数段の圧縮行程で行う多段圧縮機から構成し、1段目圧縮機の入り口および多段圧縮機間の少なくとも1箇所に前記熱交換器を設けるとともに、前記熱交換器をプレート・フィンタイプの1台の熱交換器にして共通にし、
前記タンクからポンプ装置により汲み出す液化天然ガスを前記熱交換器の冷媒として使用することにより、前記自然発生蒸発ガス、または前記自然発生蒸発ガスおよび前記強制発生蒸発ガスを所定の温度まで冷却したのち、最下流の熱交換器を通した液化天然ガスを前記強制蒸発器に導くようにしたこと
を特徴とする液化天然ガス運搬船の蒸発ガス供給システム。
Supplying the naturally-occurring evaporative gas to a main propulsion engine that uses as a fuel a naturally-occurring evaporative gas mainly composed of methane, which is naturally generated from liquefied natural gas stored in a tank mounted on a liquefied natural gas carrier. In addition, in the evaporative gas supply system that uses, as a fuel, forcibly generated evaporative gas obtained by forcibly evaporating the liquefied natural gas when the naturally generated evaporative gas is insufficient,
Connecting the forced generation evaporative gas supply pipe for supplying the forced generation evaporative gas from the forced evaporator to the evaporative gas supply pipe for supplying the naturally generated evaporative gas from the tank; Alternatively, the naturally occurring evaporative gas and the forced evaporative gas are supplied to a compressor that pressurizes the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas to be supplied to the main propulsion engine as fuel. The evaporative gas supply pipe is provided with a heat exchanger for cooling the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas, and the compressor is operated in a plurality of stages of compression. A multi-stage compressor is provided, and the heat exchanger is provided in at least one place between the inlet of the first-stage compressor and the multi-stage compressor, and the heat exchanger is provided as a plate. In common with the one of the heat exchanger fin type,
By using the liquefied natural gas pumped from the tank by the pump device as the refrigerant of the heat exchanger, the naturally occurring evaporative gas or the naturally occurring evaporative gas and the forced evaporative gas are cooled to a predetermined temperature. An evaporative gas supply system for a liquefied natural gas carrier, characterized in that the liquefied natural gas that has passed through the heat exchanger at the most downstream is led to the forced evaporator.
前記熱交換器において冷媒として使用した液化天然ガスを、前記強制蒸発器に導く配管を分岐して前記タンクへ戻す循環用配管を設けるとともに、前記配管の分岐位置上流側に切換弁を介設したこと
を特徴とする請求項1〜3のいずれか記載の液化天然ガス運搬船の蒸発ガス供給システ
ム。
A circulation pipe for branching a pipe that leads the liquefied natural gas used as a refrigerant in the heat exchanger to the forced evaporator and returning it to the tank is provided, and a switching valve is provided upstream of the branch position of the pipe. The evaporative gas supply system of the liquefied natural gas carrier ship according to any one of claims 1 to 3.
JP2005177515A 2005-06-17 2005-06-17 Evaporative gas supply system for liquefied natural gas carrier Expired - Fee Related JP4073445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177515A JP4073445B2 (en) 2005-06-17 2005-06-17 Evaporative gas supply system for liquefied natural gas carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177515A JP4073445B2 (en) 2005-06-17 2005-06-17 Evaporative gas supply system for liquefied natural gas carrier

Publications (2)

Publication Number Publication Date
JP2006349084A JP2006349084A (en) 2006-12-28
JP4073445B2 true JP4073445B2 (en) 2008-04-09

Family

ID=37645154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177515A Expired - Fee Related JP4073445B2 (en) 2005-06-17 2005-06-17 Evaporative gas supply system for liquefied natural gas carrier

Country Status (1)

Country Link
JP (1) JP4073445B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009920B1 (en) * 2008-08-18 2011-01-20 에스티엑스조선해양 주식회사 Apparatus and method for supplying fuel gas in ships, floating vessels or floating facilities
KR101356004B1 (en) 2012-10-24 2014-02-05 대우조선해양 주식회사 Method for treating boil-off gas for a ship
KR101356003B1 (en) 2012-10-24 2014-02-05 대우조선해양 주식회사 System for treating boil-off gas for a ship
KR101386543B1 (en) 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
WO2015098092A1 (en) * 2013-12-26 2015-07-02 川崎重工業株式会社 Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
WO2017078245A1 (en) * 2015-11-05 2017-05-11 현대중공업 주식회사 Gas treatment system and vessel containing same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823029B1 (en) 2007-01-23 2008-04-17 현대중공업 주식회사 Fuel gas supply system of liquefied natural gas installing heat exchanger using natural gas as coolant
KR100834273B1 (en) 2007-03-20 2008-05-30 대우조선해양 주식회사 Membrane type lng cargo tank, lng carrier with it, and lng carrying method
JP2008267496A (en) * 2007-04-20 2008-11-06 Taiyo Nippon Sanso Corp Hydrogen gas cooling device
KR100835090B1 (en) * 2007-05-08 2008-06-03 대우조선해양 주식회사 System and method for supplying fuel gas of lng carrier
KR100834271B1 (en) 2007-05-08 2008-05-30 대우조선해양 주식회사 System and method for controlling pressure of lng cargo tank
KR100955036B1 (en) 2007-09-14 2010-04-28 삼성중공업 주식회사 Cooling system for a vessel
KR101102426B1 (en) * 2010-03-15 2012-01-05 한국가스공사 Bog treatment system and method in lng production station
KR101239347B1 (en) * 2010-09-17 2013-03-18 삼성중공업 주식회사 Vessel and its control method
JP2013543556A (en) * 2010-09-30 2013-12-05 ゼネラル・エレクトリック・カンパニイ Aircraft engine system and method for operating the same
US9494281B2 (en) * 2011-11-17 2016-11-15 Air Products And Chemicals, Inc. Compressor assemblies and methods to minimize venting of a process gas during startup operations
KR101302102B1 (en) * 2012-12-18 2013-08-30 삼성중공업 주식회사 Vessel
DK177713B1 (en) * 2013-05-16 2014-03-31 Man Diesel & Turbo Deutschland Combustion engine, and a method for supplying such a gas-fueled engine
KR101640768B1 (en) * 2013-06-26 2016-07-29 대우조선해양 주식회사 Method for building a ship
CN105627694B (en) * 2016-03-14 2017-08-22 江苏德邦工程有限公司 LNG gas stations BOG compresses and liquefies recovery system and method
JP6757191B2 (en) * 2016-07-05 2020-09-16 川崎重工業株式会社 Ship
KR101908570B1 (en) * 2017-08-01 2018-10-16 대우조선해양 주식회사 System and Method of Boil-Off Gas Reliquefaction for Vessel
KR101908569B1 (en) * 2017-07-31 2018-10-16 대우조선해양 주식회사 Method of Discharging Lubrication Oil in Boil-Off Gas Reliquefaction System and Method of Supplying Fuel for Engine
JP6959799B2 (en) * 2017-08-31 2021-11-05 川崎重工業株式会社 Judgment device and judgment method
CN112009697A (en) * 2020-09-02 2020-12-01 成都精智艺科技有限责任公司 Efficient LNG ship power supply system and method
KR20220031150A (en) 2020-09-03 2022-03-11 대우조선해양 주식회사 Fuel Supplying System And Method For Liquefied Gas Carrier
CN114877618B (en) * 2022-04-07 2023-03-31 吉林大学 Adopt marine BOG reliquefaction system of LNG of mixed refrigerant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009920B1 (en) * 2008-08-18 2011-01-20 에스티엑스조선해양 주식회사 Apparatus and method for supplying fuel gas in ships, floating vessels or floating facilities
KR101356004B1 (en) 2012-10-24 2014-02-05 대우조선해양 주식회사 Method for treating boil-off gas for a ship
KR101356003B1 (en) 2012-10-24 2014-02-05 대우조선해양 주식회사 System for treating boil-off gas for a ship
KR101386543B1 (en) 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
WO2015098092A1 (en) * 2013-12-26 2015-07-02 川崎重工業株式会社 Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
JP2015124807A (en) * 2013-12-26 2015-07-06 川崎重工業株式会社 Liquefied fuel gas evaporation acceleration apparatus and fuel gas supply system for marine vessel
WO2017078245A1 (en) * 2015-11-05 2017-05-11 현대중공업 주식회사 Gas treatment system and vessel containing same
CN108137133A (en) * 2015-11-05 2018-06-08 现代重工业株式会社 Gas handling system and the ship for including it
US10683831B2 (en) 2015-11-05 2020-06-16 Hyundai Heavy Industries Co., Ltd. Gas treatment system and vessel including the same
US11041466B2 (en) 2015-11-05 2021-06-22 Hyundai Heavy Industries Co., Ltd. Gas processing system and vessel including the same

Also Published As

Publication number Publication date
JP2006349084A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4073445B2 (en) Evaporative gas supply system for liquefied natural gas carrier
EP2775194B1 (en) Storage-tank pressure-rise suppressing apparatus, pressure-rise suppressing system including the same, suppressing method for the same, liquefied-gas cargo ship including the same, and liquefied-gas storage equipment including the same
JP5737894B2 (en) Boil-off gas reliquefaction equipment
EP2307694B1 (en) Gas supply systems for gas engines
KR101434431B1 (en) System for Liquid Gas Fuel Supply and Ship Having The Same
US8943842B2 (en) Hybrid pumper
KR101751340B1 (en) Fuel gas supplying system in ships
JP4275061B2 (en) Fuel supply apparatus and LNG ship equipped with the same
KR101784842B1 (en) Fuel gas supplying system in ships
JP2006348752A (en) Evaporated-gas supply system for liquefied natural gas-carrying vessel
KR101751331B1 (en) Fuel gas supplying system in ships
KR20100061368A (en) A fuel gas supply system and ship with the same
KR20190071179A (en) Boil-Off Gas Reliquefaction System and Method for Vessels
KR101903849B1 (en) A Regasification System Of Gas and Vessel having same
KR101324612B1 (en) System For Natural Gas Fuel Supply
KR100740686B1 (en) Bog reliquefaction apparatus
KR100747371B1 (en) Bog reliquefaction apparatus and constructing method thereof
KR101563856B1 (en) System for supplying fuel gas in ships
KR101324614B1 (en) System For Natural Gas Fuel Supply
KR101324613B1 (en) System For Natural Gas Fuel Supply
JP2024503496A (en) Gas supply systems for high-pressure and low-pressure gas consumers
KR20170041429A (en) Fuel gas supplying system in ships
KR101751332B1 (en) Fuel gas supplying system in ships
KR101751337B1 (en) Fuel gas supplying system in ships
CN118946755A (en) Gas supply system for high-pressure and low-pressure gas consumers and method for controlling such a system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4073445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees