JP4067934B2 - タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラムおよび入出力装置 - Google Patents
タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラムおよび入出力装置 Download PDFInfo
- Publication number
- JP4067934B2 JP4067934B2 JP2002306838A JP2002306838A JP4067934B2 JP 4067934 B2 JP4067934 B2 JP 4067934B2 JP 2002306838 A JP2002306838 A JP 2002306838A JP 2002306838 A JP2002306838 A JP 2002306838A JP 4067934 B2 JP4067934 B2 JP 4067934B2
- Authority
- JP
- Japan
- Prior art keywords
- tire
- tread pattern
- model
- elements
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Tires In General (AREA)
Description
この発明は、タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラム及び入出力装置に関し、さらに詳しくは、トレッドパターンモデルとタイヤケーシングモデルとを結合してなるタイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラム及び入出力装置に関する。
【0002】
【従来の技術】
従来タイヤは、試作品を走行試験や搬送試験等に供して得られた結果を元に、さらに改良を加えて試作品を試作するという繰返しによって開発されていた。このような開発手法は、試作と試験との繰返しになるので、開発効率が悪いという問題点があった。この問題点を解決するために、近年では数値解析を用いたコンピュータシミュレーションによって、試作品を作らなくともタイヤの性能を予測することができる方法が提案されている。
【0003】
上記タイヤの性能の予測を行うためには、主にFEM(Finite Element Method:有限要素法)が用いられている。このFEMは、実際のタイヤの3次元形状を有限個の要素に分割することで、実際のタイヤに近似したタイヤモデルを作成し、このタイヤモデルに荷重によって生じる垂直応力や剪断応力等を外力として与えた場合におけるタイヤの性能を予測するものである。ここで、自動車用(乗用車、トラックなど)や自動二輪車用のタイヤは、タイヤと路面との接触部であるトレッド部の表面にトレッドパターン(複数の溝)が刻まれている。従って、上記FEMによりタイヤの性能の予測を行うために、トレッドパターンの部分を除いたタイヤ自体であるタイヤケーシングモデルとトレッドパターンモデルとを結合したタイヤモデルが作成されていた。
【0004】
ここで、数年前までは、トレッドパターンを有するタイヤの性能の予測は、トレッドパターンを簡略化したトレッドパターンモデルとタイヤケーシングモデルとを結合したタイヤモデル、あるいはトレッドパターンモデルを有せずタイヤケーシングモデルのみからなるタイヤモデルにより行われていた。実際のタイヤのトレッドパターンは、複数の溝を刻むことで形成されており、その形状が複雑であるため、このトレッドパターンに近似するトレッドパターンモデルは膨大な数の要素から構成される。つまり、タイヤモデルを構成する要素が多くなるので、コンピュータによりタイヤの予測を行うことが不可能であった。しかし、現在ではコンピュータの急速な発達により、トレッドパターンに近似したトレッドパターンモデルを作成し、タイヤの性能の予測を行うことが可能となった(例えば、特許文献1、特許文献2)。
【0005】
【特許文献1】
特開2001−282873
【特許文献2】
特開2002−7489
【0006】
【発明が解決しようとする課題】
ところで、従来のタイヤの性能予測においては、トレッドパターンに近似したトレッドパターンモデルとタイヤケーシングモデルとを結合したタイヤモデルをFEMにより解析することで、実際のタイヤの接地領域における接地圧等の物理量を予測していた。しかしながら、トレッドパターンを構成するタイヤブロック自体のせん断力による変形や接地圧等を考慮してタイヤの性能の予測をするものではなかった。図17は、従来例を示す図であり、同図(a)はタイヤブロックの実際の変形、同図(b)は従来のタイヤブロックモデルの変形を示す図である。
【0007】
同図(a)に示すように、タイヤケーシングの上面に設けられたトレッドパターンを構成するタイヤブロック100は、実際のタイヤの内圧、荷重により、地面等の路面300に力Fにより押し付けられる。このとき、路面300からの反力F´により、タイヤブロック100は図示しないタイヤケーシングと路面300との間で弾性変形する。すなわち、タイヤブロック100は、タイヤケーシングと路面300との間で圧縮されるとともに、図示しない溝の側面を形成するタイヤブロック100の側面部分がその中央部の変形量が多く、その上下方向に向かって変形量が小さくなるようにこの溝方向に変形する。
【0008】
一方、従来のトレッドパターンモデルでは、同図(b)に示すように、タイヤブロック100の高さ方向(溝深さ方向)に分割せずに有限個の要素101、102でタイヤブロックを形成している。このトレッドパターンモデルのタイヤブロック100を形成する要素101、102に上記と同様な力Fを与えると、要素101、102は、図示しないタイヤケーシングモデルと仮想路面300´との間で圧縮されるとともに、図示しない溝の側面を形成する要素101、102がこの溝方向に変形する。すなわちタイヤブロック100を形成する要素101と102のタイヤモデルの軸方向断面形が底辺(仮想路面300´側)が上辺(タイヤケーシングモデル側)より長い台形状に変形する。従って、従来のトレッドパターンモデルのタイヤブロック100を形成する要素101、102の変形は、同図(a)に示すような実際のタイヤのタイヤブロック100の変形とは異なるものとなっていた。
【0009】
また、図18は、従来例を示す図であり、同図(a)はタイヤブロックの実際の変形、同図(b)は従来のタイヤブロックモデルの変形を示す図である。同図(a)に示すように、実際のタイヤケーシングの上面に設けられるトレッドパターンの溝230の側面は、複数個のタイヤブロック210、220で構成されている。このタイヤブロック210、220は、実際のタイヤの内圧、荷重により、路面300に力Fにより押し付けられると、タイヤブロック210、220が図示しないタイヤケーシングと路面300との間で弾性変形する。このとき、タイヤブロック210、220の溝230の側面部分を構成する側面部分が溝230方向に変形するが、この変形に伴いタイヤブロック210、220どうしが溝230で接触すると、このタイヤブロック210、220の側面部分は溝230方向に変形することができなくなる。
【0010】
一方、従来のトレッドパターンモデルでは、同図(b)に示すように、タイヤブロック210、220の高さ方向(溝深さ方向)に分割されていない有限個の要素211、212、221、222でタイヤブロック210、220を形成している。このトレッドパターンモデルのタイヤブロック210、220を形成する要素211、212、221、222に力Fを与えると、要素211、212、221、222は、図示しないタイヤケーシングモデルと仮想路面300´との間で圧縮されるとともに、要素211、212、221、222が変形する。このとき、溝230を介して隣り合うタイヤブロック210、220の要素211、221は、上記のようにその側面部分が溝230方向に変形するが、この変形に伴い要素211、221どうしが溝230で接触しても、互いの要素211、221を貫通して変形する。従って、従来のトレッドパターンモデルのタイヤブロック210、220を形成する要素211、212、221、222の変形は、同図(a)に示すような実際のタイヤのタイヤブロック210、220の変形とは異なるものとなっていた。
【0011】
つまり、実際のタイヤのタイヤブロックの変形と従来のトレッドパターンモデルのタイヤブロックを形成する要素の変形が異なるものとなっていたため、実際のタイヤ全体の大まかな接地圧などの予測には問題ないが、トレッドパターンのブロック自体の接地圧などの予測は精度良く行えないという問題があった。また、タイヤモデルの偏摩耗、すなわちタイヤブロックの偏摩耗を予測するためには、タイヤブロックの接地圧とせん断変形が必要となる。ここで、タイヤブロックの接地圧はタイヤブロックの変形により変化するが、従来のトレッドパターンモデルのタイヤブロックを形成する要素では、実際のタイヤブロックの変形を正確に再現できないため、実際のタイヤの偏摩耗の予測を精度良く行えないという問題もある。
【0012】
そこで、この発明は、上記に鑑みてなされたものであって、タイヤの性能、特にタイヤの接地圧やこれに基づくタイヤブロックの偏摩耗の予測の精度を向上することができるタイヤモデル、このタイヤモデルを用いたタイヤ性能予測方法およびタイヤ性能予測プログラム並びに入出力装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、この発明では、トレッドパターンとタイヤケーシングからなるタイヤを有限個の要素に分割し、当該タイヤに近似したタイヤモデルを作成し、当該タイヤモデルに境界条件を設定し、有限要素法により、タイヤの性能予測を行うタイヤ性能予測方法において、タイヤモデルは、トレッドパターンモデルおよびタイヤケーシングモデルを形成し、当該トレッドパターンモデルとタイヤケーシングモデルとを結合してなり、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に2層以上の有限個の要素で形成され、作成したトレッドパターンモデルのトレッドパターンの溝の対向する側面部分を形成する要素に、当該要素どうしが互いに貫通できない拘束条件を設定することを特徴とする。ここで、タイヤケーシングとは、カーカス、ベルトなどの補強コードおよびビードなど有するゴム材からなる構造体である(以下同様)。また、境界条件とは、実際のタイヤの内圧、荷重、スリップ角、回転させる場合は回転速度、タイヤを装着するホイールのリム幅などをいう。
【0014】
この発明によれば、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に2層以上の有限個の要素で形成する、すなわちトレッドパターンを構成するタイヤブロックの側面部分を2層以上の有限個の要素で形成するので、トレッドパターンモデルのタイヤブロックを形成する要素の荷重等による変形が、実際のタイヤのタイヤブロックの変形に近似することができ、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度を向上することができる。
また、この発明によれば、作成したトレッドパターンモデルのトレッドパターンの溝の対向する側面部分を形成する要素に、当該要素どうしが互いに貫通できない拘束条件を設定するので、トレッドパターンの溝の対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分を形成する要素どうしの荷重等による変形が、実際のタイヤのトレッドパターンの溝に対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分の変形にさらに近似することができ、タイヤの性能、特にタイヤの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度をさらに向上することができる。
【0015】
また、この発明では、トレッドパターンとタイヤケーシングからなるタイヤを有限個の要素に分割し、当該タイヤに近似したタイヤモデルを作成し、当該タイヤモデルに境界条件を設定し、有限要素法により、タイヤの性能予測を行うタイヤ性能予測方法において、タイヤモデルは、トレッドパターンモデルおよびタイヤケーシングモデルを形成し、当該トレッドパターンモデルとタイヤケーシングモデルとを結合してなり、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に2層以上の有限個の要素で形成され、作成したトレッドパターンモデルをグループ化し、当該グループ化されたトレッドパターンモデルにトレッドパターンの溝の対向する側面部分を形成する要素どうしが互いに貫通できない拘束条件を設定することを特徴とする。
【0016】
この発明によれば、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に2層以上の有限個の要素で形成する、すなわちトレッドパターンを構成するタイヤブロックの側面部分を2層以上の有限個の要素で形成するので、トレッドパターンモデルのタイヤブロックを形成する要素の荷重等による変形が、実際のタイヤのタイヤブロックの変形に近似することができ、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度を向上することができる。
また、この発明によれば、作成したトレッドパターンモデルをグループ化し、当該グループ化されたトレッドパターンモデルにトレッドパターンの溝の対向する側面部分を形成する要素どうしが互いに貫通できない拘束条件を設定するので、トレッドパターンの溝の対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分を形成する要素どうしの荷重等による変形が、実際のタイヤのトレッドパターンの溝に対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分の変形にさらに近似することができ、タイヤの性能、特にタイヤの接地圧やこれに基づくタイヤブロックの偏摩耗の予測の精度をさらに向上することができる。また、トレッドパターンモデルをグループ化した後に拘束条件をグループ化したトレッドパターンモデルに設定するので、すべてのトレッドパターンの溝の対向する側面部分を形成する要素に拘束条件を容易に設定することができ、タイヤ性能の予測をコンピュータで行うオペレータの作業時間を短縮することができる。
【0017】
また、この発明では、請求項1または2に記載のタイヤ性能予測方法において、拘束条件は、トレッドパターンモデルの溝の溝幅Wと溝深さGとの比W/GがW/G≦0.6である溝の対向する側面部分を形成する要素どうしに対して行うことを特徴とする。
【0018】
この発明によれば、拘束条件は、トレッドパターンモデルの溝の溝幅Wと溝深さGとの比W/GがW/G≦0.6である溝の対向する側面部分を形成する要素どうしに対して行うので、すべてのトレッドパターンの溝の対向する側面部分を形成する要素に対して拘束条件を設定する必要がなくなり、上記請求項1または2に記載の発明の作用効果に加えて、タイヤ性能の予測時間を短縮することができる。
【0019】
また、この発明では、請求項1〜3に記載のタイヤ性能予測方法において、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に3層以上5層以内の有限個の要素で形成することを特徴とする。
【0020】
この発明によれば、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に3層以上5層以内の有限個の要素で形成するので、すなわちトレッドパターンのタイヤブロックの側面部分を3層以上5層以内の有限個の要素で形成するので、トレッドパターンモデルのタイヤブロックを形成する要素の荷重等による変形が、実際のタイヤのタイヤブロックの変形にさらに近似することができ、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度をさらに向上することができる。
【0021】
また、この発明では、請求項1〜4のいずれか一つに記載のタイヤ性能予測方法において、タイヤケーシングモデルは、タイヤケーシングを周方向に有限個の要素に等分割して形成され、且つトレッドパターンモデルは、トレッドパターンの全周を有限個の要素に分割して形成されていることを特徴とする。
【0022】
この発明によれば、タイヤケーシングモデルは、タイヤケーシングを周方向に有限個の要素に等分割して形成され、且つトレッドパターンモデルは、トレッドパターンの全周を有限個の要素に分割して形成されているので、実際のタイヤには存在しない質量や剛性の不均衡による振動が発生することを抑制することができ、タイヤ性能の予測精度をさらに向上することができる。
【0023】
また、この発明では、請求項1〜5のいずれか一つに記載のタイヤ性能予測方法において、少なくともトレッドパターンモデルは、少なくとも100Hz〜1000Hzの周波数領域で粘性を有する粘弾性材料モデルであることを特徴とする。
【0024】
この発明によれば、少なくともトレッドパターンモデルは、少なくとも100Hz〜1000Hzの周波数領域で粘性を有する粘弾性材料モデルであるので、トレッドパターンモデルが仮想路面に接地、離地を繰り返す際に発生する振動を減衰することができるので、タイヤ性能の予測精度をさらに向上することができる。
【0029】
また、この発明のタイヤ性能予測プログラムは、請求項1〜6のいずれか一つにタイヤ性能予測方法をコンピュータに実行させることを特徴とする。
【0030】
この発明によれば、プログラムをコンピュータに読み取らせて実行することによって、請求項1〜6のいずれか一つに記載のタイヤ性能予測方法をコンピュータを利用して実現することができ、これらの各方法と同様の効果を得ることができる。
【0031】
また、この発明では、請求項7に記載のタイヤ性能予測プログラムをコンピュータに実行させる際に使用する入出力装置であって、コンピュータにタイヤモデルを作成するのに必要なトレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数その他各値およびタイヤ性能予測に必要な境界条件その他のデータを与える入力手段と、入力の際にはトレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数の入力を促す画面を表示して前記分割数を取得し、タイヤ性能予測結果を出力する際にはコンピュータから送られてくるタイヤ性能予測結果を出力する表示手段とを備えたことを特徴とする。ここで、トレッドパターンモデルとタイヤケーシングモデルを作成するのに必要な各値とは、トレッドパターンの平面のCADデータ、タイヤケーシングの断面のCADデータ、トレッドパターンの表面の輪郭データ、タイヤケーシングの表面の輪郭データ、材料データ等である。
【0032】
この発明によれば、入力の際にはトレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数の入力を促す画面を表示するので、タイヤ性能予測の演算を行う前に作成したトレッドパターンモデルのトレッドパターンの溝の対向する側面部分を形成する要素が2層以上で構成されていることを確認することができ、入力ミスを防止できる。これにより、タイヤ性能の予測の精度を向上することができる。
【0033】
また、この発明では、請求項8に記載の入出力装置において、入力の際には、拘束条件の入力を促す画面を表示手段に表示して拘束条件を取得することを特徴とする。
【0034】
この発明によれば、入力の際には、拘束条件の入力を促す画面を表示手段に表示するので、拘束条件を入力したことを確認することができ、入力ミスを防止できる。これにより、タイヤ性能の予測の精度をさらに向上することができる。
【0035】
【発明の実施の形態】
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの或いは実質的に同一のものが含まれる。
【0036】
本実施形態は、タイヤモデルを作成し、このタイヤモデルを用いて実際のタイヤの性能をFEM(有限要素法)により予測するものである。図1は、性能を予測する対象である実際の自動車用のタイヤの一部断面図である。同図に示すように、自動車用のタイヤ(以下、タイヤという。)10は、トレッドパターン11とタイヤケーシング12とにより構成されている。トレッドパターン11は、タイヤ10が路面と接地する部分に設けられており、主にキャップトレッド13に複数の溝13aを刻みこむことで構成されている。つまり、トレッドパターン11は、溝13aとタイヤブロック13b(この溝13aで仕切られたキャップトレッド13)とにより構成されている。ここで、キャップトレッド13は、ベルト16、カーカス17および図示しないブレーカの外側を覆うゴム層であり、路面との摩擦により制動力、駆動力、旋回力を伝達するとともに、タイヤ10が受けるカット衝撃に対してベルト16やカーカス17を保護する役目を持っている。
【0037】
一方、タイヤケーシング12は、主にアンダトレッド14、サイドトレッド15、ベルト16、カーカス17、ビード18、ビードフィラ19などにより構成されている。つまり、このタイヤケーシング12は、タイヤ10のトレッドパターン11を構成する要素(溝13a、タイヤブロック13bなど)以外の要素で構成されている。アンダトレッド14は、キャップトレッド13とベルト16との間に配置されているゴム層であり、発熱性、接着性等を向上させる機能を有している。サイドトレッド15は、タイヤ10の図示しないサイドウォール部分の最も外側に配置されており、このタイヤ10のサイドウォール部の傷がカーカス17に達することを防止する。また、サイドトレッド15は、タイヤ10がラジアルタイヤの場合において、図示しない車軸からの駆動力をキャップトレッド13を介して路面に伝達する補助的機能を有している。
【0038】
ベルト16は、キャップトレッド13とカーカス17との間に配置されたゴム引きコード層である。ここで、タイヤ10がバイアスタイヤの場合は、ブレーカと呼ばれるものである。このベルト16は、タイヤ10がラジアルタイヤの場合においては、形状保持および強度メンバーとしての機能を有している。カーカス17は、タイヤ10の骨格をなすゴム引きコード層である。このカーカス17は、タイヤ10に気体(空気、窒素など)を充填した際に圧力容器としての機能を有する強度メンバーであり、その内圧によってタイヤ10にかかる荷重を支えるとともに、走行時の動的荷重に耐える構造を有している。
【0039】
ビード18は、上記内圧によって発生するカーカス17のコード張力を支えているスチールワイヤの束を硬質ゴムにより固めたリングである。タイヤ10を図示しないホイールのリムに固定させる機能を有するとともに、ベルト16、カーカス17およびサイドトレッド15などとともにタイヤ10の強度を確保する部材である。ビードフィラ19は、カーカス17をビード18のスチールワイヤに巻きこむ際に生じる空間に充填するゴムである。また、ビードフィラ19は、カーカス17をビード18に固定するとともに、その部分の形状を整え、ビード18全体の剛性を高めるものである。上記のようにタイヤ10はゴム(キャップトレッド13、アンダトレッド14、サイドトレッド15など)をベルト16、カーカス17等の補強コードによって補強した構造体である。
【0040】
次に、タイヤモデルを作成しタイヤ性能予測方法を実行するタイヤ性能予測装置について説明する。図2は、この発明にかかるタイヤ性能予測方法を実行するタイヤ性能予測装置の構成例を示す図である。同図に示すように、タイヤ性能予測装置50は、処理部52と記憶部54とにより構成されている。なお、このタイヤ性能予測装置50には、入出力装置51が接続されており、この入出力装置51の入力手段53により、後述するタイヤモデルを作成するのに必要な各値およびタイヤ性能予測に必要な境界条件その他のデータ等をタイヤ性能予測装置50に入力する。ここで、入力手段53には、キーボード、マウス、マイク等の入力デバイスを使用することができる。
【0041】
記憶部54は、この発明にかかるタイヤ性能予測方法が組み込まれたFEMのプログラムが格納されている。ここで、記憶部54は、RAM、ROM等のメモリ装置、ハードディスク等の固定ディスク装置、フレキシブルディスク、光ディスク等のストレージ手段等の組み合わせにより構成されている。
【0042】
また、上記プログラムは、必ずしも単一的に構成されるものに限られず、コンピュータシステムにすでに記憶されているプログラム、例えばOS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものであっても良い。また、図2における処理部52の機能を実現するための上記プログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによりこの発明にかかるタイヤモデル作成方法およびタイヤ性能予測方法を実行しても良い。なお、「コンピュータシステム」とは、上記OSや周辺機器などのハードウェアを含むものである。
【0043】
処理部52は、RAM、ROM等のメモリとCPU(Central Processing Unit)とにより構成されている。タイヤ性能予測の際には、後述するタイヤモデルを作成するためのデータおよび入力データに基づいて、この処理部52が上記プログラムを処理部52の図示しないメモリに読み込んで演算を行う。なお、処理部52は、適宜演算途中の数値を記憶部54に格納し、格納した数値を適宜記憶部54から取り出して演算を行う。なお、この処理部52は、上記プログラムの替わりに専用のハードウェアにより実現されるものであっても良い。処理部52が演算することで求められたタイヤモデルやタイヤ性能予測結果は、入出力装置51の表示手段55により表示される。ここで、表示手段55には、CRT(Cathode Ray Tube)や液晶表示装置等を使用することができる。また、このタイヤモデルやタイヤ性能予測結果は、図示しないプリンタに出力することができる。また、記憶部54は、処理部52内に設けられていても良いし、他の装置(例えば、データベースサーバ)内に設けられていても良い。また、入出力装置51を備えた図示しない端末装置から、タイヤ性能予測装置50に有線、無線のいずれかの方法でアクセスすることができる構成であっても良い。
【0044】
次に、タイヤ性能予測方法について説明する。図3は、この発明のタイヤ性能予測方法のフローチャートを示す図である。同図に示すように、この発明にかかるタイヤ性能予測方法は、まずタイヤケーシングモデルの作成(ステップS101)を行う。図4は、タイヤケーシングモデルの作成方法のフローチャートを示す図である。同図に示すように、まず実際のタイヤ10のタイヤケーシング12(図1参照)の断面のCADデータを作成する(ステップS201)。なお、タイヤケーシング12の断面のCADデータは、タイヤ10の設計時に作成されたCADデータを用いても良い。
【0045】
次に、このCADデータに基づいてタイヤケーシング12の断面の2次元メッシュを作成する(ステップS202)。この2次元メッシュは、タイヤケーシング12の断面(CADデータ)を要素に分割するものであり、タイヤケーシング12を構成するアンダトレッド14、サイドトレッド15、ベルト16、カーカス17などを三角形要素、四角形要素等の2次元要素に分割するものである。
【0046】
ここで、タイヤケーシング12の断面を忠実に再現して2次元メッシュとすることは、タイヤケーシングモデルの作成やタイヤ性能予測の際における計算量の増大を招くため、単純化することが好ましい。つまり、図示しないゴム層(アンダトレッド14も含まれる)内に設けられているベルト16、カーカス17等の補強コードは、撚り線やモノフィラメントにスパライル状または平板状の波付けをしたものが使用されており、この補強コードの断面形状は、補強コードの長さ方向に対して変化しており、その形状が複雑である。そこで、補強コードの断面形状がこの補強コードの長さ方向に対して変化しないものとして、すなわち単純化して補強コードの2次元メッシュを作成する。これにより、タイヤケーシングモデルの作成やタイヤ性能予測の際の計算量を軽減することができ、CPUやメモリ等のハードウェア資源の負担を軽減することができる。
【0047】
また、補強コードは、ゴム層内に複数本設けられているので、上記のように補強コードを単純化した場合でも、この単純化した補強コードを複数本有するタイヤケーシングの断面の2次元メッシュを作成する必要があるので、複数の補強コードを均一なソリッド要素または均一なシェル要素としても良い。このように、複数の補強コードを均一な要素とすることで単純化して補強コードの2次元メッシュを作成することで、タイヤケーシングモデルの作成やタイヤ性能予測の際の計算量をさらに軽減することができ、CPUやメモリ等のハードウェア資源の負担をさらに軽減することができる。
【0048】
次に、作成されたタイヤケーシングの断面の2次元メッシュの材料データを設定する(ステップS203)。これは、タイヤケーシング12を構成するアンダトレッド14、サイドトレッド15、ベルト16、カーカス17等に対応する2次元メッシュ、すなわち分割された2次元要素に材料(例えば、ゴム材、スチール材)のデータを設定するものである。
【0049】
次に、材料データを設定したタイヤケーシング12の断面の2次元メッシュを周方向に展開するためのデータを設定する(ステップ204)。ここでは、オペレータがタイヤケーシング12を周方向に分割する際の角度、その繰り返し数を入力手段53から順次入力する。
【0050】
2次元メッシュを周方向に展開するためのデータを設定(入力)されたタイヤ性能予測装置50は、タイヤケーシングの断面の2次元メッシュを周方向に展開し、タイヤケーシングモデルを作成する(ステップS205)。図5は、タイヤケーシングモデルの構成例を示す図である。この作成されたタイヤケーシングモデル1は、有限個の要素1a、1b等に分割される。ここで、要素1a、1b等は、3次元体であり四面体ソリッド要素、五面体ソリッド要素、六面体ソリッド要素、三角形シェル要素、四角形シェル要素等の3次元要素である。また、上記要素1a、1bは、タイヤの性能の予測を行う際には、3次元座標を用いて逐一特定される。
【0051】
なお、タイヤ10を回転させた場合のタイヤの性能予測、すなわちタイヤの動的性能を予測する場合では、タイヤケーシング12を周方向に有限個の要素に等分割したタイヤケーシングモデル1を作成することが好ましい。これは、実際のタイヤには存在しない質量や剛性の不均衡による振動が発生することを抑制するためである。
【0052】
次に、図3に示すこの発明のタイヤ性能予測方法のフローチャートに戻って、トレッドパターンモデルの作成(ステップS102)を行う。図6は、トレッドパターンモデルの作成方法のフローチャートを示す図である。また、図7(a)はトレッドパターンのCADデータの構成例、図7(b)はトレッドパターンの2次元メッシュ構成例、図8(a)はトレッドパターンの2次元メッシュの構成例、図8(b)はトレッドパターンの2次元メッシュの構成例を示す図である。
【0053】
図6に示すように、まず実際のタイヤ10のトレッドパターン11(図1参照)を図7(a)に示すような平面の2次元CADデータ11´を作成する(ステップS301)。なお、トレッドパターン11の2次元CADデータ11´は、タイヤ10の設計時に作成されたCADデータを用いても良い。次に、図7(b)に示すように、この2次元CADデータ11´に基づいてトレッドパターン11を構成する最小単位のみの2次元メッシュ11aを作成する。次に、図8(a)に示すように、この2次元メッシュ11aの一部を反転複写し、所定の位置に移動することで、2次元メッシュ11bを作成する。そして、図8(b)に示すように、この2次元メッシュ11bをトレッドパターン11の周方向に複写することで、トレッドパターン11の2次元メッシュ11cを作成する(ステップS302)。この2次元メッシュ11cは、トレッドパターン11(CADデータ)を要素に分割したものであり、トレッドパターン11を構成するキャップトレッド13を三角形要素、四角形要素等の2次元要素に分割するものである。
【0054】
次に、実際のタイヤ10のトレッドパターン11の表面の輪郭データを作成する(ステップS303)。次に、実際のタイヤ10のタイヤケーシング12の表面の輪郭データを作成する(ステップS304)。そして、上記トレッドパターン11の2次元メッシュをトレッドパターン11の表面の輪郭に投影し、タイヤケーシング12の表面の輪郭との間にトレッドパターンモデルを作成する(ステップS305)。つまり、3次元座標におけるトレッドパターン11の表面の輪郭とタイヤケーシング12の表面の輪郭との間の空間に、トレッドパターン11の表面の輪郭に投影されたトレッドパターン11の2次元メッシュ11cからトレッドパターンモデルを作成する。なお、2次元CADデータ11´に基づいて作成された最小単位のみの2次元メッシュ11a(図7(a)参照)からトレッドパターンモデルの一部を作成し、このトレッドパターンの一部を反転複写、移動、周方向に複写することでトレッドパターンモデルを作成しても良い。
【0055】
2次元メッシュ11cからトレッドパターンモデルを作成する際に、タイヤ性能予測装置50は、トレッドパターン11の溝の側面部分を当該溝深さ方向に分割する分割数の入力を促す画面を入出力装置51の表示手段55に表示する。具体的には、表示手段55に、分割数として作成されるトレッドパターンモデルのトレッドパターン11の溝13aの側面部分を形成する要素が当該溝深さ方向に2層以上となるように2以上数を表示画面55に表示する。そして、オペレータは、この表示手段55に表示される入力画面に基づいて、入力手段53から所望の分割数を入力する。なお、オペレータに上記分割数の入力を促す方法としては、タイヤ性能予測装置50からの指令により音声で入力を促しても良い。あるいは、画面と音声との両方で再入力を促すようにしても良い。
【0056】
上記分割数、すなわちトレッドパターンモデルのトレッドパターン11の溝13aの側面部分を形成する要素を積層する数は、3層以上5層以内が好ましい。3層以上とするのは、トレッドパターン11の溝13aの溝深さが一定でない場合に、2層では浅い溝と深い溝の両方をトレッドパターンモデルで再現できずタイヤの性能の予測精度が低下する恐れを防止するためである。一方、5層以内とするのは、5層もあればタイヤ10のトレッドパターン11をトレッドパターンモデルで充分再現できるからである。つまり、要素を6層以上としても要素を5層とした場合と比較してのタイヤ性能の予測精度はそれほど向上しないが、6層以上とするとトレッドパターンモデルを構成する要素数が膨大となり、タイヤ性能の予測の際の計算量が増加し、CPUやメモリ等のハードウェア資源の負担が増大してしまう。
【0057】
図9は、トレッドパターンモデルの構成例を示す図である。同図に示すように、作成されたトレッドパターンモデル2は、有限個の要素2a、2b等に分割される。ここで、要素2a、2bは、3次元体であり四面体ソリッド要素、五面体ソリッド要素、六面体ソリッド要素のソリッド要素であることが好ましい。また、必要に応じて、三角形シェル要素、四角形シェル要素等の3次元シェル要素を3次元ソリッド要素の表面に設けても良い。また、上記要素2a、2b等は、タイヤの性能の予測を行う際には、3次元座標を用いて逐一特定される。
【0058】
なお、要素2a、2bは、可能な限り6面体ソリッド要素を用いて、五面体ソリッド要素の使用は最小限とすることが好ましい。これは、四面体ソリッド要素では、タイヤ性能の予測の際の計算量が増加し、CPUやメモリ等のハードウェア資源の負担が増大するとともに、このタイヤ性能の予測精度が低下する恐れがある。また、五面体ソリッド要素では、タイヤ性能の予測精度が低下する恐れがあるからである。さらに、タイヤ性能の予測の結果と実際のタイヤについて実験等を行うことにより求められた結果との誤差が許容できる場合は、要素2a、2bに用いられる要素は、1点積分要素とすることが好ましい。これは、FEMでは、要素2a、2bの応力やひずみ等を予測するためにこの要素2a、2bの代表点として数値積分点を用いる。例えば、要素2a、2bが完全積分要素である場合は、6面体ソリッド要素では代表点である数値積分点は8個存在し、1つの要素について8回計算することが必要となる。トレッドパターンモデルは、タイヤ10のトレッドパターン11の複雑な形状を再現するため膨大な要素が必要になるため、1つの要素について8回も計算するとなるとタイヤ性能予測の計算量が激増し、CPUやメモリ等のハードウェア資源の負担が増大することとなる。従って、要素2a、2bを代表点が1つしかない1点積分要素とすることにより、上記完全積分要素と比較して、タイヤ性能の予測の際の計算量を大幅に軽減でき、CPUやメモリ等のハードウェア資源の負担が大幅に軽減できるからである。
【0059】
図10は、分割数を2としたトレッドパターンモデルの拡大図である。図6に示すステップS305において、オペレータが表示手段55に表示されている分割数から2を選択した場合は、図10に示すように、トレッドパターンモデル2のトレッドパターン11の溝13aの側面部分、すなわちトレッドパターン11のタイヤブロック13bの側面部分は、要素2c、2dによりこの溝13aの溝深さ方向に2層に構成される。また、上記分割数から3を選択した場合は、図11に示すように、トレッドパターンモデル2のトレッドパターン11の溝13aの側面部分は、要素2c、2dによりこの溝13aの溝深さ方向に3層に構成される。
【0060】
また、タイヤ10を回転させた場合のタイヤの性能予測、すなわちタイヤ10の動的性能を予測する場合は、トレッドパターン11の全周を有限個の要素に分割したトレッドパターンモデル2を作成することが好ましい。これは、実際のタイヤ10には存在しない質量や剛性の不均衡による振動が発生することを抑制するためである。また、同様にタイヤ10の動的性能を予測する場合は、トレッドパターンモデル2の材料データを設定する際に、このトレッドパターンモデル2の3次元要素を粘弾性材料として設定することが好ましい。これは、トレッドパターンモデル2が仮想路面に接地、離地を繰り返す際に発生する振動を減衰させるためである。なお、この粘弾性材料は、少なくとも100Hz〜1000Hzの周波数領域で粘性を有することが好ましい。これは、タイヤ10の固有振動数が150Hz近傍にあり、タイヤ10のトレッドパターン11の固有振動数が800〜1000Hzにあるためである。
【0061】
次に、作成されたトレッドパターンモデル2のトレッドパターン11の溝13aの側面部分、すなわちトレッドパターン11のタイヤブロック13bの側面部分を形成する要素2c、2dどうしが互いに貫通できない拘束条件を設定する(ステップ306)。上記拘束条件の設定の方法は、溝13aの側面部分を形成する一方の要素2cをマスター、この要素2cに対向する要素2dをスレーブと定義し、マスターとスレーブが接触した際には、マスターがスレーブをスレーブがマスターを貫通することができないと設定する。なお、マスターである要素が複数の溝13aの側面部分を形成する場合、すなわちマスターである要素がタイヤブロック13bの側面部分を複数個所形成する場合は、隣り合うタイヤブロック13bの側面部分を形成する要素をスレーブとして、上記と同様に設定する。
【0062】
次に、作成されたトレッドパターンモデル2の材料データを設定する(ステップS307)。これは、タイヤ10のトレッドパターン11を構成するキャップトレッド13に対応する3次元メッシュ、すなわち分割された3次元要素に材料(例えば、ゴム材)のデータを設定するものである。
【0063】
次に、図3に示すこの発明のタイヤ性能予測方法のフローチャートに戻って、タイヤケーシングモデル1とトレッドパターンモデル2とを結合して、図12に示すようなタイヤモデル3を作成する(ステップS103)。次に、図12に示すタイヤモデル3に対する境界条件を設定する(ステップS104)。この境界条件としては、タイヤ10の内圧、タイヤ10にかかる荷重、スリップ角、回転させる場合は回転速度、タイヤ10を装着するホイールのリム幅などがある。ここで、上記内圧は、このタイヤモデル3の内側面に実際のタイヤ10の内圧に相当する等分布荷重を作用させることで設定することができる。また、スリップ角とは、路面の進行方向とタイヤの周方向の中心線とのなす角のことをいう。
【0064】
次にタイヤの性能の予測を行う(ステップS105)。このタイヤの性能の予測は、FEMによりタイヤ10の挙動を解析し、タイヤの性能(例えば、タイヤ10の接地圧力分布など)を予測する。つまり、タイヤ10は、図12に示すように要素に分割されたタイヤモデル3として、タイヤ性能予測装置50の記憶部54に3次元座標のデータとして格納されている。そして、タイヤ性能予測装置50の処理部52は、このタイヤモデル3の要素の座標データと上記境界条件とから、各時間における各要素のひずみや応力等を演算し、タイヤ10全体の挙動を求める。
【0065】
図13は、この発明にかかるトレッドパターンモデルの変形状態を示す図である。上記タイヤの性能の予測の際に、図13に示すように、トレッドパターンモデル2のトレッドパターン11の溝13aの側面部分を形成する要素2c、2dに力Fを与えると要素2c、2dは、図示しないタイヤケーシングモデル1と仮想路面300´との間で圧縮されるとともに、図示しない溝の側面を形成する要素2c、2dがこの溝方向に変形する。この要素2c、2dの変形は、その中央部、すなわち上側(タイヤケーシングモデル1側)の要素2c、2dと下側(仮想路面300´側)の要素2c、2dとの節点部の溝方向への変形量が多く、その上下方向に向かって溝方向への変形量が小さくなる。従って、トレッドパターンモデル2のトレッドパターン11の溝13aの側面部分を形成する要素2b、2cの荷重等による変形が、図17(a)に示す実際のタイヤ10のトレッドパターン11の溝13aの側面部分、すなわちトレッドパターン11のタイヤブロック13bの側面部分の変形に近似することができる。これにより、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度を向上することができる。
【0066】
図14は、この発明にかかるトレッドパターンの溝の側面部分を形成する要素の変形状態を示す図であり、同図(a)は変形前の状態、同図(b)は拘束条件を設定した場合の変形状態を示す図である。上記タイヤの性能の予測の際に、図6に示すステップS306で拘束条件を設定した状態で、トレッドパターンモデル2のトレッドパターン11の溝13aの側面部分を形成する要素2c、2dに力Fを与えると要素2c、2dは、同図(a)に示す状態から同図(b)に示すように、図示しないタイヤケーシングモデル1と仮想路面300´との間で圧縮されるとともに、図示しない溝の側面を形成する要素2c、2dがこの溝方向に変形する。このとき、溝13aの側面部分を形成する要素2c、2dどうしが接触すると、上記拘束条件により、互いの要素2c、2dを貫通することができない。従って、トレッドパターンモデル2のトレッドパターン11の溝13aの側面部分を形成する要素2c、2dの荷重等による変形が、図18(a)に示す実際のタイヤ10のトレッドパターン11の溝13aの側面部分、すなわちトレッドパターン11のタイヤブロック13bの側面部分の変形に近似することができる。これにより、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度を向上することができる。
【0067】
なお、上記実施形態では、拘束条件をトレッドパターンモデルを作成する際に設定したが、タイヤモデルを作成した後に拘束条件を設定しても良い。図15は、この発明のタイヤ性能予測方法の他のフローチャートを示す図である。タイヤケーシングモデルの作成(ステップS101)、トレッドパターンモデルの作成(ステップS102)とタイヤケーシングモデルとトレッドパターンモデルとを結合しタイヤモデルを作成(ステップS103)は、図3に示すタイヤ性能予測方法のフローチャートと同様であるのでその説明は省略する。なお、ステップS102において、図6に示すステップS306の拘束条件の設定は行わないものとする。
【0068】
作成されたタイヤモデル3のトレッドパターンモデル2をグループ化する(ステップS106)。これは、トレッドパターンモデル2を構成する各要素2a、2b等を1つのグループとするものである。グループ化されたトレッドパターンモデル2のすべての溝2e(図14(a)参照)の溝幅Wと溝深さGとの比W/GがW/G≦0.6である否かを判断する(ステップS107)。W/G≦0.6である溝2eの対向する側面部分を形成する要素2c、2dどうしに対して互いに貫通できない拘束条件を設定する(ステップS108)。つまり、グループ化したトレッドパターンモデル2に自己の要素である溝2eの対向する側面部分を形成する要素2c、2dどうしに対して互いに貫通できないという自己接触の定義を行う。次に、タイヤモデル3に対する境界条件を設定する(ステップS104)し、タイヤの性能の予測を行う(ステップS105)。なお、トレッドパターンモデル2をグループ化せずに、W/G≦0.6である溝の対向する側面部分を形成する要素どうしに対して拘束条件を設定しても良い。
【0069】
上記のように、トレッドパターンモデル2をグループ化した後に拘束条件をグループ化したトレッドパターンモデル2に設定するので、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度を向上することができるとともに、すべてのトレッドパターンの溝の対向する側面部分を形成する要素2c、2dに拘束条件を容易に設定することができ、タイヤ性能の予測をコンピュータで行うオペレータの作業時間を短縮することができる。また、比W/G≦0.6である溝の対向する側面部分を形成する要素どうしに対して拘束条件を設定するので、すべてのトレッドパターンの溝の対向する側面部分を形成する要素に対して拘束条件を設定する必要がなくなり、タイヤ性能の予測時間を短縮することができる。
【0070】
なお、ステップS106でトレッドパターンモデル2をグループ化した後、タイヤ性能予測装置50によりグループ化したトレッドパターンモデル2に拘束条件を設定する、すなわち拘束条件の入力を促す画面を入出力装置51の表示手段55に表示しても良い。具体的には、表示手段55に、拘束条件を設定するか否かを例えば「YES/NO」を表示画面55に表示する。これにより、オペレータは、この表示手段55に表示される入力画面に基づいて、入力手段53から拘束条件を設定することを入力するので、拘束条件を入力したことを確認することができ、オペレータによる入力ミスを防止することができる。ここで、オペレータに上記拘束条件の入力を促す方法としては、タイヤ性能予測装置50からの指令により音声で入力を促しても良い。あるいは、画面と音声との両方で再入力を促すようにしても良い。
【0071】
〔実施例1〕
ここでは、実際のタイヤとして、トレッドパターンの溝の溝幅Wと溝深さGとの比W/Gがすべて比W/G>0.6であるサイズが215/45R17である乗用車用のラジアルタイヤを17×7.0JJのリムに装着した状態のものを用い、タイヤの内圧230kPa、荷重3.8kNとし、負荷としてタイヤの横方向に0.76kNの荷重を与え、トレッドパターンのタイヤブロックの端部20箇所について接地圧を測定した。一方、上記実際のタイヤのタイヤモデルを作成し、この発明にかかるタイヤ性能予測方法を用いて、接地圧を予測した予測結果を図16(a)に示す。ここで、タイヤモデルの境界条件およびトレッドパターンモデルの溝は、上記実際のタイヤと同様の条件とする。
【0072】
比較例1は、トレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数を1とし、拘束条件を設けないで接地圧の予測結果を上記実際のタイヤの接地圧の測定結果と比較した誤差を示す。一方、実施例1〜5は、分割数を2〜6と順次増やしていき、拘束条件を設けないで接地圧の予測結果を上記実際のタイヤ10の接地圧の測定結果と比較した誤差を示す。なお、図16(a)に示す、計算時間とは実施例1の計算時間を100とした指数で表すものである。また、誤差は、それぞれの測定個所における誤差の絶対値の平均値より求め、この誤差は15%以内であれば、実用上問題ないものとする。
【0073】
図16(a)に示すように、分割数が1の比較例の場合は、計算時間が82であり、計算時間は分割数が2の実施例1と比較して短くなるが、タイヤの性能の予測精度である誤差は32.4%となるため、実用上使用することは困難である。分割数が2である実施例1は、計算時間は比較例1と比較して長くなるが、誤差は14%となるため、実用上使用することは問題ない。分割数が3である実施例2は、計算時間は実施例1と比較して長くなるが、誤差は9.4%となるので、分割数を2から3にすると、誤差に顕著な差異が見られる。また、実施例3〜5のように分割数を増やしていくと、誤差は低減するが、計算時間は実施例2と比較して相対的に長くなる。特に分割数が5である実施例4と、分割数が6である実施例5とでは、誤差に顕著な差異が見られないわりには、計算時間は長くなっている。従って、トレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数を2以上、特に分割数を3〜5とすることで、タイヤ性能の予測の際の計算時間を考慮して精度を向上することができる。
【0074】
〔実施例2〕
ここでは、実際のタイヤとして、トレッドパターンの溝の溝幅Wと溝深さGとの比W/Gがすべて比W/G=0.6であるサイズが205/65R15である乗用車用のラジアルタイヤを15×6.0JJのリムに装着した状態のものを用い、タイヤの内圧200kPa、荷重4.0kNとし、負荷としてタイヤの横方向に0.8kNの荷重を与え、トレッドパターンのタイヤブロックの端部20箇所について接地圧を測定した。一方、上記実際のタイヤのタイヤモデルを作成し、この発明にかかるタイヤ性能予測方法を用いて、接地圧を予測した予測結果を図16(b)に示す。ここで、タイヤモデルの境界条件は、上記実際のタイヤと同様の条件とする。
【0075】
比較例2は、トレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数を2とし、拘束条件を設けないで接地圧の予測結果を上記実際のタイヤの接地圧の測定結果と比較した誤差を示す。比較例3は、トレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数を3とし、拘束条件を設けないで接地圧の予測結果を上記実際のタイヤの接地圧の測定結果と比較した誤差を示す。一方、実施例6、7は、分割数をそれぞれ2、3とし、拘束条件を設けた状態で接地圧の予測結果を上記実際のタイヤ10の接地圧の測定結果と比較した誤差を示す。なお、図16(b)に示す、計算時間とは比較例2の計算時間を100とした指数で表すものである。また、誤差はそれぞれの測定個所における誤差の絶対値の平均値より求め、この誤差は15%以内であれば、実用上問題ないものとする。
【0076】
図16(b)に示すように、拘束条件を設けない比較例1、2の場合は、タイヤの性能の予測精度である誤差はそれぞれ23.2%、19.5%となるため、実用上使用することは困難である。拘束条件を設けた実施例6、7は、計算時間は比較例2、3と比較して長くなるが、誤差はそれぞれ12.6%、8.7%となるため、実用上使用することは問題ない。従って、トレッドパターンの溝の対向する側面部分を形成する要素どうしが互いに貫通できない拘束条件を設けることで、タイヤ性能の予測精度を向上することができる。
【0077】
【発明の効果】
以上説明したように、請求項1または3に記載の発明によれば、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に2層以上あるいは3層以上5層以内の有限個の要素で形成する、すなわちトレッドパターンを構成するタイヤブロックの側面部分を2層以上あるいは3層以上5層以内の有限個の要素で形成するので、トレッドパターンモデルのタイヤブロックを形成する要素の荷重等による変形が、実際のタイヤのタイヤブロックの変形に近似することができ、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度を向上することができる。
また、作成したトレッドパターンモデルのトレッドパターンの溝の対向する側面部分を形成する要素に、当該要素どうしが互いに貫通できない拘束条件を設定するので、トレッドパターンの溝の対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分を形成する要素どうしの荷重等による変形が、実際のタイヤのトレッドパターンの溝に対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分の変形にさらに近似することができ、タイヤの性能、特にタイヤの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度をさらに向上することができる。
【0078】
また、請求項2または3に記載の発明によれば、トレッドパターンモデルは、少なくともトレッドパターンの溝の側面部分を当該溝深さ方向に2層以上あるいは3層以上5層以内の有限個の要素で形成する、すなわちトレッドパターンを構成するタイヤブロックの側面部分を2層以上あるいは3層以上5層以内の有限個の要素で形成するので、トレッドパターンモデルのタイヤブロックを形成する要素の荷重等による変形が、実際のタイヤのタイヤブロックの変形に近似することができ、タイヤの性能、特にタイヤブロックの接地圧やこれに基づくタイヤブロックの偏摩耗の予測精度を向上することができる。
また、請求項7に記載の発明によれば、作成したトレッドパターンモデルをグループ化し、当該グループ化されたトレッドパターンモデルにトレッドパターンの溝の対向する側面部分を形成する要素どうしが互いに貫通できない拘束条件を設定するので、トレッドパターンの溝の対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分を形成する要素どうしの荷重等による変形が、実際のタイヤのトレッドパターンの溝に対向する側面部分、すなわちトレッドパターンのタイヤブロックの側面部分の変形にさらに近似することができ、タイヤの性能、特にタイヤの接地圧やこれに基づくタイヤブロックの偏摩耗の予測の精度をさらに向上することができる。また、トレッドパターンモデルをグループ化した後に拘束条件をグループ化したトレッドパターンモデルに設定するので、すべてのトレッドパターンの溝の対向する側面部分を形成する要素に拘束条件を容易に設定することができ、タイヤ性能の予測をコンピュータで行うオペレータの作業時間を短縮することができる。
【0079】
また、請求項4に記載の発明によれば、拘束条件は、トレッドパターンモデルの溝の溝幅Wと溝深さGとの比W/GがW/G≦0.6である溝の対向する側面部分を形成する要素どうしに対して行うので、すべてのトレッドパターンの溝の対向する側面部分を形成する要素に対して拘束条件を設定する必要がなくなり、上記請求項6または7に記載の発明の作用効果に加えて、タイヤ性能の予測時間を短縮することができる。
【0080】
また、請求項5に記載の発明によれば、タイヤケーシングモデルは、タイヤケーシングを周方向に有限個の要素に等分割して形成され、且つトレッドパターンモデルは、トレッドパターンの全周を有限個の要素に分割して形成されているので、実際のタイヤには存在しない質量や剛性の不均衡による振動が発生することを抑制することができ、タイヤ性能の予測精度をさらに向上することができる。
【0081】
また、請求項6に記載の発明によれば、少なくともトレッドパターンモデルは、少なくとも100Hz〜1000Hzの周波数領域で粘性を有する粘弾性材料モデルであるので、トレッドパターンモデルが仮想路面に接地、離地を繰り返す際に発生する振動を減衰することができるので、タイヤ性能の予測精度をさらに向上することができる。
【0084】
また、請求項7に記載の発明によれば、プログラムをコンピュータに読み取らせて実行することによって、請求項1〜6のいずれか一つに記載のタイヤ性能予測方法をコンピュータを利用して実現することができ、これらの各方法と同様の効果を得ることができる。
【0085】
また、請求項8に記載の発明によれば、入力の際にはトレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数の入力を促す画面を表示するので、タイヤ性能予測の演算を行う前に作成したトレッドパターンモデルのトレッドパターンの溝の対向する側面部分を形成する要素が2層以上で構成されていることを確認することができ、入力ミスを防止でき、タイヤ性能の予測の精度を向上することができる。
【0086】
また、請求項9に記載の発明によれば、入力の際には拘束条件の入力を促す画面を表示手段に表示するので、拘束条件を入力したことを確認することができ、入力ミスを防止でき、タイヤ性能の予測の精度をさらに向上することができる。
【図面の簡単な説明】
【図1】自動車用のタイヤの断面図である。
【図2】この発明にかかるタイヤ性能予測方法を実行するタイヤ性能予測装置の構成例を示す図である。
【図3】この発明のタイヤ性能予測方法のフローチャートを示す図である。
【図4】タイヤケーシングモデルの作成方法のフローチャートを示す図である。
【図5】タイヤケーシングモデルの構成例を示す図である。
【図6】トレッドパターンモデルの作成方法のフローチャートを示す図である。
【図7】同図(a)はトレッドパターンのCADデータの構成例、同図(b)はトレッドパターンの2次元メッシュ構成例を示す図である。
【図8】同図(a)はトレッドパターンの2次元メッシュの構成例、同図(b)はトレッドパターンの2次元メッシュの構成例を示す図である。
【図9】トレッドパターンモデルの構成例を示す図である。
【図10】分割数を2としたトレッドパターンモデルの拡大図である。
【図11】分割数を3としたトレッドパターンモデルの拡大図である。
【図12】タイヤモデルの構成例を示す図である。
【図13】この発明にかかるトレッドパターンモデルの変形状態を示す図である。
【図14】この発明にかかるトレッドパターンモデルの変形状態を示す図であり、同図(a)は変形前の状態、同図(b)は拘束条件を設定した場合の変形状態を示す図である。
【図15】この発明のタイヤ性能予測方法の他のフローチャートを示す図である。
【図16】この発明にかかるタイヤ性能予測方法の予測結果を示す図である。
【図17】従来例を示す図であり、同図(a)はタイヤブロックの実際の変形、同図(b)は従来のタイヤブロックモデルの変形を示す図である。
【図18】従来例を示す図であり、同図(a)はタイヤブロックの実際の変形、同図(b)は従来のタイヤブロックモデルの変形を示す図である。
【符号の説明】
1 タイヤケーシングモデル
2 トレッドパターンモデル
3 タイヤモデル
10 タイヤ
50 タイヤ性能予測装置
51 入出力装置
52 処理部
53 入力手段
54 記憶部
55 表示手段
Claims (9)
- トレッドパターンとタイヤケーシングからなるタイヤを有限個の要素に分割し、当該タイヤに近似したタイヤモデルを作成し、当該タイヤモデルに境界条件を設定し、有限要素法により、タイヤの性能予測を行うタイヤ性能予測方法において、
前記タイヤモデルは、トレッドパターンモデルおよびタイヤケーシングモデルを形成し、当該トレッドパターンモデルとタイヤケーシングモデルとを結合してなり、
前記トレッドパターンモデルは、少なくとも前記トレッドパターンの溝の側面部分を当該溝深さ方向に2層以上の有限個の要素で形成され、
前記作成したトレッドパターンモデルのトレッドパターンの溝の対向する側面部分を形成する要素に、当該要素どうしが互いに貫通できない拘束条件を設定することを特徴とするタイヤ性能予測方法。 - トレッドパターンとタイヤケーシングからなるタイヤを有限個の要素に分割し、当該タイヤに近似したタイヤモデルを作成し、当該タイヤモデルに境界条件を設定し、有限要素法により、タイヤの性能予測を行うタイヤ性能予測方法において、
前記タイヤモデルは、トレッドパターンモデルおよびタイヤケーシングモデルを形成し、当該トレッドパターンモデルとタイヤケーシングモデルとを結合してなり、
前記トレッドパターンモデルは、少なくとも前記トレッドパターンの溝の側面部分を当該溝深さ方向に2層以上の有限個の要素で形成され、
前記作成したトレッドパターンモデルをグループ化し、当該グループ化されたトレッドパターンモデルに前記トレッドパターンの溝の対向する側面部分を形成する要素どうしが互いに貫通できない拘束条件を設定することを特徴とするタイヤ性能予測方法。 - 前記拘束条件は、前記トレッドパターンモデルの溝の溝幅Wと溝深さGとの比W/GがW/G≦0.6である溝の対向する側面部分を形成する要素どうしに対して行うことを特徴とする請求項1または2に記載のタイヤ性能予測方法。
- 前記トレッドパターンモデルは、少なくとも前記トレッドパターンの溝の側面部分を当該溝深さ方向に3層以上5層以内の有限個の要素で形成することを特徴とする請求項1〜3のいずれか一つに記載のタイヤ性能予測方法。
- 前記タイヤケーシングモデルは、前記タイヤケーシングを周方向に有限個の要素に等分割して形成され、且つ前記トレッドパターンモデルは、前記トレッドパターンの全周を有限個の要素に分割して形成されていることを特徴とする請求項1〜4のいずれか一つに記載のタイヤ性能予測方法。
- 少なくとも前記トレッドパターンモデルは、少なくとも100Hz〜1000Hzの周波数領域で粘性を有する粘弾性材料モデルであることを特徴とする請求項1〜5のいずれか一つに記載のタイヤ性能予測方法。
- 請求項1〜6のいずれか一つに記載のタイヤ性能予測方法をコンピュータに実行させることを特徴とするタイヤ性能予測プログラム。
- 請求項7に記載のタイヤ性能予測プログラムをコンピュータに実行させる際に使用する入出力装置であって、
前記コンピュータに前記タイヤモデルを作成するのに必要な前記トレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数その他各値および前記タイヤ性能予測に必要な境界条件その他のデータを与える入力手段と、
入力の際には前記トレッドパターンの溝の側面部分を当該溝深さ方向に分割する分割数の入力を促す画面を表示して前記分割数を取得し、タイヤ性能予測結果を出力する際には前記コンピュータから送られてくるタイヤ性能予測結果を出力する表示手段と、
を備えたことを特徴とする入出力装置。 - 前記入力の際には、前記拘束条件の入力を促す画面を前記表示手段に表示して前記拘束条件を取得することを特徴とする請求項8に記載の入出力装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002306838A JP4067934B2 (ja) | 2002-10-22 | 2002-10-22 | タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラムおよび入出力装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002306838A JP4067934B2 (ja) | 2002-10-22 | 2002-10-22 | タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラムおよび入出力装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004142503A JP2004142503A (ja) | 2004-05-20 |
JP4067934B2 true JP4067934B2 (ja) | 2008-03-26 |
Family
ID=32453472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002306838A Expired - Fee Related JP4067934B2 (ja) | 2002-10-22 | 2002-10-22 | タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラムおよび入出力装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4067934B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4525263B2 (ja) * | 2004-09-14 | 2010-08-18 | 横浜ゴム株式会社 | タイヤ接地状態における物理量取得方法 |
JP4635562B2 (ja) * | 2004-11-01 | 2011-02-23 | 横浜ゴム株式会社 | シミュレーション装置の動作方法 |
JP2007045363A (ja) * | 2005-08-11 | 2007-02-22 | Bridgestone Corp | タイヤモデル作成方法、タイヤモデル作成装置、及びタイヤモデル作成プログラム |
JP4913382B2 (ja) * | 2005-09-28 | 2012-04-11 | 株式会社ブリヂストン | タイヤ性能解析システム、トレッドパターン性能解析システム、タイヤ性能解析方法、トレッドパターン性能解析方法、タイヤ性能解析プログラム及びトレッドパターン性能解析プログラム |
JP4905915B2 (ja) * | 2005-11-11 | 2012-03-28 | 株式会社ブリヂストン | タイヤの数値解析モデルの作成方法、及び、タイヤの転がり抵抗の解析方法 |
JP5526599B2 (ja) * | 2009-05-19 | 2014-06-18 | 横浜ゴム株式会社 | トレッドモデル作成方法及びそのコンピュータプログラム、並びにタイヤモデル作成方法及びそのコンピュータプログラム |
JP5519366B2 (ja) * | 2010-03-26 | 2014-06-11 | 株式会社ブリヂストン | タイヤモデル作成方法 |
JP5539058B2 (ja) * | 2010-06-21 | 2014-07-02 | 株式会社ブリヂストン | タイヤ性能シミュレーション方法及びタイヤ性能シミュレーションプログラム |
JP5841767B2 (ja) * | 2011-07-26 | 2016-01-13 | 東洋ゴム工業株式会社 | 解析装置、その方法及びそのプログラム |
JP7306954B2 (ja) * | 2019-10-16 | 2023-07-11 | 株式会社ブリヂストン | 試験用タイヤ製作方法、及びトレッド除去形状設定方法 |
-
2002
- 2002-10-22 JP JP2002306838A patent/JP4067934B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004142503A (ja) | 2004-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6199026B1 (en) | Method of and apparatus for simulating rolling tire | |
JP4067934B2 (ja) | タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラムおよび入出力装置 | |
JP2012006522A (ja) | シミュレーションモデル作成方法、シミュレーション方法、シミュレーションモデル作成装置、及びシミュレーション装置 | |
JP5151040B2 (ja) | タイヤの嵌合過程予測方法、タイヤの嵌合過程予測用コンピュータプログラム、タイヤの解析方法及びタイヤの解析用コンピュータプログラム | |
JP4291561B2 (ja) | タイヤの摩耗に関する物理量の予測方法及び予測装置、並びにコンピュータプログラム | |
JP2013014200A (ja) | シミュレーション方法及びシミュレーション装置 | |
JP5585436B2 (ja) | タイヤのシミュレーション方法 | |
JP2005008011A (ja) | タイヤの設計方法、タイヤの設計用コンピュータプログラム及びタイヤの設計装置、並びにタイヤ加硫金型の設計方法 | |
JP4635668B2 (ja) | タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法 | |
JP3431817B2 (ja) | タイヤ性能のシミュレーション方法 | |
JP4639912B2 (ja) | タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法 | |
JP4967466B2 (ja) | タイヤの性能予測方法及びタイヤの性能予測用コンピュータプログラム、並びにタイヤの性能予測装置 | |
JP4064192B2 (ja) | タイヤモデル、このタイヤモデルを用いたタイヤ性能予測方法およびタイヤ性能予測プログラム並びに入出力装置 | |
JP4275991B2 (ja) | タイヤ性能のシミュレーション方法及びタイヤ設計方法 | |
JP2004217075A (ja) | タイヤモデル作成方法、タイヤ特性予測方法、タイヤモデル作成装置、タイヤ特性予測装置およびタイヤモデル作成方法を実行するプログラム | |
JP3314082B2 (ja) | タイヤ有限要素モデルの作成方法 | |
JP2006018422A (ja) | タイヤ有限要素モデル作成方法 | |
JP2012030702A (ja) | タイヤのシミュレーション方法及びタイヤのシミュレーション用コンピュータプログラム | |
JP2006007913A (ja) | タイヤモデル、タイヤの挙動シミュレーション方法、タイヤの挙動解析プログラム及びタイヤの挙動解析プログラムを記録した記録媒体 | |
JP6454161B2 (ja) | タイヤのシミュレーション方法 | |
JP2011196984A (ja) | タイヤの解析方法及びタイヤの解析用コンピュータプログラム、並びに解析装置 | |
JP5841767B2 (ja) | 解析装置、その方法及びそのプログラム | |
JP5782684B2 (ja) | シミュレーションモデル作成方法、シミュレーション方法、シミュレーションモデル作成装置及びシミュレーション装置 | |
JP4761753B2 (ja) | シミュレーション方法 | |
JP2012148653A (ja) | タイヤのシミュレーション方法およびタイヤのシミュレーション用コンピュータプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4067934 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140118 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |