[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4066909B2 - Inverter capacitor connection structure - Google Patents

Inverter capacitor connection structure Download PDF

Info

Publication number
JP4066909B2
JP4066909B2 JP2003271555A JP2003271555A JP4066909B2 JP 4066909 B2 JP4066909 B2 JP 4066909B2 JP 2003271555 A JP2003271555 A JP 2003271555A JP 2003271555 A JP2003271555 A JP 2003271555A JP 4066909 B2 JP4066909 B2 JP 4066909B2
Authority
JP
Japan
Prior art keywords
inverter
conductive member
capacitor
conductive
connection structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003271555A
Other languages
Japanese (ja)
Other versions
JP2005033934A (en
Inventor
賢太郎 秦
泰明 早見
トロンナムチャイ クライソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003271555A priority Critical patent/JP4066909B2/en
Publication of JP2005033934A publication Critical patent/JP2005033934A/en
Application granted granted Critical
Publication of JP4066909B2 publication Critical patent/JP4066909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、インバータの直流回路部に用いられるコンデンサ接続構造に関する。   The present invention relates to a capacitor connection structure used in a DC circuit portion of an inverter.

電気自動車において電気エネルギから力学的エネルギを得るためのいわゆる自動車用パワーエレクトロニクスシステムは、主に直流電源を供給するためのバッテリと、直流を交流に変換するインバータと、インバータの電気的出力から回転力を得るモータから構成されている。インバータは、その筐体内に、パワー半導体素子からなるスイッチ群が入っており、そのスイッチを開閉することで、モータにおいて所望の回転力を得るための交流電力を直流電力から変換して生成する。またモータは、インバータから出力される交流電力により、電磁気的作用によって回転力を得る。
インバータには、インバータの入力電圧の変動を吸収する平滑コンデンサが接続される。この平滑コンデンサは、バッテリとインバータを接続する電源線に接続される。
特開平5−315205号公報
A so-called automotive power electronics system for obtaining mechanical energy from electrical energy in an electric vehicle mainly includes a battery for supplying DC power, an inverter for converting DC to AC, and a rotational force from the electrical output of the inverter. It is comprised from the motor which obtains. The inverter includes a group of switches made of power semiconductor elements in a casing. By opening and closing the switches, the inverter generates AC power for obtaining a desired rotational force from the DC power. Further, the motor obtains a rotational force by an electromagnetic action by the AC power output from the inverter.
A smoothing capacitor that absorbs fluctuations in the input voltage of the inverter is connected to the inverter. The smoothing capacitor is connected to a power line connecting the battery and the inverter.
JP-A-5-315205

パワーエレクトロニクスシステムにおいて、モータの電力容量が大きくなるにつれて、平滑コンデンサの容量も大きいものが必要となる。そのため、平滑コンデンサの容量を大きくする方法として、通常複数のコンデンサを並列接続する方法がとられる。しかしながら、複数のコンデンサを並列接続するとコンデンサの電極端子を接続する導電部材が長くなりインダクタンス成分が増加する問題があった。
このような問題を解決する方法として特許文献1に記載の方法が知られている。その方法では、複数のコンデンサの正極端子同士を接続する第1の導電部材と負極端子同士を接続する第2の導電部材があり、第1の導電部材の一端を折り返し第2の導電部材に対向させる第3の導電部材を有する構成である。この3つの導電部材を流れる電流の方向が互いに逆方向に流れるようにしてコンデンサの接続部材のインダクタンス成分を低減することを可能としている。
In a power electronics system, as the power capacity of a motor increases, a smoothing capacitor having a larger capacity is required. Therefore, as a method of increasing the capacity of the smoothing capacitor, a method of connecting a plurality of capacitors in parallel is generally used. However, when a plurality of capacitors are connected in parallel, there is a problem in that the conductive member connecting the electrode terminals of the capacitor becomes long and the inductance component increases.
As a method for solving such a problem, a method described in Patent Document 1 is known. In this method, there is a first conductive member that connects positive terminals of a plurality of capacitors and a second conductive member that connects negative terminals, and one end of the first conductive member is folded back to face the second conductive member. It is the structure which has the 3rd electrically-conductive member to be made. It is possible to reduce the inductance component of the connecting member of the capacitor by causing the directions of the currents flowing through the three conductive members to flow in opposite directions.

しかしながら、従来のインバータのコンデンサ接続構造においては以下のような別の問題があった。一般的に、電気自動車用平滑コンデンサは容量成分と寄生インダクタンス成分を持つため、それら成分により電気的な自己共振特性を持つ。
電気自動車の平滑コンデンサとして使用されるフィルムコンデンサや電解コンデンサの自己共振周波数は100kHz程度である。
一方、電気自動車用インバータは内部の半導体スイッチを用いて直流を三相交流に変換しモータへ電力を供給している。そのため、キャリア周波数の奇数倍の周波数を持つ高調波電流がノイズ電流として現れ、低次の高調波電流の振幅が大きい。なお、電気自動車のインバータのキャリア周波数はほぼ数kHz〜十数kHzである。
However, the conventional inverter capacitor connection structure has another problem as follows. Generally, a smoothing capacitor for an electric vehicle has a capacitance component and a parasitic inductance component, and therefore has an electrical self-resonance characteristic due to these components.
The self-resonant frequency of a film capacitor or an electrolytic capacitor used as a smoothing capacitor for an electric vehicle is about 100 kHz.
On the other hand, an inverter for an electric vehicle uses an internal semiconductor switch to convert direct current into three-phase alternating current and supply power to the motor. Therefore, a harmonic current having a frequency that is an odd multiple of the carrier frequency appears as a noise current, and the amplitude of the low-order harmonic current is large. The carrier frequency of the inverter of the electric vehicle is approximately several kHz to several tens of kHz.

また、電気自動車におけるバッテリとインバータの配置距離は約1〜数mあることが一般的で、そのため、双方を接続する電源線が形成するループは比較的大きくなる。上記ノイズ電流が、バッテリからの電源線の作る比較的大きなループに流れ込むとループから放射性ノイズが発生する。
インバータから上記のノイズ電流が発生した場合、そのノイズ電流の周波数においてコンデンサ側のインピーダンスがバッテリ側のインピーダンスに比べ十分低ければ、電源線の作るループに流れ込むノイズ電流の量は少なくなるが、電気自動車においては、コンデンサのインピーダンスが極小値となる共振周波数とインバータのキャリア周波数がずれていたために、電源線のループに流れ込むノイズ電流を効果的に抑制できていなかった。
Further, the distance between the battery and the inverter in an electric vehicle is generally about 1 to several meters, and therefore the loop formed by the power line connecting both is relatively large. When the noise current flows into a relatively large loop formed by the power line from the battery, radioactive noise is generated from the loop.
When the above noise current is generated from the inverter, if the impedance on the capacitor side is sufficiently lower than the impedance on the battery side at the frequency of the noise current, the amount of noise current flowing into the loop formed by the power line will be reduced. In this case, since the resonance frequency at which the impedance of the capacitor becomes a minimum value and the carrier frequency of the inverter are shifted, the noise current flowing into the loop of the power supply line cannot be effectively suppressed.

コンデンサの共振周波数は、コンデンサの容量を大きくすることでキャリア周波数側へつまり低周波数へ移動させることができるが、そのためにパワーエレクトロニクスシステム自体が大きくなるという問題もでてくる。   The resonance frequency of the capacitor can be moved to the carrier frequency side, that is, to a low frequency by increasing the capacitance of the capacitor. However, this causes a problem that the power electronics system itself becomes large.

本発明は、上記の問題点を解決するために、パワーエレクトロニクスシステム自体の体積増加を最小限に留め、インバータから発生する振幅の大きなノイズ電流がバッテリから接続され比較的大きなループを形成する電源線に流れ込むのを抑制し、ループから放射性ノイズが発生するのを抑制することができるインバータのコンデンサ接続構造を提供することを目的とする。   In order to solve the above problems, the present invention minimizes an increase in the volume of the power electronics system itself, and a power line that forms a relatively large loop in which a large amplitude noise current generated from an inverter is connected from a battery. It is an object of the present invention to provide an inverter capacitor connection structure that can suppress the flow of noise into the inverter and the generation of radioactive noise from the loop.

このため、本発明は、インバータ、コンデンサおよびバッテリとから構成されるインバータシステムにおいて、一端がコンデンサの電極端子に接続し、他端がインバータの電極端子に接続する第1の導電部材と、第1の導電部材に間隙をおいて平行に配置され、一端が第1の導電部材の一端に電気的に接続した第2の導電部材とから構成され、第2の導電部材の他端が電源線でバッテリに接続されているとともに、第1の導電部材と第2の導電部材の間隙の距離を、コンデンサの容量成分と、コンデンサの寄生インダクタンス成分に第1の導電部材と第2の導電部材間で生じる相互インダクタンス成分を加えたインダクタンス成分とによる共振周波数が、インバータのPWM制御におけるキャリア周波数の付近となるように設定してあるものとした。 Therefore, the present invention provides an inverter system including an inverter, a capacitor, and a battery, a first conductive member having one end connected to the electrode terminal of the capacitor and the other end connected to the electrode terminal of the inverter; The second conductive member is arranged in parallel with a gap between the first conductive member and one end of the second conductive member electrically connected to one end of the first conductive member. The other end of the second conductive member is a power line. The gap between the first conductive member and the second conductive member is connected to the battery, the capacitance component of the capacitor, and the parasitic inductance component of the capacitor between the first conductive member and the second conductive member. that the mutual inductance of the resonance frequency due to the inductance component addition is set so as to be in the vicinity of the carrier frequency in the PWM control of the inverter caused It was.

第1の導電部材と第2の導電部材に流れる電流の方向は互いに逆方向である。そのため、第1の導電部材および第2の導電部材の間に電磁結合による相互インダクタンス成分が発生し、第1の導電部材、第2の導電部材それぞれの持つ自己インダクタンス成分を減少させ、コンデンサの等価直列インダクタンス(ESL)成分を増加させることができる。   The directions of currents flowing through the first conductive member and the second conductive member are opposite to each other. Therefore, a mutual inductance component due to electromagnetic coupling is generated between the first conductive member and the second conductive member, and the self-inductance component of each of the first conductive member and the second conductive member is reduced, and the equivalent of the capacitor is reduced. The series inductance (ESL) component can be increased.

そして、コンデンサ自身の持つ寄生インダクタンス成分と容量成分により決まるコンデンサの自己共振周波数を、上記等価直列インダクタンス成分の増加によってインバータのキャリア周波数に近づく方向に設定されているので、コンデンサ側のインピーダンスをキャリア周波数付近で低下させることができ、電源線の作るループから放射性ノイズが低減できる。 And since the self-resonance frequency of the capacitor determined by the parasitic inductance component and capacitance component of the capacitor itself is set in a direction approaching the carrier frequency of the inverter by increasing the equivalent series inductance component, the impedance on the capacitor side is set to the carrier frequency. It can be reduced in the vicinity, and radiated noise can be reduced from the loop formed by the power supply line.

以下本発明の実施の形態を説明する。
図1は実施の形態の電気自動車のパワーエレクトロニクスシステムのインバータのコンデンサ接続構造を示す図である。図2は、インバータ、コンデンサおよびバッテリからなるインバータシステム全体を示す斜視図である。なお、インバータからモータへ三相交流を供給する出力線は省略してある。
コンデンサ1とインバータ2の各正極側の電極端子25、26は、それぞれのケースから突出し、ネジで接続可能なように電極端子25、26の上面には雌ネジが設けられている。
Embodiments of the present invention will be described below.
FIG. 1 is a diagram showing a capacitor connection structure of an inverter of a power electronics system for an electric vehicle according to an embodiment. FIG. 2 is a perspective view showing the entire inverter system including an inverter, a capacitor, and a battery. Note that an output line for supplying three-phase alternating current from the inverter to the motor is omitted.
The electrode terminals 25 and 26 on the positive side of the capacitor 1 and the inverter 2 protrude from the respective cases, and female screws are provided on the upper surfaces of the electrode terminals 25 and 26 so that they can be connected with screws.

平板状の導電体からなる導電部材30は、一端側でコンデンサ1の電極端子25とネジ固定で接続し、他端側でインバータ2の電極端子26とネジ固定で接続する。
平板状の導電体からなる導電部材20は、導電部材30と間隙距離dをとって平板の面同士を対向させて平行に配置され、一端側(コンデンサ1側)で平板状の導電体からなる接続部材22によって導電部材30と接続している。
導電部材20の他端(インバータ2側の端)は接続部21を備え、接続部21でバッテリ3の電極端子と電源線10によって接続している。
導電部材20、30、接続部材22は、電源線10に比較して、導体の断面積が大きく十分抵抗が小さい構成とする。
The conductive member 30 made of a flat conductor is connected to the electrode terminal 25 of the capacitor 1 by screw fixing on one end side and connected to the electrode terminal 26 of the inverter 2 by screw fixing on the other end side.
The conductive member 20 made of a flat plate-like conductor is arranged in parallel with the flat plate surfaces facing each other with a gap distance d from the conductive member 30, and is made of a flat plate-like conductor on one end side (capacitor 1 side). The connecting member 22 is connected to the conductive member 30.
The other end (end on the inverter 2 side) of the conductive member 20 includes a connection portion 21, and the connection portion 21 is connected to the electrode terminal of the battery 3 by the power line 10.
The conductive members 20 and 30 and the connection member 22 have a structure in which the cross-sectional area of the conductor is large and the resistance is sufficiently small as compared with the power supply line 10.

導電部材20と30との間には絶縁部材40を設置する。
導電部材30には電極端子25に対応させてネジ穴51が設けられ、このネジ穴に差し込まれたネジ31が電極端子25にねじ込まれる。
導電部材20と絶縁部材40には、電極端子25に対応させ、通しでネジ31組付け用の作業穴53が形成されている。作業穴53の径はネジ31の頭部が通過する大きさであり、ネジ穴51の径はネジ31のネジ部が通過する大きさである。
導電部材30、絶縁部材40および導電部材20の電極端子26に対応する位置に、同様にネジ穴51、作業穴53を開け、ネジ31が電極端子26にねじ込まれる。
導電部材20、30、接続部材22、絶縁部材40は、コンデンサ1とインバータ2の各負極側の電極端子間にも同様に取り付けられている。
An insulating member 40 is installed between the conductive members 20 and 30.
The conductive member 30 is provided with a screw hole 51 corresponding to the electrode terminal 25, and the screw 31 inserted into the screw hole is screwed into the electrode terminal 25.
A work hole 53 for assembling the screw 31 is formed in the conductive member 20 and the insulating member 40 so as to correspond to the electrode terminal 25. The diameter of the work hole 53 is a size through which the head of the screw 31 passes, and the diameter of the screw hole 51 is a size through which the screw portion of the screw 31 passes.
Similarly, a screw hole 51 and a work hole 53 are formed at positions corresponding to the conductive member 30, the insulating member 40, and the electrode terminal 26 of the conductive member 20, and the screw 31 is screwed into the electrode terminal 26.
The conductive members 20 and 30, the connecting member 22, and the insulating member 40 are similarly attached between the negative electrode terminals of the capacitor 1 and the inverter 2.

導電部材20と30との距離dは、コンデンサ1による共振周波数がインバータ2のキャリア周波数付近になるように決める。
インバータ2の筐体内にはパワー半導体素子からなるスイッチ群が入っている。インバータのキャリア周波数fcは数kHz〜十数kHzである。
The distance d between the conductive members 20 and 30 is determined so that the resonance frequency of the capacitor 1 is in the vicinity of the carrier frequency of the inverter 2.
A switch group made of power semiconductor elements is contained in the casing of the inverter 2. The inverter carrier frequency fc is several kHz to several tens of kHz.

本実施の形態の作用を以下に説明する。
インバータ2は内部の半導体スイッチにより直流を三相交流に変換して、図示しないモータへ電力を供給している。インバータ2のパワー半導体素子からなるスイッチ群を開閉すると、スイッチングによるノイズ電流が発生する。このノイズ電流は、キャリア周波数fcの奇数倍の周波数の高調波電流である。
図3はスイッチングによるノイズパルスの周波数スペクトルを表しており、横軸はノイズ電流の周波数を、縦軸はノイズ電流の強度(スペクトラム強度)を示す。キャリア周波数fcの高調波強度は、20dB/decで減衰するので、強度の最も大きいキャリア周波数fcになるように、前述のコンデンサによる共振周波数をあわせると、ノイズ電流の抑制効果が大きいことが分かる。
The operation of this embodiment will be described below.
The inverter 2 converts direct current into three-phase alternating current by an internal semiconductor switch and supplies power to a motor (not shown). When a switch group composed of power semiconductor elements of the inverter 2 is opened and closed, a noise current due to switching is generated. This noise current is a harmonic current having a frequency that is an odd multiple of the carrier frequency fc.
FIG. 3 shows the frequency spectrum of the noise pulse by switching, the horizontal axis indicates the frequency of the noise current, and the vertical axis indicates the intensity (spectrum intensity) of the noise current. Since the harmonic intensity of the carrier frequency fc is attenuated by 20 dB / dec, it can be seen that the effect of suppressing the noise current is large when the resonance frequency by the capacitor is adjusted so that the carrier frequency fc having the highest intensity is obtained.

図4は、図2に示すコンデンサ、インバータおよびバッテリ間の接続の等価回路を示す図である。
導電部材20と30はそれぞれ対向しており、電流は互いに逆方向に流れる。そのため導電部材20と30間では電磁結合し、相互インダクタンスMが発生する。
コンデンサ1は寄生インダクタンス成分Lcを有する。導電部材20、30はそれぞれインダクタンス成分L−M(自己インダクタンスLと、導電部材20と30間の相互インダクタンスMとの差)を有する。
コンデンサ1は、寄生インダクタンスLcに直列に相互インダクタンスMだけインダクタンスが増す。
FIG. 4 is a diagram showing an equivalent circuit of connection between the capacitor, the inverter and the battery shown in FIG.
The conductive members 20 and 30 are opposed to each other, and currents flow in opposite directions. Therefore, the conductive members 20 and 30 are electromagnetically coupled to generate a mutual inductance M.
The capacitor 1 has a parasitic inductance component Lc. The conductive members 20 and 30 each have an inductance component LM (the difference between the self-inductance L and the mutual inductance M between the conductive members 20 and 30).
The capacitor 1 increases in inductance by the mutual inductance M in series with the parasitic inductance Lc.

電源線10は、インダクタンス成分Lpを有し、インダクタンス成分Lc、L−M、Mに比べて十分大きな値を持っている。
また、電源線10は抵抗Rpを有し、抵抗Rpは回路の他の部分の抵抗に比べ十分大きな値を持っている。
インダクタンス成分LcとMと、コンデンサ1の容量成分Cで共振特性を構成する。
The power supply line 10 has an inductance component Lp, and has a sufficiently large value compared to the inductance components Lc, LM, and M.
Further, the power supply line 10 has a resistance Rp, and the resistance Rp has a sufficiently large value as compared with the resistance of other parts of the circuit.
The inductance components Lc and M and the capacitance component C of the capacitor 1 constitute resonance characteristics.

次に図5と図6に基づいて導電部材の相互インダクタンスと共振特性について説明を行う。
図5は幅W、厚さH、長さDの2枚の導電部材が距離dで対向している状態を表している。図6は横軸が長さDと幅Wの比D/W、縦軸が単位長さ当たりの相互インダクタンス(nH)であり、図5に示した導電部材の厚さHと幅Wの比H/Wが0.25のとき、距離dと幅Wの比d/Wをパラメータに、相互インダクタンスの特性を表している。
この図より、導電部材の幅Wに対して長さDが長いほど、また導電部材の幅Wに対して2つの導電部材の距離dが狭いほど、単位長さ当たりの相互インダクタンス成分(結合力)が大きいことが分かる。
Next, the mutual inductance and resonance characteristics of the conductive member will be described with reference to FIGS.
FIG. 5 shows a state in which two conductive members having a width W, a thickness H, and a length D are opposed to each other at a distance d. 6, the horizontal axis represents the ratio D / W between the length D and the width W, and the vertical axis represents the mutual inductance (nH) per unit length. The ratio between the thickness H and the width W of the conductive member shown in FIG. When H / W is 0.25, the characteristic of mutual inductance is expressed using the ratio d / W of distance d to width W as a parameter.
From this figure, it can be seen that the longer the length D with respect to the width W of the conductive member and the shorter the distance d between the two conductive members with respect to the width W of the conductive member, the mutual inductance component per unit length (coupling force). ) Is large.

例えば図1の実施の形態を簡単化したモデルとして、導電部材20、30が、それぞれ幅W:約2cm、厚さH:約0.2mm、長さD:約10cmであり、自己インダクタンス約25nHで、距離d:約2.5mmで対向し、コンデンサ1は例えば約150μF、寄生インダクタンス十数nHのフィルムコンデンサが接続されているとする。   For example, as a simplified model of the embodiment of FIG. 1, the conductive members 20 and 30 each have a width W: about 2 cm, a thickness H: about 0.2 mm, a length D: about 10 cm, and a self-inductance of about 25 nH. Then, it is assumed that the distance d is about 2.5 mm and the capacitor 1 is connected with a film capacitor having a parasitic inductance of about 150 μF and a parasitic inductance of tens of nH, for example.

その場合、2つの導電部材20、30の相互インダクタンス成分は約22nHとなり、結合係数は0.9に近い値となる。この相互インダクタンス成分がコンデンサ1側のインダクタンス成分に加算されるためコンデンサだけの共振周波数百数十kHzから約65kHzに共振周波数が低減する。
故に、上記導電部材のサイズであれば、2枚の導電部材の距離を変えることで容易に約60kHz〜約100kHzの周波数領域に共振周波数を持ってくることが可能となる。
In that case, the mutual inductance component of the two conductive members 20 and 30 is about 22 nH, and the coupling coefficient is close to 0.9. Since this mutual inductance component is added to the inductance component on the capacitor 1 side, the resonance frequency is reduced from a resonance frequency of several tens of kHz to about 65 kHz only from the capacitor.
Therefore, with the size of the conductive member, it is possible to easily bring the resonance frequency to a frequency range of about 60 kHz to about 100 kHz by changing the distance between the two conductive members.

図7は、インバータの電極端子からコンデンサを介して接続部へ交流電流(ノイズ電流)が流れた場合の、接続部に流れ込む電流の周波数特性を表している。
横軸は周波数(10k〜50kHz)、縦軸は接続部21(図4の等価回路ではP1で示す)の電流IP1と端子26(図4の等価回路ではP2で示す)での電流IP2の比IP1/IP2(1μ〜10m(ミリ))を、両対数グラフで示している。
(1)のケースは導電部材20、接続部材22を省いて導電部材30のコンデンサ1側の端部をバッテリ3と接続した場合を、(2)、(3)のケースは図1で示される本実施の形態における接続の場合を示す。ここで、(2)と(3)のケースの差は導電部材間の距離dが、(2)のケースは(3)のケースより大きい点である。
FIG. 7 shows the frequency characteristics of the current flowing into the connection part when an alternating current (noise current) flows from the electrode terminal of the inverter to the connection part via the capacitor.
The horizontal axis represents the frequency (10 k to 50 kHz), the vertical axis represents the current I P1 of the connection portion 21 (indicated by P1 in the equivalent circuit of FIG. 4) and the current I P2 at the terminal 26 (indicated by P2 in the equivalent circuit of FIG. 4). The ratio I P1 / I P2 (1 μm to 10 m (millimeters)) is shown in a log-log graph.
In the case of (1), the conductive member 20 and the connecting member 22 are omitted, and the end of the conductive member 30 on the capacitor 1 side is connected to the battery 3. The cases of (2) and (3) are shown in FIG. The case of the connection in this Embodiment is shown. Here, the difference between the cases (2) and (3) is that the distance d between the conductive members is larger in the case (2) than in the case (3).

各ケースを比較すると、導電部材に相互インダクタンス成分が存在する(2)、(3)のケースの方が導電部材に相互インダクタンス成分が無い場合の(1)のケースより、インバータ2の通常数kHz〜十数kHz程度であるキャリア周波数fcの低次の高調波の周波数領域で接続部21へ流れ込む電流を抑制できていることが分かる。
本実施の形態の導電部材30は本発明の第1の導電部材を、導電部材20は第2の導電部材を構成する。
Comparing each case, the case where the mutual inductance component exists in the conductive member (2), the case of (3), the normal number of inverters 2 kHz than the case of (1) when the conductive member does not have the mutual inductance component It can be seen that the current flowing into the connecting portion 21 can be suppressed in the low-order harmonic frequency region of the carrier frequency fc of about tens of kHz.
The conductive member 30 of the present embodiment constitutes the first conductive member of the present invention, and the conductive member 20 constitutes the second conductive member.

以上のように本実施の形態によれば、相互インダクタンス成分Mは導電部材20、30の自己インダクタンス成分を減少させ、コンデンサ1に直列なインダクタンス(ESL)成分を増加させる。
そのため、距離dの設定によりコンデンサ1の自己共振特性を低周波数のキャリア周波数fc側へ変化させることができる。
As described above, according to the present embodiment, the mutual inductance component M decreases the self-inductance component of the conductive members 20 and 30 and increases the inductance (ESL) component in series with the capacitor 1.
Therefore, the self-resonance characteristic of the capacitor 1 can be changed to the low-frequency carrier frequency fc side by setting the distance d.

つまり、インバータ2から発生するノイズ電流の中で、大きな強度を持つ周波数成分(図3参照)を、コンデンサ1で吸収することができる。その結果、比較的大きなループ面積を持つ電源線10へノイズ電流が流れ込むのを抑制し、ループから発生する放射性ノイズを抑制する。   That is, in the noise current generated from the inverter 2, the frequency component (see FIG. 3) having a large intensity can be absorbed by the capacitor 1. As a result, the noise current is prevented from flowing into the power supply line 10 having a relatively large loop area, and the radioactive noise generated from the loop is suppressed.

次に本実施の形態の変形例を以下に説明する。
図8は第1の変形例を示す図である。(a)は全体斜視図であり、(b)はコンデンサ端子側の側面の拡大図である。
本変形例では、一枚の平板状の導電体をコの字型に曲げた導電部材4を用いる。導電部材4の下側横長部分の一端側(コの字型の曲げ部側)をコンデンサ1の電極端子側に配置し、(a)で示すように曲げ部端でコンデンサ1の電極端子にネジ固定し、他端側をインバータ2の電極端子にネジ固定で接続する。
導電部材4のコの字型の上側横長部分はインバータ2側へ折り返し、その端部に接続部21を有する。
Next, modifications of the present embodiment will be described below.
FIG. 8 is a diagram showing a first modification. (A) is a whole perspective view, (b) is an enlarged view of the side surface on the capacitor terminal side.
In this modification, a conductive member 4 is used in which a flat plate-like conductor is bent into a U-shape. One end side (the U-shaped bent portion side) of the lower lateral portion of the conductive member 4 is disposed on the electrode terminal side of the capacitor 1, and a screw is attached to the electrode terminal of the capacitor 1 at the bent portion end as shown in FIG. The other end is connected to the electrode terminal of the inverter 2 with screws.
The U-shaped upper horizontally long portion of the conductive member 4 is folded back toward the inverter 2 and has a connection portion 21 at the end thereof.

コンデンサ1側の曲げ部分は、1枚の導電体を所定角度、例えばα、β、γとして、折り曲げることで対向している上下の横長部分の距離dを確保するようにしているので、製作が容易でコストが低減できる。
距離dを調整することで導電部材4の上下の横長部分間の相互インダクタンスMを調整できる。
なお、曲げ部分を所定の半径Rで曲げて導電部材4を形成してもよい。
Since the bent portion on the capacitor 1 side is bent at a predetermined angle, for example, α, β, γ, to ensure the distance d between the vertically long portions facing each other, the manufacturing is possible. Easy and cost saving.
By adjusting the distance d, the mutual inductance M between the vertically long portions of the conductive member 4 can be adjusted.
The conductive member 4 may be formed by bending the bent portion with a predetermined radius R.

図9は第2の変形例を示す図である。(a)は全体斜視図であり、(b)はコンデンサ端子側の側面の拡大図である。
実施の形態と異なるところは、接続部材22により導電部材20と30とをコの字型に接続する代わりに、両端部にヒンジ27を有する平板状の導電体からなる接続部材22’を2枚用いて、導電部材20、30とヒンジ接続して、全体をコの字型に構成した点である。
ヒンジ27は、接続部材22’同士の間、接続部材22’と導電部材20との間、接続部材22’と導電部材30との間に配置され、接続部材22’同士または接続部材22’と導電部材20、30とを電気的に接続し、取り付け角が可変な構造である。
FIG. 9 is a diagram showing a second modification. (A) is a whole perspective view, (b) is an enlarged view of the side surface on the capacitor terminal side.
The difference from the embodiment is that instead of connecting the conductive members 20 and 30 in a U-shape with the connection member 22, two connection members 22 ′ made of a flat conductor having hinges 27 at both ends are provided. It is the point which used the electroconductive member 20 and 30 and used the hinge connection, and comprised the whole in the U-shape.
The hinge 27 is disposed between the connection members 22 ′, between the connection member 22 ′ and the conductive member 20, and between the connection member 22 ′ and the conductive member 30, and between the connection members 22 ′ or the connection member 22 ′. The conductive members 20 and 30 are electrically connected, and the mounting angle is variable.

接続部材22’とヒンジ27と導電部材20とにより作られる角をαとし、接続部材22’同士とヒンジ27とにより作られる角をβ、接続部材22’とヒンジ27と導電部材30により作られる角をγとし、この角α、β、γの角度を変化させることで、導電部材20と30との距離dを所定の値にできる。
この構成はパワーエレクトロニクスシステム各機器の特性に、例えばコンデンサ容量成分Cや寄生インダクタンスLcにばらつきがある場合に、システムが組み上がった後でも相互インダクタンス成分Mを適切に調整することが可能である。
The angle formed by the connection member 22 ′, the hinge 27, and the conductive member 20 is α, the angle formed by the connection member 22 ′ and the hinge 27 is β, and the angle formed by the connection member 22 ′, the hinge 27, and the conductive member 30. By setting the angle to γ and changing the angles α, β, and γ, the distance d between the conductive members 20 and 30 can be set to a predetermined value.
In this configuration, when there are variations in the characteristics of each device in the power electronics system, for example, the capacitor capacitance component C and the parasitic inductance Lc, the mutual inductance component M can be appropriately adjusted even after the system is assembled.

図10は第3の変形例を示す図である。(a)は全体斜視図であり、(b)はコンデンサ端子側の断面の拡大図である。
実施の形態と異なるところは、接続部材22による導電部材20、30との接続の代わりに、(b)に示すように、ネジ型接続部材28によって、導電部材20、30とを電気的に接続すると同時に、コンデンサ1の電極端子25とも接続する構成とした点である。
ネジ型接続部材28を電極端子25にねじ込み、導電部材20、絶縁部材40、導電部材30を締め付ける。
FIG. 10 is a diagram showing a third modification. (A) is a whole perspective view, (b) is an enlarged view of a cross section on the capacitor terminal side.
The difference from the embodiment is that the conductive members 20 and 30 are electrically connected by a screw-type connection member 28 as shown in FIG. At the same time, the electrode terminal 25 of the capacitor 1 is also connected.
The screw-type connecting member 28 is screwed into the electrode terminal 25, and the conductive member 20, the insulating member 40, and the conductive member 30 are tightened.

電極端子25に対応して、導電部材20、絶縁部材40および導電部材30には、通しでネジ型接続部材28のネジ部が通過する大きさのネジ穴51が形成されている。
導電部材20はネジ型接続部材28の頭部との間で電気的導通がとられ、ネジ型接続部材28を介して電極端子25に導通する。導電部材30は電極端子25に締め付けられて接触することにより電極端子25と導通する。その結果、ネジ型接続部材28は、実施の形態における接続部材22と固定ネジ31の両方の機能を果たすことになる。
絶縁部材40の厚さを変えて、ネジ型接続部材28により距離dを調整することにより、電磁結合による相互インダクタンス成分Mを調整することできる。
この構成はパワーエレクトロニクスシステム各機器の特性にばらつきがある場合に、システムが組み上がった後でも相互インダクタンス成分を適切に調整することが可能である。
Corresponding to the electrode terminal 25, the conductive member 20, the insulating member 40, and the conductive member 30 are formed with screw holes 51 having a size through which the screw portion of the screw-type connecting member 28 passes.
The conductive member 20 is electrically connected to the head of the screw type connection member 28 and is connected to the electrode terminal 25 via the screw type connection member 28. The conductive member 30 is electrically connected to the electrode terminal 25 by being tightened and brought into contact with the electrode terminal 25. As a result, the screw-type connection member 28 functions as both the connection member 22 and the fixing screw 31 in the embodiment.
The mutual inductance component M due to electromagnetic coupling can be adjusted by changing the thickness d of the insulating member 40 and adjusting the distance d by the screw-type connecting member 28.
In this configuration, when the characteristics of each device of the power electronics system vary, it is possible to appropriately adjust the mutual inductance component even after the system is assembled.

なお、実施の形態および第1から第3の変形例において、絶縁部材40は1つのブロック状としたが、図11に示すように薄板状の絶縁体42を重ね合わせた絶縁部材40’でもよい。
絶縁体42一枚あたりの厚さをtとし枚数をn枚とするとその積が絶縁部材40’の厚さTとなる。この結果絶縁部材40’は導電部材20と30との距離を所望の値にすることができる。
In the embodiment and the first to third modifications, the insulating member 40 has a single block shape, but may be an insulating member 40 ′ in which thin plate-like insulators 42 are stacked as shown in FIG. .
When the thickness per insulator 42 is t and the number is n, the product is the thickness T of the insulating member 40 '. As a result, the insulating member 40 ′ can set the distance between the conductive members 20 and 30 to a desired value.

図12は第4の変形例を上方から見た図である。
実施の形態と異なるところは、導電部材20、30と接続部材22で形成したコの字型の導電体2つを、平板部を上下方向に立て、図中(+)で示した正極側および(−)で示した負極側それぞれのコの字型の導電体の導電部材30でコンデンサ1とインバータ2の正極側の電極端子25、26間、負極側の電極端子25’、26’間をそれぞれ接続し、導電部材20同士は間隙をおいて対向配置させる。
2つのコの字型の導電体それぞれの導電部材30は、ネジ穴を有した接続片35を介して、コンデンサ1およびインバータ2の正極側、負極側のそれぞれの電極端子にネジ固定される。
接続片35は、導電部材30のコンデンサ1側とインバータ2側の両方の端部の下端にL字型に、外側に設けられている。
なお、絶縁部材40が導電部材20と30との間に、絶縁部材40Aが導電部材20同士の間に設置される。
FIG. 12 is a view of the fourth modification viewed from above.
The difference from the embodiment is that the two U-shaped conductors formed of the conductive members 20 and 30 and the connection member 22 are arranged with the flat plate portion in the vertical direction, and the positive electrode side indicated by (+) in FIG. Between the negative electrode side electrode terminals 25 ′ and 26 ′ between the capacitor 1 and the positive electrode side electrode terminals 25, 26 of the inverter 2 with the conductive members 30 of the U-shaped conductors on the negative electrode side indicated by (−). The conductive members 20 are connected to each other with a gap therebetween.
The conductive members 30 of the two U-shaped conductors are fixed to the respective electrode terminals on the positive electrode side and the negative electrode side of the capacitor 1 and the inverter 2 via connection pieces 35 having screw holes.
The connection piece 35 is provided on the outer side in an L-shape at the lower ends of both ends of the conductive member 30 on the capacitor 1 side and the inverter 2 side.
The insulating member 40 is installed between the conductive members 20 and 30, and the insulating member 40A is installed between the conductive members 20.

このように導電部材30の外側に設けた接続片35をコンデンサ1およびインバータ2の電極端子25、26、25’、26’にネジ固定する構造なので、実施の形態のように導電部材20の作業穴53を通してネジ31を固定するよりもより開放された空間でネジ固定作業ができ、作業がし易い。
また、導電部材20を流れる電流の方向と導電部材30を流れる電流の方向は互いに逆方向であり電磁結合しているだけでなく、2つの導電部材20同士の間でも互いに逆方向に電流が流れ電磁結合している。
Since the connection piece 35 provided outside the conductive member 30 is screwed to the electrode terminals 25, 26, 25 ′, 26 ′ of the capacitor 1 and the inverter 2 as described above, the operation of the conductive member 20 is performed as in the embodiment. The screw can be fixed in a more open space than the screw 31 is fixed through the hole 53, and the operation is easy.
In addition, the direction of the current flowing through the conductive member 20 and the direction of the current flowing through the conductive member 30 are opposite to each other and are electromagnetically coupled. In addition, current flows between the two conductive members 20 in opposite directions. It is electromagnetically coupled.

導電部材20と30および導電部材20と20の電磁結合を用いるので、導電部材20、30、および距離dの寸法が図1の実施の形態と同じ場合はコンデンサ1側のインダクタンス成分の増加、導電部材20、30側のインダクタンス成分の減少の度合いが実施の形態よりさらに増す。
従って、同一の相互インダクタンスMを得る場合、図1の実施の形態の場合よりも導電部材の占める空間をより小さくして効率的にコンデンサ1の共振周波数をインバータ2のキャリア周波数に近づけることができる。
Since the electromagnetic coupling between the conductive members 20 and 30 and the conductive members 20 and 20 is used, when the dimensions of the conductive members 20 and 30 and the distance d are the same as those in the embodiment of FIG. The degree of reduction of the inductance component on the members 20 and 30 side is further increased than in the embodiment.
Therefore, when the same mutual inductance M is obtained, the space occupied by the conductive member can be made smaller than in the embodiment of FIG. 1, and the resonance frequency of the capacitor 1 can be brought closer to the carrier frequency of the inverter 2 efficiently. .

図13、図14は本発明の第5の変形例を示す図である。図13の(a)はコンデンサとインバータの正極側の電極間の断面図であり、(b)は(a)におけるA−A断面図である。図14は全体斜視図である。
特に図13の(b)に示されるように、それぞれ導電部材20、30および接続部材22からなり、コンデンサ1およびインバータ2の正極側の電極端子間、負極側の電極端子間に接続される2組の導電体は、いずれも正極側の電極端子25と負極側の電極端子25’とにまたがる広幅とされている。
13 and 14 are views showing a fifth modification of the present invention. 13A is a cross-sectional view between the capacitor and the positive electrode of the inverter, and FIG. 13B is a cross-sectional view taken along the line AA in FIG. FIG. 14 is an overall perspective view.
In particular, as shown in FIG. 13 (b), each of the conductive members 20 and 30 and the connecting member 22 are connected between the positive electrode terminal and the negative electrode terminal 2 of the capacitor 1 and the inverter 2. Each set of conductors has a wide width across the positive electrode terminal 25 and the negative electrode terminal 25 ′.

2組の導電体は正極側の電極端子間に接続される方(図中(+)を付し、以下、単に正極側という)を上に、負極側の電極端子間に接続される方(図中(−)を付し、以下、単に負極側という)を下にして、双方の導電部材30同士を、絶縁部材40Aを挟んで対向させて上下に重ねてある。
正極側および負極側の各導電体における導電部材20、30間にそれぞれ絶縁部材40が、負極側の導電部材20とコンデンサ1およびインバータ2との間にもそれぞれ絶縁部材40Bが挟まれている。
Two sets of conductors are connected between the electrode terminals on the positive electrode side (indicated by (+) in the figure, hereinafter simply referred to as the positive electrode side) and connected between the electrode terminals on the negative electrode side ( In the figure, (−) is attached, and the conductive member 30 is vertically stacked with the insulating member 40A facing each other with the insulating member 40A interposed therebetween, with the negative electrode side hereinafter.
An insulating member 40 is sandwiched between the conductive members 20 and 30 in the respective conductors on the positive electrode side and the negative electrode side, and an insulating member 40B is also sandwiched between the conductive member 20 on the negative electrode side and the capacitor 1 and the inverter 2, respectively.

正極側の導電部材30と絶縁部材40Aには電極端子25、26に対応させてネジ穴51が設けられ、これらのネジ穴51に差し込まれたネジ型接続部材28aが電極端子25、26にねじ込まれる。これにより、ネジ型接続部材28aの頭部で正極側の導電部材30から負極側の導電体以下をコンデンサ1およびインバータ2へ締め付け固定するとともに、正極側の導電部材30を電極端子25、26に電気的に接続する。
正極側の導電部材20と絶縁部材40には通しで各ネジ型接続部材28a組付け用の作業穴53が形成されるとともに、負極側の導電部材30、20、絶縁部材40および40Bを通してネジ型接続部材28aおよび電極端子25、26との接触を避けるため作業穴とほぼ同径の絶縁穴52が形成されている。
The positive-side conductive member 30 and the insulating member 40A are provided with screw holes 51 corresponding to the electrode terminals 25 and 26, and the screw-type connecting member 28a inserted into these screw holes 51 is screwed into the electrode terminals 25 and 26. It is. As a result, the positive electrode side conductive member 30 and the negative electrode side conductor and the like are clamped and fixed to the capacitor 1 and the inverter 2 at the head of the screw-type connecting member 28a, and the positive electrode side conductive member 30 is fixed to the electrode terminals 25 and 26. Connect electrically.
A working hole 53 for assembling each screw type connecting member 28a is formed through the positive electrode side conductive member 20 and the insulating member 40, and a screw type through the negative electrode side conductive members 30, 20 and the insulating members 40 and 40B. In order to avoid contact with the connecting member 28a and the electrode terminals 25 and 26, an insulating hole 52 having substantially the same diameter as the work hole is formed.

負極側の導電部材30と絶縁部材40には電極端子25’、26’に対応させてネジ穴51が設けられ、これらのネジ穴51に差し込まれたネジ型接続部材28bが電極端子25’、26’にねじ込まれる。これにより、ネジ型接続部材28bの頭部で負極側の導電部材30から負極側の絶縁部材40以下をコンデンサ1およびインバータ2へ締め付け固定するとともに、負極側の導電部材30を電極端子25’、26’に電気的に接続する。
正極側の導電部材20から絶縁部材40Aには通しで各ネジ型接続部材28b組付け用の作業穴53が形成されるとともに、負極側の導電部材20および絶縁部材40Bを通してネジ型接続部材28bおよび電極端子25’、26’との接触を避けるため絶縁穴52が形成されている。
The negative electrode side conductive member 30 and the insulating member 40 are provided with screw holes 51 corresponding to the electrode terminals 25 ′ and 26 ′, and the screw type connection members 28 b inserted into these screw holes 51 are connected to the electrode terminals 25 ′, Screwed into 26 '. This clamps and fixes the negative-side insulating member 40 and below from the negative-side conductive member 30 to the capacitor 1 and the inverter 2 at the head of the screw-type connecting member 28b, and also connects the negative-side conductive member 30 to the electrode terminal 25 ′, 26 'is electrically connected.
A working hole 53 for assembling each screw type connection member 28b is formed through the insulating member 40A from the conductive member 20 on the positive electrode side, and the screw type connection member 28b and the conductive member 20b and the insulating member 40B on the negative electrode side. An insulating hole 52 is formed to avoid contact with the electrode terminals 25 ′ and 26 ′.

このように導電部材20、30、接続部材22をコの字型に成形した導電体2つを上下に重ね、導電部材30同士が絶縁材を介して対向する配置により、導電部材20を流れる電流の方向と導電部材30を流れる電流の方向は互いに逆方向であり電磁結合しているだけでなく、2つの導電部材30同士の間でも互いに逆方向に電流が流れ電磁結合している。
導電部材20と30間だけでなく導電部材30と30の電磁結合をも用いるので、導電部材20、30、および距離dの寸法が図1の実施の形態と同じ場合はコンデンサ1側のインダクタンス成分の増加、導電部材20、30側のインダクタンス成分の減少の度合いが図1の実施の形態よりさらに増す。
従って、同一の相互インダクタンスMを得る場合、図1の実施の形態の場合よりも導電部材の占める空間をより小さくして効率的にコンデンサ1の共振周波数をインバータ2のキャリア周波数に近づけることができる。
Thus, the electric current which flows through the electrically-conductive member 20 by the two conductors which shape | molded the electrically-conductive members 20 and 30 and the connection member 22 on the upper and lower sides, and the electrically-conductive member 30 mutually opposes via an insulating material. The direction of the current and the direction of the current flowing through the conductive member 30 are not opposite to each other and are electromagnetically coupled. In addition, current flows between the two conductive members 30 in the opposite directions and is electromagnetically coupled.
Since not only the conductive members 20 and 30 but also the electromagnetic coupling between the conductive members 30 and 30 is used, when the dimensions of the conductive members 20 and 30 and the distance d are the same as those in the embodiment of FIG. 1 and the degree of decrease of the inductance component on the conductive members 20 and 30 side is further increased as compared with the embodiment of FIG.
Therefore, when the same mutual inductance M is obtained, the space occupied by the conductive member can be made smaller than in the embodiment of FIG. 1, and the resonance frequency of the capacitor 1 can be brought closer to the carrier frequency of the inverter 2 efficiently. .

図15は本実施の形態の第6の変形例を示す図である。
本変形例では、コンデンサ1とインバータ2の正極側と負極側の電極端子がそれぞれのケースの反対面から出ている場合のインバータのコンデンサ接続構造を示す図である。図中、正極側のコの字型導電体に(+)を付し、負極側のコの字型導電体に(−)を付して示す。
正極側および負極側それぞれの導電体において、導電部材30は、一端側でコンデンサ1の電極端子とネジ固定で接続し、他端側でインバータ2の電極端子とネジ固定で接続する。導電部材20は、導電部材30と間隙距離をとって平板の面同士を対向させて平行に配置され、コンデンサ1側の端部で接続部材22によって導電部材30と接続している。導電部材20の他端は接続部21を備え、接続部21でバッテリの電極端子と電源線10によって接続している。導電部材20と30の間には図示省略の絶縁部材を配する。
FIG. 15 is a diagram showing a sixth modification of the present embodiment.
In this modification, it is a figure which shows the capacitor | condenser connection structure of an inverter in case the electrode terminal of the positive electrode side of the capacitor | condenser 1 and the inverter 2 has come out from the opposite surface of each case. In the figure, (+) is attached to the U-shaped conductor on the positive electrode side, and (-) is added to the U-shaped conductor on the negative electrode side.
In each of the conductors on the positive electrode side and the negative electrode side, the conductive member 30 is connected to the electrode terminal of the capacitor 1 by screw fixing at one end side and is connected to the electrode terminal of the inverter 2 by screw fixing at the other end side. The conductive member 20 is disposed parallel to the conductive member 30 with the gap between the conductive plates 30 facing each other, and is connected to the conductive member 30 by the connecting member 22 at the end on the capacitor 1 side. The other end of the conductive member 20 includes a connection portion 21, and the connection portion 21 is connected to the battery electrode terminal by the power supply line 10. An insulating member (not shown) is disposed between the conductive members 20 and 30.

このように、コンデンサおよびインバータの電極端子が設けられているケースの面が異なる場合でも、実施の形態と同様に導電部材20と30との間で電磁結合により相互インダクタンスMを生じ、コンデンサの共振周波数をキャリア周波数fc付近に変えることができる。   As described above, even when the surfaces of the case where the capacitor and the electrode terminal of the inverter are provided are different, mutual inductance M is generated between the conductive members 20 and 30 by electromagnetic coupling similarly to the embodiment, and the resonance of the capacitor The frequency can be changed around the carrier frequency fc.

以上の実施の形態および変形例では、インバータ2から発生するノイズ電流が正極側と負極側のどちら側に発生しても対応できるよう対称構造を示したが、発生するノイズ電流の極が既知の場合は、その極のみに前述の実施の形態またはその変形例の導電体4を用いることとしてもよい。   In the above embodiment and modification, the symmetrical structure is shown so that the noise current generated from the inverter 2 can be dealt with regardless of which side of the positive electrode side or the negative electrode side is generated. However, the pole of the generated noise current is known. In this case, the conductor 4 of the above-described embodiment or its modification may be used only for the pole.

本発明の実施の形態の構成を示す図である。It is a figure which shows the structure of embodiment of this invention. 実施の形態の全体斜視図である。1 is an overall perspective view of an embodiment. インバータから発生するノイズ電流の周波数スペクトルを示す図である。It is a figure which shows the frequency spectrum of the noise electric current which generate | occur | produces from an inverter. 等価回路を示す図である。It is a figure which shows an equivalent circuit. 平行に置いた2枚の平板状の導電部材間の相互インダクタンス特性を説明する図である。It is a figure explaining the mutual inductance characteristic between two flat plate-shaped electrically-conductive members put in parallel. 平行に置いた2枚の導電部材間の相互インダクタンス特性を説明する図である。It is a figure explaining the mutual inductance characteristic between the two electrically-conductive members put in parallel. 電源線へインバータから流れ込むノイズ電流の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the noise current which flows into an electric power line from an inverter. 実施の形態の第1の変形例を示す図である。It is a figure which shows the 1st modification of embodiment. 実施の形態の第2の変形例を示す図である。It is a figure which shows the 2nd modification of embodiment. 実施の形態の第3の変形例を示す図である。It is a figure which shows the 3rd modification of embodiment. 実施の形態およびその変形例で使用する絶縁部材の形状を示す図である。It is a figure which shows the shape of the insulating member used by embodiment and its modification. 実施の形態の第4の変形例を示す図である。It is a figure which shows the 4th modification of embodiment. 実施の形態の第5の変形例の断面図である。It is sectional drawing of the 5th modification of embodiment. 実施の形態の第5の変形例の斜視図である。It is a perspective view of the 5th modification of embodiment. 実施の形態の第6の変形例を示す図である。It is a figure which shows the 6th modification of embodiment.

符号の説明Explanation of symbols

1 コンデンサ
2 インバータ
3 バッテリ
4 導電部材
10 電源線
20、30 導電部材
21 接続部
22、22’接続部材
25、25’、26、26’ 電極端子
27 ヒンジ
28、28a、28b ネジ型接続部材
31 ネジ
35 接続片
40、40’、40A、40B 絶縁部材
42 絶縁体
51 ネジ穴
52 絶縁穴
53 作業穴
DESCRIPTION OF SYMBOLS 1 Capacitor 2 Inverter 3 Battery 4 Conductive member 10 Power supply line 20, 30 Conductive member 21 Connection part 22, 22 'Connection member 25, 25', 26, 26 'Electrode terminal 27 Hinge 28, 28a, 28b Screw type connection member 31 Screw 35 Connection piece 40, 40 ', 40A, 40B Insulating member 42 Insulator 51 Screw hole 52 Insulating hole 53 Working hole

Claims (10)

インバータ、コンデンサおよびバッテリとから構成されるインバータシステムにおいて、
一端が前記コンデンサの電極端子に接続し、他端が前記インバータの電極端子に接続する第1の導電部材と、
前記第1の導電部材に間隙をおいて平行に配置され、一端が前記第1の導電部材の前記一端に電気的に接続した第2の導電部材とから構成され、
前記第2の導電部材の他端が電源線で前記バッテリに接続されているとともに、
前記第1の導電部材と第2の導電部材の間隙の距離を、前記コンデンサの容量成分と、前記コンデンサの寄生インダクタンス成分に前記第1の導電部材と第2の導電部材間で生じる相互インダクタンス成分を加えたインダクタンス成分とによる共振周波数が、前記インバータのPWM制御におけるキャリア周波数の付近となるように設定してあることを特徴とするインバータのコンデンサ接続構造。
In an inverter system composed of an inverter, a capacitor and a battery,
A first conductive member having one end connected to the electrode terminal of the capacitor and the other end connected to the electrode terminal of the inverter;
The first conductive member is arranged in parallel with a gap, and one end is composed of a second conductive member electrically connected to the one end of the first conductive member,
While the other end of the second conductive member is connected to the battery by a power line ,
The distance between the first conductive member and the second conductive member is defined as the mutual inductance component generated between the first conductive member and the second conductive member in the capacitance component of the capacitor and the parasitic inductance component of the capacitor. A capacitor connection structure for an inverter , wherein a resonance frequency due to an inductance component added to the inverter is set to be near a carrier frequency in PWM control of the inverter.
前記第1および第2の導電部材は、平板状の導電体からなることを特徴とする請求項1に記載のインバータのコンデンサ接続構造。 2. The inverter capacitor connection structure according to claim 1, wherein the first and second conductive members are made of a flat plate-like conductor. 3. 前記第1および第2の導電部材は一体の導電部材からなり、一枚の平板状の導電体をコの字型に折り返して構成することを特徴とする請求項1または2に記載のインバータのコンデンサ接続構造。 3. The inverter according to claim 1, wherein the first and second conductive members are formed of an integral conductive member, and are configured by folding a flat plate-like conductor into a U-shape . Capacitor connection structure. 前記第1および第2の導電部材のそれぞれの前記一端同士は、ネジ型接続部材で電気的に接続されていることを特徴とする請求項1または2に記載のインバータのコンデンサ接続構造。 3. The capacitor connection structure for an inverter according to claim 1 , wherein the one ends of the first and second conductive members are electrically connected by a screw-type connection member . 4. 前記第1の導電部材と第2の導電部材は絶縁部材を介して対向していることを特徴とする請求項1から4のいずれか1に記載のインバータのコンデンサ接続構造。 5. The capacitor connection structure for an inverter according to claim 1 , wherein the first conductive member and the second conductive member are opposed to each other with an insulating member interposed therebetween . 前記絶縁部材は、複数の薄板状絶縁体を積層して形成されることを特徴とする請求項5に記載のインバータのコンデンサ接続構造。 6. The inverter capacitor connection structure according to claim 5 , wherein the insulating member is formed by laminating a plurality of thin plate insulators . 前記第1の導電部材および前記第2の導電部材が、前記インバータと前記コンデンサのそれぞれの正極側の電極端子間、および負極側の電極端子間の双方に対応して設けられていることを特徴とする請求項1から6のいずれか1に記載のインバータのコンデンサ接続構造。 The first conductive member and the second conductive member are provided corresponding to both the positive electrode terminal and the negative electrode terminal of each of the inverter and the capacitor. A capacitor connection structure for an inverter according to any one of claims 1 to 6. 前記正極側の電極端子間と負極側の電極端子間の両方の前記第2の導電部材同士が間隙をおいて平行に配置され、絶縁部材を介して対向していることを特徴とする請求項7に記載のインバータのコンデンサ接続構造。 The second conductive members, both between the positive electrode terminals and between the negative electrode terminals, are arranged in parallel with a gap therebetween, and face each other with an insulating member interposed therebetween. The inverter capacitor connection structure according to claim 7. 前記正極側の電極端子間と負極側の電極端子間の両方の前記第1の導電部材同士が間隙をおいて平行に配置され、絶縁部材を介して対向していることを特徴とする請求項7に記載のインバータのコンデンサ接続構造。 Claims wherein said first conductive member to each other both between the positive inter-electrode side of the electrode terminal and the negative electrode side of the electrode terminals arranged in parallel at a gap, characterized in that are opposed to each other via the insulating member capacitor connection structure of an inverter according to 7. インバータ、コンデンサおよびバッテリとから構成されるインバータシステムにおいて、
一端が前記コンデンサの電極端子に接続し、他端が前記インバータの電極端子に接続する第1の導電部材と、
前記第1の導電部材に間隙をおいて平行に配置され、一端が前記第1の導電部材の前記一端に電気的に接続した第2の導電部材とから構成され、
前記第2の導電部材の他端が電源線で前記バッテリに接続されているとともに、
前記第1および第2の導電部材の前記一端同士は、互いにヒンジ結合された複数の接続部材と、それぞれヒンジ結合されて電気的に接続されていることを特徴とするインバータのコンデンサ接続構造。
In an inverter system composed of an inverter, a capacitor and a battery,
A first conductive member having one end connected to the electrode terminal of the capacitor and the other end connected to the electrode terminal of the inverter;
The first conductive member is arranged in parallel with a gap, and one end is composed of a second conductive member electrically connected to the one end of the first conductive member,
While the other end of the second conductive member is connected to the battery by a power line,
The capacitor connecting structure for an inverter, wherein the one ends of the first and second conductive members are respectively hinge-coupled and electrically connected to a plurality of connection members hinge-coupled to each other .
JP2003271555A 2003-07-07 2003-07-07 Inverter capacitor connection structure Expired - Fee Related JP4066909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271555A JP4066909B2 (en) 2003-07-07 2003-07-07 Inverter capacitor connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271555A JP4066909B2 (en) 2003-07-07 2003-07-07 Inverter capacitor connection structure

Publications (2)

Publication Number Publication Date
JP2005033934A JP2005033934A (en) 2005-02-03
JP4066909B2 true JP4066909B2 (en) 2008-03-26

Family

ID=34209390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271555A Expired - Fee Related JP4066909B2 (en) 2003-07-07 2003-07-07 Inverter capacitor connection structure

Country Status (1)

Country Link
JP (1) JP4066909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238626A (en) * 2005-02-25 2006-09-07 Toshiba Corp Power conversion device for electric car
JP6279158B2 (en) * 2015-07-24 2018-02-14 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JP2005033934A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
US9538680B2 (en) Laminated busbar for power converter and the converter thereof
US5872711A (en) Low impedance contoured laminated bus assembly and method for making same
CN110168903B (en) Busbar structure and power conversion device using same
US20200162051A1 (en) Voltage filter and power conversion device
CN115274302B (en) Capacitor with a capacitor body
JP2020102913A (en) Power conversion device and high-voltage noise filter
JPWO2013080698A1 (en) Power converter
JP6980630B2 (en) High voltage filter and power converter
JP6602474B2 (en) Semiconductor device and power conversion device
JP3532386B2 (en) Capacitor connection method and power converter
JP2018143010A (en) Electronic circuit device
JP4066909B2 (en) Inverter capacitor connection structure
JP6530987B2 (en) Power converter
JP6504622B2 (en) Capacitor substrate unit for open / close module, open / close module, and motor drive device
JP2020064754A (en) Secondary battery, battery pack, and power system
JP2011091250A (en) Capacitor and power conversion apparatus
CN104218817B (en) Frequency conversion power circuit and DC energy storage device
JP6961111B2 (en) Power supply and capacitors
CN220692479U (en) Laminated busbar
JP7506522B2 (en) Noise filters, power converters
WO2023090263A1 (en) Power conversion device and method for manufacturing same
EP4086929A1 (en) Capacitor
Kanakri et al. Capacitor-Less Buck Converter Using Integrated Planar Electromagnetic Components
US20230015579A1 (en) Electric device for a converter, converter and arrangement with an electric machine and a converter
JP2021129367A (en) Switching power source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees