JP4066567B2 - Vector control device for electric motor - Google Patents
Vector control device for electric motor Download PDFInfo
- Publication number
- JP4066567B2 JP4066567B2 JP21177099A JP21177099A JP4066567B2 JP 4066567 B2 JP4066567 B2 JP 4066567B2 JP 21177099 A JP21177099 A JP 21177099A JP 21177099 A JP21177099 A JP 21177099A JP 4066567 B2 JP4066567 B2 JP 4066567B2
- Authority
- JP
- Japan
- Prior art keywords
- speed
- value
- vector control
- motor
- speed detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Electric Motors In General (AREA)
- Control Of Ac Motors In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は電動機のベクトル制御装置に関し、特に誘導電動機のベクトル制御に適用して有用なものである。
【0002】
【従来の技術】
誘導電動機の高性能の速度制御方式としてベクトル制御方式が知られている。速度センサを有するベクトル制御方式は、高精度の速度制御や高応答のトルク制御が可能であるため、加工精度が必要な機器等の回転駆動装置として使用されている。ところが、誘導電動機が設置される場所は、油分や水分が多い劣悪な環境であることが多く速度センサが故障したり、速度検出のための信号線が断線したりする場合がある。このように、速度センサが故障し、また信号線が断線した場合には、ベクトル制御では、ゼロ速度まで急峻に減速してしまうため、当該誘導電動機で回転駆動する加工製品や機械に悪影響を及ぼしてしまう。特に、ミキサーのように運転を継続していないと加工製品の品質が変化してしまうような場合には、ベクトル制御からV/f制御に切換えてでも運転を継続したい場合がある。
【0003】
【発明が解決しようとする課題】
ベクトル制御において、速度センサに異常が発生しても運転を停止することなく継続することが望ましい場合にV/f制御に切替えて運転を継続する方法が知られている。当該運転方法において、切換時には出力電圧の連続性を考慮して、ベクトル制御時の最後に出力した電圧ベクトルと同位相、同振幅で電圧を出力し、その後ある変化率でV/fパターンまで変化させる方法を採っている。
【0004】
このように、ベクトル制御とV/f制御とを切換える場合、電流フィードバック制御と電圧オープンループ制御の違いのため、定常時においてもお互いの電圧ベクトル、電流ベクトルは異なった位相、振幅にある。このため、切換時には電圧ベクトル、電流ベクトルともに連続的に切換えられるように考慮しなくてはならない。ところが、特にV/f制御からベクトル制御に戻す場合には、トルクリップルを生じてしまい、また過渡時に切換えた場合には過電流等の保護機能が作動してしまう場合があるという問題を生起する。
【0005】
本発明は、上記従来技術に鑑み、速度センサを有するベクトル制御において、速度センサの故障等、速度検出系に故障を生起した場合でも、良好に電動機の運転を継続することができ、且つ当該速度検出系が復旧した場合には良好に元のベクトル制御に基づく運転モードに切換えることができる電動機のベクトル制御装置を提供することを目的とする。
【0006】
上記目的を達成する本発明の構成は、次の点を特徴とする。
【0007】
1) 電動機速度の実測値を処理して得る速度検出値と、同一次元磁束オブザーバ及び速度推定機構の出力信号として得る速度推定値の何れか一方を選択手段で選択して速度検出値に基づくベクトル制御又は速度推定値に基づくセンサレスベクトル制御により電動機を制御するように構成した電動機のベクトル制御装置において、
上記実測値に基づく電動機速度の異常が検出された場合には、上記選択手段を切換え、上記速度推定値を選択してセンサレスベクトル制御を選択するとともに、上記実測値に基づく速度検出が正常に戻った場合には、再度上記選択手段を切換え、センサレスベクトル制御から実測値に基づくベクトル制御に復帰させるように構成し、
しかも、現在のトルク制限値及び負荷慣性モデル値から演算周期時間に変化できる最大の速度変化量を求め、その値又はその値に係数を掛けた最大速度変化量に基づいて、最大速度変化量以上に速度変化をした場合に、実測値に基づく電動機速度を異常とみなすようにし、
上記速度推定値と上記速度検出値の誤差が所定の範囲内に入った場合に上記実測値が正常状態に復帰したものとみなすようにしたこと。
【0011】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づき詳細に説明する。
【0012】
図1は本発明の実施の形態に係る制御装置を示すブロック線図である。同図に示すように、本形態に係る制御装置は、実測値に基づく速度検出部1の出力信号である速度検出値に基づくベクトル制御系と、同一次元磁束オブザーバ及び速度推定機構2の出力信号である速度推定値に基づくセンサレスベクトル制御系との2系統の制御系を実質的に有している。前者は、速度センサ4の出力信号に基づき誘導電動機1の実際の回転速度を検出する。ここで、速度センサ4は誘導電動機3の回転軸に連結されてこの誘導電動機3の速度を検出する。後者は、誘導電動機3に供給する電流及びPWMインバータ7に対する印加電圧に基づき速度推定値を演算する。ここで、誘導電動機3に供給する電流は電流検出部5で検出するとともに、PWMインバータ7に対する印加電圧は出力電圧検出部6で検出する。
【0013】
選択スイッチ8は速度検出値又は速度推定値の何れか一方を選択してこれらを磁束指令部9及び減算器10の入力信号とする。選択スイッチ8の切換えは速度検出部1の速度選択信号により行う。ここで、速度検出部1は、速度検出異常判定部を有し、速度検出異常が検出された場合には、速度推定値を選択するように当該選択スイッチ8を切換えるとともに、速度検出復帰判定部を有し、速度検出が正常に戻ったことが検出された場合には、再度速度検出値を選択するように当該選択スイッチ8を切換える。すなわち、速度検出異常時にはベクトル制御からセンサレスベクトル制御に切換える機能を有するとともに、速度検出機能が回復した場合には、センサレスベクトル制御からベクトル制御に復帰させる機能を有する。
【0014】
上述の如く本形態に係る速度検出部1は速度検出異常判定部を有するが、この速度検出異常判定部の具体例としては、次のような実施例が考えられる。
【0015】
▲1▼速度検出異常判定用の最大速度変化量を設定し、演算周期時間内に最大速度変化量を超えて速度が変化した場合には、速度検出異常とみなし、ベクトル制御からセンサレスベクトル制御に切換える。
【0016】
▲2▼現在のトルク制限値及び負荷慣性モデル値から演算周期時間に変化できる最大の速度変化量を求め、その値又はその値に所定の係数を掛けた最大速度変化量に基づいて、最大速度変化量以上に速度変化をした場合には、速度検出異常とみなし、ベクトル制御からセンサレスベクトル制御に切換える。
【0017】
また、速度検出部1の速度検出復帰判定部の具体例としては、次のような実施例が考えられる。すなわち、速度推定値と速度検出値の誤差がある範囲以内に入った場合には、速度検出機能が復帰したものとみなし、センサレスベクトル制御からベクトル制御に復帰させる。
【0018】
本形態は誘導電動機3の速度情報として実測値である速度検出値又は推定値である速度推定値の何れかを選択するもので、速度検出値又は速度推定値の処理系統は共通に構成してある。すなわち、ベクトル制御系とセンサレスベクトル制御系との2系統の制御系を実質的に有している。この場合の共通部分の構成は次の通りである。
【0019】
磁束指令部9は、速度検出値又は速度推定値に基づき予め決定されている磁束指令を磁束/電流変換部10に供給する。この結果、磁束指令が磁束電流指令に変換される。一方、速度指令部(図示せず。)が供給する速度指令は減算器11で速度検出値又は速度推定値との偏差をとり、この偏差が速度調節部13を介してトルク/電流変換部13に供給される。この結果、速度(トルク)指令がトルク電流指令に変換される。磁束電流指令及びトルク電流指令は、減算器14、15で電流検出部5の出力信号である電流検出値との偏差をとり、各偏差に基づき電流制御部16、17でd軸電圧指令及びq軸電圧指令を求める。2相/3相変換部18はd軸電圧指令及びq軸電圧指令に基づき所定の演算を行うことにより3相電圧に変換し、PWMインバータ7の入力電圧として当該PWMインバータ7に印加する。PWMインバータ7は誘導電動機3が所定の速度で回転するようにその供給電力を制御する。
【0020】
なお、べクトル制御及びセンサレスベクトル制御に固有の速度検出部1、同一次元磁束オブザーバ及び速度推定機構2以外部分は、従来周知のべクトル制御装置及びセンサレスベクトル制御装置の何れであっても良い。
【0021】
【発明の効果】
以上実施の形態とともに詳細に説明した通り、本発明によれば、ベクトル制御とセンサレスベクトル制御は、速度検出部又は同一次元磁束オブザーバ及び速度推定機構以外の部分に関しては共通に使用することができ、且つ電圧ベクトルや電流ベクトルの扱いも同様であるため、連続的な切換が可能である。また、過渡時においても切換えられるため、加速中や減速中、負荷変動中などの速度検出異常にも対応でき、信頼性が格段に向上するばかりでなく、センサレスベクトル制御はV/f制御に対して速度制御性能も高いため、速度検出異常時の制御性能劣化も最小限に押さえることができる。
【0022】
さらに、速度検出手段が故障しても、この故障が、例えば断線等、運転中に修復できる場合であれば運転中に修理し、その後ベクトル制御に復帰できるという顕著な効果も奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る制御装置を示すブロック線図である。
【符号の説明】
1 速度検出部
2 同一次元磁束オブザーバ及び速度推定機構
3 誘導電動機
4 速度センサ
7 PWMインバータ
8 選択スイッチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric motor vector control apparatus, and is particularly useful when applied to vector control of an induction motor.
[0002]
[Prior art]
A vector control system is known as a high-performance speed control system for induction motors. The vector control system having a speed sensor is capable of high-accuracy speed control and high-response torque control, and is therefore used as a rotary drive device for equipment that requires machining accuracy. However, the place where the induction motor is installed is often a poor environment with a lot of oil and moisture, and the speed sensor may fail or the signal line for speed detection may be broken. In this way, if the speed sensor breaks down and the signal line is disconnected, the vector control steeply decelerates to zero speed, which adversely affects processed products and machines that are driven to rotate by the induction motor. End up. In particular, when the quality of a processed product changes if the operation is not continued as in a mixer, it may be desired to continue the operation even after switching from vector control to V / f control.
[0003]
[Problems to be solved by the invention]
In vector control, there is known a method of switching to V / f control and continuing operation when it is desirable to continue operation without stopping even if an abnormality occurs in the speed sensor. In this operation method, considering the continuity of the output voltage at the time of switching, the voltage is output with the same phase and the same amplitude as the last output voltage vector during vector control, and then changes to the V / f pattern at a certain rate of change. The method to make it take is taken.
[0004]
As described above, when the vector control and the V / f control are switched, the voltage vector and the current vector are in different phases and amplitudes even in the steady state due to the difference between the current feedback control and the voltage open loop control. For this reason, consideration must be given so that both the voltage vector and the current vector can be continuously switched during switching. However, in particular, when returning from V / f control to vector control, torque ripple is generated, and when switching is performed during a transition, a protection function such as overcurrent may be activated. .
[0005]
In view of the above prior art, in the vector control having a speed sensor, the present invention can continue the operation of the motor satisfactorily even when a failure occurs in the speed detection system, such as a failure of the speed sensor, and the speed An object of the present invention is to provide a vector control device for an electric motor that is capable of satisfactorily switching to an operation mode based on the original vector control when the detection system is restored.
[0006]
The configuration of the present invention that achieves the above object is characterized by the following points.
[0007]
1) A vector based on the detected speed value by selecting one of the speed detection value obtained by processing the measured value of the motor speed and the speed estimated value obtained as an output signal of the same-dimensional magnetic flux observer and the speed estimation mechanism by the selection means. In the motor vector control device configured to control the motor by control or sensorless vector control based on the estimated speed value,
When an abnormality in the motor speed based on the actually measured value is detected, the selection means is switched, the speed estimated value is selected to select sensorless vector control, and the speed detection based on the actually measured value returns to normal. In such a case, the selection means is switched again, and the sensorless vector control is configured to return to the vector control based on the actual measurement value .
In addition, the maximum speed change amount that can be changed in the calculation cycle time is obtained from the current torque limit value and the load inertia model value, and based on that value or the maximum speed change amount obtained by multiplying the value by a coefficient, the maximum speed change amount is exceeded. When the speed is changed, the motor speed based on the measured value is regarded as abnormal,
When the error between the speed estimation value and the speed detection value falls within a predetermined range, the actual measurement value is regarded as having returned to a normal state .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a block diagram showing a control device according to an embodiment of the present invention. As shown in the figure, the control device according to the present embodiment includes a vector control system based on a speed detection value that is an output signal of the speed detection unit 1 based on an actual measurement value, an output signal of the same-dimensional magnetic flux observer and the speed estimation mechanism 2. Substantially has two control systems, a sensorless vector control system based on the estimated speed value. The former detects the actual rotational speed of the induction motor 1 based on the output signal of the speed sensor 4. Here, the speed sensor 4 is connected to the rotating shaft of the induction motor 3 to detect the speed of the induction motor 3. The latter calculates a speed estimated value based on the current supplied to the induction motor 3 and the voltage applied to the PWM inverter 7. Here, the current supplied to the induction motor 3 is detected by the current detector 5, and the voltage applied to the PWM inverter 7 is detected by the output voltage detector 6.
[0013]
The selection switch 8 selects either the speed detection value or the speed estimation value and uses them as input signals to the magnetic flux command unit 9 and the subtracter 10. The selection switch 8 is switched by a speed selection signal from the speed detector 1. Here, the speed detection unit 1 includes a speed detection abnormality determination unit. When a speed detection abnormality is detected, the speed detection unit 1 switches the selection switch 8 so as to select a speed estimation value, and a speed detection return determination unit. When the speed detection returns to normal, the selection switch 8 is switched to select the speed detection value again. That is, it has a function of switching from vector control to sensorless vector control when speed detection is abnormal, and has a function of returning from sensorless vector control to vector control when the speed detection function is restored.
[0014]
As described above, the speed detection unit 1 according to the present embodiment includes the speed detection abnormality determination unit. As a specific example of the speed detection abnormality determination unit, the following embodiments can be considered.
[0015]
(1) Set the maximum speed change amount for speed detection abnormality judgment, and if the speed changes exceeding the maximum speed change amount within the calculation cycle time, it is regarded as a speed detection abnormality, and from vector control to sensorless vector control Switch.
[0016]
(2) The maximum speed change amount that can be changed in the calculation cycle time is obtained from the current torque limit value and the load inertia model value, and the maximum speed change amount is calculated based on the value or the maximum speed change amount obtained by multiplying the value by a predetermined coefficient. When the speed changes more than the change amount, it is regarded as speed detection abnormality, and the vector control is switched to the sensorless vector control.
[0017]
Further, as a specific example of the speed detection return determination unit of the speed detection unit 1, the following embodiments can be considered. That is, when the error between the speed estimation value and the speed detection value falls within a certain range, it is considered that the speed detection function has been restored, and the sensorless vector control is returned to the vector control.
[0018]
In this embodiment, the speed information of the induction motor 3 is selected as either a speed detection value that is an actual measurement value or a speed estimation value that is an estimation value, and the processing system for the speed detection value or the speed estimation value is configured in common. is there. That is, it has substantially two control systems, a vector control system and a sensorless vector control system. The configuration of the common part in this case is as follows.
[0019]
The magnetic flux command unit 9 supplies a magnetic flux command determined in advance based on the speed detection value or the speed estimation value to the magnetic flux / current conversion unit 10. As a result, the magnetic flux command is converted into a magnetic flux current command. On the other hand, a speed command supplied from a speed command unit (not shown) takes a deviation from a speed detection value or a speed estimation value by a subtractor 11, and this deviation is transmitted via a
[0020]
The parts other than the speed detection unit 1, the same-dimensional magnetic flux observer, and the speed estimation mechanism 2 inherent to the vector control and the sensorless vector control may be any of a conventionally known vector control apparatus and sensorless vector control apparatus.
[0021]
【The invention's effect】
As described in detail in conjunction with the embodiments above, according to the present invention, vector control and sensorless vector control can be used in common for portions other than the speed detection unit or the same-dimensional magnetic flux observer and the speed estimation mechanism, Moreover, since the handling of the voltage vector and the current vector is the same, continuous switching is possible. In addition, since it can be switched even during a transition, it can cope with speed detection abnormalities during acceleration, deceleration, load fluctuation, etc., and not only greatly improves the reliability, but also sensorless vector control over V / f control Because of its high speed control performance, it is possible to minimize deterioration of control performance when speed detection is abnormal.
[0022]
Furthermore, even if the speed detecting means fails, if the failure can be repaired during operation, for example, disconnection, it is possible to repair it during operation and then return to vector control.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a control device according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Speed detection part 2 Same dimension magnetic flux observer and speed estimation mechanism 3 Induction motor 4 Speed sensor 7 PWM inverter 8 Selection switch
Claims (1)
上記実測値に基づく電動機速度の異常が検出された場合には、上記選択手段を切換え、上記速度推定値を選択してセンサレスベクトル制御を選択するとともに、上記実測値に基づく速度検出が正常に戻った場合には、再度上記選択手段を切換え、センサレスベクトル制御から実測値に基づくベクトル制御に復帰させるように構成し、
しかも、現在のトルク制限値及び負荷慣性モデル値から演算周期時間に変化できる最大の速度変化量を求め、その値又はその値に係数を掛けた最大速度変化量に基づいて、最大速度変化量以上に速度変化をした場合に、実測値に基づく電動機速度を異常とみなすようにし、
上記速度推定値と上記速度検出値の誤差が所定の範囲内に入った場合に上記実測値が正常状態に復帰したものとみなすようにしたことを特徴とする電動機のベクトル制御装置。Vector control based on the speed detection value by selecting either the speed detection value obtained by processing the actual value of the motor speed and the speed estimation value obtained as the output signal of the same-dimensional magnetic flux observer and the speed estimation mechanism by the selection means or In the motor vector control device configured to control the motor by sensorless vector control based on the estimated speed value,
When an abnormality in the motor speed based on the actually measured value is detected, the selection means is switched, the speed estimated value is selected to select sensorless vector control, and the speed detection based on the actually measured value returns to normal. In such a case, the selection means is switched again, and the sensorless vector control is configured to return to the vector control based on the actual measurement value .
In addition, the maximum speed change amount that can be changed in the calculation cycle time is obtained from the current torque limit value and the load inertia model value, and based on that value or the maximum speed change amount obtained by multiplying the value by a coefficient, the maximum speed change amount is exceeded. When the speed is changed, the motor speed based on the measured value is regarded as abnormal,
A vector control apparatus for an electric motor , wherein when the error between the estimated speed value and the detected speed value falls within a predetermined range, the measured value is regarded as having returned to a normal state .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21177099A JP4066567B2 (en) | 1999-07-27 | 1999-07-27 | Vector control device for electric motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21177099A JP4066567B2 (en) | 1999-07-27 | 1999-07-27 | Vector control device for electric motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001037300A JP2001037300A (en) | 2001-02-09 |
JP4066567B2 true JP4066567B2 (en) | 2008-03-26 |
Family
ID=16611310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21177099A Expired - Fee Related JP4066567B2 (en) | 1999-07-27 | 1999-07-27 | Vector control device for electric motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4066567B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4677697B2 (en) * | 2001-09-10 | 2011-04-27 | 富士電機システムズ株式会社 | AC motor control method |
DE102006045397A1 (en) * | 2006-09-26 | 2008-04-03 | Siemens Ag | Error detection by evaluation of variables of field-oriented control |
JP4772711B2 (en) * | 2007-02-08 | 2011-09-14 | 株式会社東芝 | Electric vehicle drive system |
JP5445933B2 (en) * | 2009-10-16 | 2014-03-19 | 富士電機株式会社 | Induction motor control device |
JP5600989B2 (en) * | 2010-03-26 | 2014-10-08 | サンケン電気株式会社 | Control device and control method for induction motor |
JP5928255B2 (en) * | 2012-08-31 | 2016-06-01 | ブラザー工業株式会社 | Control device and image forming system |
JP6572843B2 (en) * | 2016-07-26 | 2019-09-11 | 東芝三菱電機産業システム株式会社 | Electric motor control device |
JP7400745B2 (en) * | 2021-01-15 | 2023-12-19 | トヨタ自動車株式会社 | Vehicle steering system |
-
1999
- 1999-07-27 JP JP21177099A patent/JP4066567B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001037300A (en) | 2001-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3661572B2 (en) | Inverter current sensor diagnostic device | |
US6501243B1 (en) | Synchronous motor-control apparatus and vehicle using the control apparatus | |
JP2861680B2 (en) | Failure detection method for electric vehicles and fail-safe control method using the same | |
US9054617B2 (en) | Control device of permanent magnet synchronous motor for preventing irreversible demagnetization of permanent magnet and control system including the same | |
KR100850415B1 (en) | Vector controller of induction motor | |
JP3218954B2 (en) | Abnormality detection device for AC motor control circuit | |
JP6257689B2 (en) | Synchronous machine controller | |
CN1825730A (en) | Phase-loss detection for rotating field machine | |
JPWO2006112033A1 (en) | AC motor controller | |
JP3672876B2 (en) | Vector control inverter device and rotary drive device | |
JP2010504731A (en) | Anomaly detection by evaluating the amount of magnetic field orientation control | |
JP2011200030A (en) | Controller of production apparatus and stop control method of motor for production apparatus | |
JP2005218215A (en) | Driving method and temperature-estimating method of pm motor | |
JP4066567B2 (en) | Vector control device for electric motor | |
JP4010195B2 (en) | Control device for permanent magnet synchronous motor | |
JP3786018B2 (en) | Control device for synchronous machine | |
JP4112265B2 (en) | Inverter device and rotation drive device for sensorless vector control | |
CN106911284B (en) | Motor control apparatus | |
JP2006184160A (en) | Current detection apparatus for three-phase a.c. motor with failure detection function | |
US20070273314A1 (en) | Method for Braking an Electromotor and Electrical Drive | |
WO2014017019A1 (en) | Method for determining irregularity in industrial machine | |
JP2001309694A (en) | Regulation method of permanent magnet synchronous motor for elevator and its device | |
US20230155530A1 (en) | Motor control unit and motor device | |
JP7414436B2 (en) | Motor control device and its control method | |
JP3630103B2 (en) | Fault detection device for servo control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071231 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4066567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140118 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |