[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4063700B2 - Semi-melt forming iron-carbon alloy and semi-melt forming method and semi-melt formed body using the same - Google Patents

Semi-melt forming iron-carbon alloy and semi-melt forming method and semi-melt formed body using the same Download PDF

Info

Publication number
JP4063700B2
JP4063700B2 JP2003090407A JP2003090407A JP4063700B2 JP 4063700 B2 JP4063700 B2 JP 4063700B2 JP 2003090407 A JP2003090407 A JP 2003090407A JP 2003090407 A JP2003090407 A JP 2003090407A JP 4063700 B2 JP4063700 B2 JP 4063700B2
Authority
JP
Japan
Prior art keywords
semi
melt
iron
mold
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003090407A
Other languages
Japanese (ja)
Other versions
JP2004292932A (en
Inventor
雅之 土屋
宏明 上野
智章 牛込
進 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kogi Corp
Original Assignee
Honda Motor Co Ltd
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kogi Corp filed Critical Honda Motor Co Ltd
Priority to JP2003090407A priority Critical patent/JP4063700B2/en
Publication of JP2004292932A publication Critical patent/JP2004292932A/en
Application granted granted Critical
Publication of JP4063700B2 publication Critical patent/JP4063700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半溶融成形用鉄−炭素系合金とそれを用いた半溶融成形法及び半溶融成形体に関する。
【0002】
【従来の技術】
亜共晶成分の鋳鉄を用いて、これを半溶融状態に加熱して成形を行う半溶融成形法が適用されつつある。この場合、素材に用いる亜共晶鋳鉄は白銑であることが望ましい。その理由は、同じ成分の鋳鉄であっても、白銑化した鋳鉄の方がデンドライトが微細となるため、半溶融状態における固相の径も小さく、よって得られた成形体の機械的性質が優れること、及び黒鉛化した鋳鉄を用いる場合には、半溶融温度に加熱した際に黒鉛周辺から溶融するため、固相と液相とが不均一となり、その結果、同じ温度に加熱した場合でも白銑化鋳鉄に比べて液相の流出が生じ易く、よって半溶融成形に供する半溶融ビレット等における形状保持がより難しくなることによるものである。
一方、前記亜共晶鋳鉄を白銑化して用いた場合でも、半溶融温度にした状態においてデンドライト組織が残っていると、粘性が高く、金型空間への充填不良、固相と液相との分離が生じやすいという問題があった。
この問題を解決する1つの手段として、例えば特許第3096176号及び特開平8−90191号に係る発明が開示されている。これらの開示された発明では、白鋳鉄或いは球状黒鉛鋳鉄のダイカストに関して、金型空間へのゲート面積をプランジャー加圧面積の1/10以下とすることで、デンドライト組織をゲート通過の際に良好に破壊するようにした技術手法が提供されている。
また更に他の鋳鉄の半溶融成形法としては、半溶融成形による凝固時における成形体の組織は白銑組織とし、その後に成形体を熱処理することで、白銑を黒鉛化させる手法がある。この手法では、前記熱処理により黒鉛は塊状に近くなるため、球状黒鉛鋳鉄に匹敵する機械的性質が得られる可能性がある。
【0003】
【発明が解決しようとする課題】
ところが上記特許第3096176号及び特開平8−90191号に係る発明に示す技術手法では、ゲートを絞り過ぎるため、厚肉部を有する成形体を、空気の巻き込みや鋳巣等の内部欠陥なく成形することが難しいという問題があった。その原因は、上記技術手法では径を非常に小さくしたゲート部が金型内の厚肉部よりも早く凝固してしまい、よってゲート部を通じ厚肉部の未凝固溶湯に対して外部からの加圧を加えることが困難となって鋳巣が生じ易くなるためである。またゲート径が非常に絞られていることから、金型への注入の際に乱流が発生し易く、空気の巻き込みが発生し易いからである。
また一方、上記した半溶融成形による凝固時の成形体の組織を白銑となるようにし、その後の熱処理によって白銑を黒鉛化させる手法の場合は、半溶融成形された成形体の厚肉部では、凝固時の冷却速度が遅いため、片状または共晶状黒鉛が晶出する場合が多くなり、その結果、その後に熱処理においても、これら晶出黒鉛の形状を塊状に変えることは困難で、機械的性質がむしろ低下するおそれがあるという問題があった。
【0004】
そこで本発明は上記従来の鋳鉄を用いた半溶融成形の問題点を解消し、半溶融成形において機械的性質やその他の性質が良好な成形体を得ることができる半溶融成形用鉄−炭素合金の提供を課題とする。またその半溶融成形用鉄−炭素系合金を用いて良好な機械的性質やその他の性質を得ることができる半溶融成形法及び半溶融成形体の提供を課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明の半溶融成形用鉄−炭素系合金は、半溶融成形用に供される鉄−炭素系合金であって、成分組成が重量%で、C:2.00〜3.00%、Si:1.50〜3.00%、炭素当量(C+1/3Si):2.50〜3.50%、Mg:0.015〜0.035%を含有すると共に、残部がFe及び不可避不純物からなり、且つ組織を白銑化させてあることを第1の特徴としている。
また本発明の半溶融成形用鉄−炭素系合金は、上記第1の特徴に加えて、CaとCeの何れか1種若しくは両方を、重量%で、Ca:0.005〜0.050%、Ce:0.005〜0.020%含有させることを第2の特徴としている。
また本発明の半溶融成形法は、上記第1の特徴又は第2の特徴に記載の半溶融成形用鉄−炭素系合金を固相と液相とが共存した半溶融状態にして金型等の型空間に充填すると共に、該充填された材料の型空間内での部位のうち凝固終了に要する時間が2秒以上かかる部位に対して7.0MPa以上の圧力が充填完了時において加わるように、前記充填された材料に圧力を加えることを第3特徴としている。
また本発明の半溶融成形体は、上記第1又は第2の特徴に記載の半溶融成形用鉄−炭素系合金を上記第3の特徴に記載の半溶融成形法を施して成形した後、850〜1000℃の温度、30〜60分の保持時間で黒鉛化熱処理を施すことにより、黒鉛粒径が60μm以下で、球状化率が70%以上の球状黒鉛を有する内部組織としたことを第4の特徴としている。
【0006】
上記第1の特徴による半溶融用鉄−炭素系合金によれば、そこに示されるCとSiの成分組成により、材料を半溶融させるのに必要な温度(材料の半溶融温度)があまり高くならないように抑制することができる。これにより半溶融成形に用いられる金型等の型の熱負担が減り、寿命を長くすることができる。
また上記CとSiの組成に加えてMgを示された含有量で添加することで、溶湯の酸化に伴う酸化物の巻き込み等を防止しつつ、半溶融成形に供する素材としての鉄−炭素系合金を必要十分に白銑化することができ、またデンドライトの粗大化を抑制して十分に微細に調整することができる。これによって、半溶融状態での材料の金型空間へ注入の際における充填不良や固相と液相との分離を無くすことができる。またMgの添加により溶湯の粘度を高めて注入の際の空気の巻き込みを低減することができる。
また上記C、Si、Mgの成分組成により、半溶融成形の際における凝固組織を白銑化し、また機械的性質の劣化原因となる共晶状や片状の黒鉛の晶出を防止することができる。
またC、Si、Mgの成分組成により、半溶融成形によって得られた成形体を黒鉛化熱処理する場合において、白銑の塊状黒鉛化、更にはその球状化と微細化を促進させることができる。
よって第1の特徴による半溶融成形用鉄−炭素系合金によれば、半溶融成形における型の熱負担を軽減してその寿命を長くすることができると共に、半溶融加工の際に得られる成形体に鋳巣やその他の欠陥が少なく且つ粗大なデンドライト組織や共晶状或いは片状の黒鉛が生じない白銑の凝固組織を可能にすることができる。更に半溶融成形後の熱処理により、成形体の組織を微細な塊状或いは球状の黒鉛が析出した機械的性質に優れた組織にすることが可能となる。
【0007】
また上記第2の特徴による半溶融成形用鉄−炭素系合金によれば、上記第1の特徴による作用効果に加えて、CaとCeの何れか1種若しくは両方をそこに示される成分組成で含有させることにより、過剰な量を添加することなく必要十分な少量にて、半溶融成形に供する素材としての鉄−炭素系合金の白銑化を一層効果的に促進させることができ、よってまたデンドライトの微細化を一層効果的に促進させることができる。従って半溶融状態の材料の型空間への注入の際における充填不良、固液分離、空気の巻き込み等を一層効果的に低減することが可能となる。
また上記CaとCeの何れか1種若しくは両方をそこに示される成分組成で含有させることにより、半溶融成形の際における凝固組織の白銑化を一層促進させて、機械的性質の劣化原因となる共晶状や片状の黒鉛の晶出を更に効果的に防止することが可能となる。
また上記CaとCeの何れか1種若しくは両方をそこに示される成分組成で含有させることにより、半溶融成形により得られた成形体を黒鉛化熱処理する場合において、白銑の塊状黒鉛化を一層促進させることが可能となる。
【0008】
また上記第3の特徴による半溶融成形法によれば、上記第1又は第2の特徴に示す半溶融成形用鉄−炭素系合金が加熱され、液相と固相とが共存した半溶融状態で型空間に充填され、加圧状態で凝固される。その際、半溶融状態から凝固に至るまでに要する時間が2秒以上かかる厚肉の部位には、型内への充填完了時において7.0MPa以上の圧力が加わる。このような条件で金型等の型内への射出等の注入条件を整えることで、成形体の厚肉部における鋳巣の発生を非常に効果的に抑制することができる。これにより成形体の機械的性質を良好にすることができる。
【0009】
また上記第4の特徴による半溶融成形体によれば、上記第1又は第2の特徴に示す半溶融成形用鉄−炭素系合金が、上記第3の特徴による半溶融成形法で加工された後、850〜1000℃の温度、30〜60分の保持時間で黒鉛化熱処理されることによって、黒鉛粒径が60μm以下の微細で、且つ球状化率が70%以上の内部組織からなる鉄−炭素系の半溶融成形体とされる。よってこの半溶融成形体によれば内部欠陥の少ない球状化黒鉛鋳鉄として優れた機械的性質を保有することができる。
【0010】
次に本発明の半溶融成形用鉄−炭素系合金、及び半溶融成形体に含まれる各成分元素の含有範囲の限定理由について、以下に説明する。なお成分組成は全て重量%で示す。
Cの含有量は2.00〜3.00%とする。
Cが2.00%未満の場合には成形に必要な半溶融温度を高くする必要があり、金型等の型への熱負荷が大きく、金型寿命が短くなる。
一方、Cが3.00%を超えると、半溶融成形用の素材としての合金組織中及び半溶融成形による凝固組織中での共晶状黒鉛、片状黒鉛の量が多くなり、機械的性質が低下するので、好ましくない。
Cの含有量は、好ましくは2.10〜2.50%とするのがよい。
【0011】
Siの含有量は1.50〜3.00%とする。
Siが1.50%未満では、半溶融成形後における熱処理において、白銑の黒鉛化がし難く、長時間の保持が必要となるので、工業的に好ましくない。
一方、Siが3.00%を超えると、シリコフェライトの生成により、成形体の靱性が低下するので、好ましくない。
Siの含有量は、好ましくは1.80〜2.80%とするのがよい。
【0012】
加えて、炭素当量(C%+1/3Si%)が2.50〜3.50%とする。
炭素当量が2.50%未満では、成形に必要な半溶融温度を高くする必要があり、金型等の型への熱負荷が大きく、金型寿命が短くなる。
一方、炭素当量が3.50%を超えると、半溶融成形用の素材としての合金組織中及び半溶融成形による凝固組織中での共晶状黒鉛、片状黒鉛の量が多くなり、機械的性質が低下するので好ましくない。
炭素当量は、好ましくは2.80〜3.20%とする。
【0013】
Mgの含有量は0.015〜0.035%とする。
Mgを含有させる理由は次の(1)、(2)、(3)からなる。
(1).Mgは鋳鉄において白銑化を助長する元素である。これによって半溶融成形に供する素材としての鉄−炭素系合金の白銑化を促進し、またデンドライトの微細化に寄与する。また半溶融成形の際における液相の凝固過程において組織の白銑化を助長し、機械的性質の劣化原因となる共晶状黒鉛、片状黒鉛の晶出を防止する。
(2).Mgは鋳鉄における溶融状態での粘性を高める元素である。よって半溶融成形の際に半溶融状態の材料を金型等の型空間にプランジャー等によって充填する場合、注入される材料の流れが層流になり易く、整然と充填され易くなり、空気等の巻き込みを防止することができる。
(3).Mgは白銑の黒鉛化の際に、得られる塊状黒鉛をより球状化させることができる。また得られる黒鉛の微細化を促進する。
【0014】
上記(1)、(2)の理由については、一般的に溶湯にMg処理を施して球状黒鉛鋳鉄を製造する場合にはむしろ欠点となるのであるが、半溶融成形関しては利点となる。そしてその効果を得るMgの量については、前記球状黒鉛鋳鉄を製造する場合よりも少ない量で必要十分となる。その理由は、半溶融の場合、Mgは液相に偏析するため、Mgの量は成形時点での液相の量(全体の40〜60%)に対して必要な量さえあればよいことによる。
即ち、本発明ではMgの含有量は0.015〜0.035%としている。
0.015%未満では白銑化効果が十分ではなく、半溶融成形の際に厚肉部に黒鉛が晶出し易くなる。また半溶融成形後の成形体の黒鉛化熱処理の際の効果が薄い。
一方、0.035%を超えると、Mg酸化物の巻き込み等の問題が生じて成形体の機械的強度を劣化させるおそれがある。
Mgの含有量は、好ましくは0.020〜0.035%とする。
【0015】
前記Mgを含有することで、半溶融成形の際に液相部の粘性が高まり、その結果、半溶融成形中に液相だけが先に流れることなく、固相と液相とが均一に流動し易くなり、固相と液相との分離を防止することができる。
更にその後、液相部が共晶凝固する際、Mgによる白銑化傾向が大きいため、厚肉部における片状黒鉛や共晶状黒鉛等の黒鉛の晶出が防がれる。また白銑化して得られたレデブライト組織も微細化する。
【0016】
上記理由(3)に関し、一般に鋳鉄の半溶融成形により白銑化した凝固成形体を850℃以上の温度で保持して黒鉛化させた場合、その黒鉛形状は星形または塊状になることが知られている。
本発明の場合はMgを含有するため、黒鉛化熱処理による黒鉛の形状は星形や塊状からより球状に近くなる。更に半溶融成形により凝固した成形体のレデブライト組織は微細なため、析出する黒鉛も微細で粒数が多くなる。
【0017】
上記Mgに加えて、Ca、Ceの何れか一方若しくは両方を含有させることができる。その場合の含有量は、例えばCaの場合で0.005〜0.050%、Ceの場合で0.005〜0.020%とすることができる。
Ca、CeはMgと同様の作用を与えるものとして、上記理由の(1)、(2)、(3)に述べた作用効果を奏する。
ただしCa、Ceは安定して溶湯中に添加することが困難であり、また少しの量の違いにより白銑化の効果が大きく異なってくるため、Mgとの併用が望ましい。
【0018】
次に上記した組成を有する半溶融成形用鉄−炭素系合金を半溶融成形する場合に、厚肉部を有する成形体であっても鋳巣やその他の欠陥が少なく、また成形体の組織が機械的性質に優れた組織となるよう成形することができる半溶融成形法について説明する。
一般に半溶融成形法では、成形時に固相が存在するため、溶湯を鋳込む通常の鋳造法に比べて、凝固収縮による鋳巣の発生は少ないと言われている。
しかしながら上記凝固収縮による鋳巣はゼロになるわけではなく、特に厚肉部の最終凝固部付近において発生し易く、機械的性質の劣化、気密性等で問題となることがあった。
一般的に鋳巣を防止するためには凝固終了が遅い部分に押湯を設置し、指向性凝固を促進することが有効であるが、成形体の形状により制限を受けることが多かった。
そこで本発明者は、鉄−炭素系合金について、種々の方案、射出条件による実験と、半溶融成形の際の半溶融物の流動の解析、及び凝固過程の解析を繰り返した結果、凝固終了までに要する時間が2秒以上かかる厚肉部に具体的に鋳巣が発生し易いこと、及び半溶融物の金型内への充填時における加圧の程度をうまく制御することで、厚肉部等における鋳巣を制御することができることを見出した。
【0019】
即ち、本発明者は鉄−炭素系合金の半溶融成形法に関して、半溶融材料の金型への充填完了時点において、凝固終了までに2秒以上かかる厚肉部に対して、7.0MPa以上の圧力が加わるように、充填材料に対する射出条件等の、加圧条件を設定することにより、この種の材料の半溶融成形において厚肉を有する成形体であっても、著しく鋳巣を減少させることができることを見出した。
【0020】
金型への充填完了から凝固終了までに要する時間が2秒以上要する部位では、金型に接する外周部からの凝固収縮及び温度低下による収縮の量が無視できなくなり、鋳巣が発生するものと考えられる。従って、このような部位に対しては指向性凝固となるように押し湯部を設けることが望ましい訳である。しかし、そのようにしなくとも、金型への充填完了時にゲート等を通じて、7.0MPaの圧力が前記凝固終了までに2秒以上要する部位に加わるようにして、加圧することで、前記厚肉の部位に鋳巣が発生するのを著しく減少させることができるのである。この場合、例えゲート部等が前記厚肉の部位よりも先に凝固を完了することがあっても、その厚肉の部位の鋳巣の発生防止効果を発揮するのである。
【0021】
以上のようにして半溶融成形されてなる成形体は、空気の巻き込み、厚肉部の鋳巣もなく、組織は白鋳鉄である。この成形体を850〜1000℃で30〜60分保持する黒鉛化熱処理を施すことで、粒径が60μm以下で、球状化率が70%以上の球状黒鉛を有する組織とすることができる。また前記黒鉛化熱処理前に、焼入れ等により基地をマルテンサイト組織とした後、該黒鉛化熱処理を施すことにより、更に黒鉛の微細化が可能である。この黒鉛組織を有する成形体は高強度、高靭性で良好な機械的性質を有するものである。また黒鉛は微細で均一なため、優れた加工性を示す。
【0022】
【実施例】
(第1実施例)
実施例1〜8と比較例1〜9について、表1に示す各成分(全て重量%で示す)を有する半溶融成形用鉄−炭素系合金をビレット状に鋳込んだ。この各ビレットを1220℃に加熱し、半溶融状態にして、図1にその概略を示す射出成形機を用いて金型空間に充填して、テストピースを半溶融成形した。
半溶融成形したテストピースの組織評価として、共晶黒鉛の有無、空気の巻き込み、酸化物の巻き込みについての評価をした。結果を表1に示す。
図1において、1は可動金型、2は固定金型、3はゲート、4は射出スリーブ、5はプランジャー、6は半溶融ビレット、7は金型空間、8は半溶融ビレット6の挿入口である。
得られる成形体は図2に示すような断面形状を持ち、斜線で示す領域Dが凝固終了までに2秒以上かかる部位である。
【0023】
【表1】

Figure 0004063700
【0024】
表1から明らかなように、第1実施例1〜8では、共晶黒鉛の発生、空気の巻き込み、Mg等の添加による酸化物の巻き込みによる欠陥は見られなかった。
一方、第1比較例1〜9は何れもC、Si、及び炭素当量は本発明の範囲内であるが、第1比較例1〜6ではMgの含有量が0.015%未満で、何れも共晶黒鉛の発生があり、空気の巻き込み傾向があった。また第1比較例7〜9ではMgの含有量が0.035%を超えており、共晶黒鉛の発生、空気巻き込みは見られなかったが、酸化物の巻き込みが見られた。
【0025】
(第2実施例)
Fe−2.35%C−2.04%Si−0.022%Mgを成分とした半溶融成形用鉄−炭素系合金をビレット状に鋳込んで半溶融成形用の素材とし、このビレットを1220℃に加熱して、半溶融状態とし、図1に示す射出成形機を用い、表2に示す加圧条件にてテストピースを成形して、厚肉部における鋳巣の有無を検査、評価した。評価を表2に示す。
なお加圧条件は、凝固終了までに2秒以上かかる部位Dに対して、金型内空間7への充填完了時における加圧が、それぞれ5.5〜8.0MPaとなるように設定した。
【0026】
【表2】
Figure 0004063700
【0027】
表2から明らかなように、凝固終了までに2秒以上かかる部位Dに対して、金型内空間7への充填完了時における加圧を7.0MPa以上にした場合には、鋳巣は生じなかった。反面、6.5MPa以下の場合は鋳巣が生じた。
【0028】
(第3実施例)
第2実施例1、2、3を半溶融成形後に950℃で50分保持して黒鉛化熱処理を施した。
一方、第2実施例1、2、3と同様の成分組成で、Mgを含有しない比較例について、それぞれ同様の条件で半溶融成形及びその後の黒鉛化処理を施し、得られた各試料の組織を比較した。
その結果、第2実施例1、2、3のものは組織中に黒鉛が微細に且つ球状化して存在しており、比較例においてはそのようになっていないことが明らかに観察された。
【0029】
【発明の効果】
本発明は以上の構成、作用よりなり、請求項1に記載の半溶融成形用に供される鉄−炭素系合金によれば、成分組成が重量%で、C:2.00〜3.00%、Si:1.50〜3.00%、炭素当量(C+1/3Si):2.50〜3.50%、Mg:0.015〜0.035%を含有すると共に、残部がFe及び不可避不純物からなり、且つ組織を白銑化させてあるので、
半溶融成形における型の熱負担を軽減してその寿命を長くすることができると共に、半溶融加工の際に得られる成形体に鋳巣やその他の欠陥が少なく且つ粗大なデンドライト組織や共晶状或いは片状の黒鉛が生じない白銑の凝固組織を可能にすることができる。更に半溶融成形後の熱処理により、成形体の組織を微細な塊状或いは球状の黒鉛が析出した機械的性質に優れた組織にすることが可能となる。
また請求項2に記載の半溶融成形用に供される鉄−炭素系合金によれば、上記請求項1に記載の構成による効果に加えて、CaとCeの何れか1種若しくは両方を、重量%でCa:0.005〜0.050%、Ce:0.005〜0.020%含有させるので、
Ca、Ceの過剰な量を添加することなく必要十分な少量にて、半溶融成形に供する素材としての鉄−炭素系合金の白銑化を一層効果的に促進させることができ、よってまたデンドライトの微細化を一層効果的に促進させることができる。従って半溶融状態の材料の型空間への注入の際における充填不良、固液分離、空気の巻き込み等を一層効果的に低減することが可能となる。
また上記CaとCeの何れか1種若しくは両方をそこに示される成分組成で含有させることにより、半溶融成形の際における凝固組織の白銑化を一層促進させて、機械的性質の劣化原因となる共晶状や片状の黒鉛の晶出を更に効果的に防止することが可能となる。
また上記CaとCeの何れか1種若しくは両方をそこに示される成分組成で含有させることにより、半溶融成形により得られた成形体を黒鉛化熱処理する場合において、白銑の塊状黒鉛化を一層促進させることが可能となる。
また請求項3に記載の半溶融成形法によれば、請求項1又は2に記載の半溶融成形用鉄−炭素系合金を固相と液相とが共存した半溶融状態にして金型等の型空間に充填すると共に、該充填された材料の型空間内での部位のうち凝固終了に要する時間が2秒以上かかる部位に対して7.0MPa以上の圧力が充填完了時において加わるように、前記充填された材料に圧力を加えるので、
凝固終了までに2秒以上の時間がかかるような成形体の厚肉部においても、鋳巣の発生を非常に効果的に抑制することができる。よって厚肉部のある成形体であっても、その機械的性質を十分に良好にすることができる。
また請求項4に記載の半溶融成形体によれば、請求項1又は2に記載の半溶融成形用鉄−炭素系合金を請求項3の半溶融成形法を施して成形した後、850〜1000℃の温度、30〜60分の保持時間で黒鉛化熱処理を施すことにより、黒鉛粒径が60μm以下で、球状化率が70%以上の球状黒鉛を有する内部組織としたので、
この半溶融成形体によれば内部欠陥の少ない球状化黒鉛鋳鉄として優れた機械的性質を保有することができる。
また上記黒鉛化熱処理前に、焼入れ等により基地をマルテンサイト組織とした後、該黒鉛化熱処理を施すことにより、更に黒鉛の微細化が可能である。
【図面の簡単な説明】
【図1】本発明の半溶融成形法に用いることができる射出成形機の概略断面である。
【図2】図1の射出成形機で得られる半溶融成形体の例を示す断面図である。
【符号の説明】
1 可動金型
2 固定金型
3 ゲート
4 射出スリーブ
5 プランジャー
6 半溶融ビレット
7 金型空間
8 挿入口
D 凝固終了までに2秒以上かかる部位[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iron-carbon alloy for semi-melt molding, a semi-melt molding method using the same, and a semi-melt molded body.
[0002]
[Prior art]
A semi-molten molding method is being applied in which cast iron of a hypoeutectic component is heated and molded into a semi-molten state. In this case, it is desirable that the hypoeutectic cast iron used for the raw material is white iron. The reason for this is that even cast iron of the same component has a finer dendrite in cast iron that has become whitish, so the diameter of the solid phase in the semi-molten state is also small, and the mechanical properties of the resulting compact are therefore low. Excellent, and when using graphitized cast iron, it melts from the periphery of the graphite when heated to the semi-melting temperature, so the solid phase and the liquid phase become non-uniform, and as a result, even when heated to the same temperature This is because the liquid phase is more likely to flow out than white cast iron, so that it is more difficult to maintain the shape of a semi-molten billet or the like used for semi-melt molding.
On the other hand, even when the hypoeutectic cast iron is whitened and used, if the dendrite structure remains in the state of the semi-melting temperature, the viscosity is high, the filling of the mold space is poor, the solid phase and the liquid phase There was a problem that the separation of the glass was likely to occur.
As one means for solving this problem, for example, the inventions disclosed in Japanese Patent No. 3096176 and Japanese Patent Laid-Open No. 8-90191 are disclosed. In these disclosed inventions, regarding the die casting of white cast iron or spheroidal graphite cast iron, the gate area to the mold space is set to 1/10 or less of the plunger pressurization area, so that the dendrite structure is good when passing through the gate. A technical method that can be destroyed is provided.
As another semi-molten forming method of cast iron, there is a technique in which the structure of the formed body at the time of solidification by semi-melt forming is a white birch structure, and then the formed body is heat treated to graphitize the white birch. In this method, the heat treatment makes graphite almost in the form of a lump, so that there is a possibility that mechanical properties comparable to spheroidal graphite cast iron can be obtained.
[0003]
[Problems to be solved by the invention]
However, in the technical method shown in the inventions of the above-mentioned Japanese Patent No. 3096176 and Japanese Patent Laid-Open No. 8-90191, the gate is excessively squeezed, so that a molded body having a thick portion is molded without internal defects such as air entrainment and casting cavity. There was a problem that it was difficult. The cause of this is that the gate part with a very small diameter solidifies faster than the thick part in the mold in the above-mentioned technique, and thus the externally added to the unsolidified molten metal in the thick part through the gate part. This is because it becomes difficult to apply pressure and a cast hole is likely to occur. In addition, since the gate diameter is very narrow, turbulent flow is likely to occur during injection into the mold, and air entrainment is likely to occur.
On the other hand, in the case of a technique in which the structure of the molded body at the time of solidification by the above-described semi-melt molding becomes white glaze, and the method of graphitizing the white glaze by the subsequent heat treatment, However, since the cooling rate during solidification is slow, flake or eutectic graphite often crystallizes, and as a result, it is difficult to change the shape of these crystallized graphite into a lump even in heat treatment thereafter. However, there is a problem that the mechanical properties may rather deteriorate.
[0004]
Therefore, the present invention eliminates the problems of the semi-molten molding using the conventional cast iron and can provide a molded body having good mechanical properties and other properties in the semi-melt molding. The issue is to provide Another object of the present invention is to provide a semi-molten molding method and a semi-molten molded body that can obtain good mechanical properties and other properties by using the iron-carbon alloy for semi-melt molding.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the semi-molten forming iron-carbon alloy of the present invention is an iron-carbon alloy used for semi-melt forming, the component composition is wt%, and C: 2.00 ~ 3.00%, Si: 1.50 to 3.00%, carbon equivalent (C + 1 / 3Si): 2.50 to 3.50%, Mg: 0.015 to 0.035%, and the balance The first feature is that it is made of Fe and inevitable impurities and the structure is whitened.
Moreover, in addition to the said 1st characteristic, the iron-carbon type alloy for semi-molten shaping | molding of this invention WHEREIN: Any 1 type or both of Ca and Ce are weight%, Ca: 0.005-0.050% , Ce: The second feature is to contain 0.005 to 0.020%.
Further, the semi-melt molding method of the present invention is a method for producing a mold or the like by converting the iron-carbon alloy for semi-melt molding described in the first or second feature into a semi-molten state in which a solid phase and a liquid phase coexist. In addition, the pressure of 7.0 MPa or more is applied to the portion where the time required for completion of solidification is 2 seconds or more among the portions in the mold space of the filled material when the filling is completed. , and a third characterized by applying pressure to the filled material.
In addition, the semi-molten molded body of the present invention is formed by performing the semi-melt molding method described in the third feature on the iron-carbon alloy for semi-melt molding described in the first or second feature, A graphitized heat treatment is performed at a temperature of 850 to 1000 ° C. and a holding time of 30 to 60 minutes, thereby obtaining an internal structure having spherical graphite having a graphite particle size of 60 μm or less and a spheroidization rate of 70% or more. 4 features.
[0006]
According to the semi-melting iron-carbon alloy according to the first feature, the temperature required for semi-melting the material (semi-melting temperature of the material) is too high due to the component composition of C and Si shown therein. Can be suppressed. As a result, the heat load of a mold such as a mold used for semi-melt molding is reduced, and the life can be extended.
Further, by adding Mg in the indicated content in addition to the above-mentioned composition of C and Si, iron-carbon system as a material to be used for semi-molten molding while preventing oxide entrainment associated with oxidation of the molten metal The alloy can be sufficiently whitened as necessary, and can be finely adjusted by suppressing dendrite coarsening. Thereby, it is possible to eliminate poor filling and separation between the solid phase and the liquid phase when the material is injected into the mold space in a semi-molten state. Further, the addition of Mg can increase the viscosity of the molten metal and reduce air entrainment during injection.
The component composition of C, Si, and Mg makes it possible to whiten the solidified structure during semi-melt molding and to prevent crystallization of eutectic and flake graphite that causes deterioration of mechanical properties. it can.
Moreover, when the molded body obtained by semi-melt molding is subjected to graphitization heat treatment by the composition of C, Si, and Mg, it is possible to promote the white graphitic lump graphitization and further spheroidization and refinement.
Therefore, the semi-melt forming iron-carbon alloy according to the first feature can reduce the thermal burden of the mold in the semi-molten forming and extend its life, and can be obtained during the semi-melt processing. It is possible to make a solid dendrite structure and a white solidified structure free from eutectic or flake graphite with few cast holes and other defects in the body. Further, by heat treatment after semi-melt molding, the structure of the compact can be made into a structure excellent in mechanical properties in which fine lump or spherical graphite is deposited.
[0007]
According to the semi-melt forming iron-carbon alloy according to the second feature, in addition to the function and effect of the first feature, any one or both of Ca and Ce have a component composition shown therein. By containing, it is possible to more effectively promote the whitening of the iron-carbon alloy as a material to be subjected to semi-melt molding in a necessary and sufficient small amount without adding an excessive amount. Dendrite miniaturization can be promoted more effectively. Accordingly, it is possible to more effectively reduce poor filling, solid-liquid separation, air entrainment, and the like when the semi-molten material is injected into the mold space.
Further, by including any one or both of the above Ca and Ce in the component composition shown therein, the whitening of the solidified structure during the semi-molten molding is further promoted, and the deterioration of mechanical properties is caused. It becomes possible to more effectively prevent crystallization of the eutectic or flake graphite.
Further, when one or both of the above Ca and Ce is contained in the component composition shown therein, when the molded body obtained by semi-melt molding is subjected to graphitization heat treatment, the bulk graphitization of birch is further increased. It becomes possible to promote.
[0008]
Further, according to the semi-melt forming method according to the third feature, the semi-molten state in which the iron-carbon alloy for semi-melt forming shown in the first or second feature is heated and the liquid phase and the solid phase coexist. To fill the mold space and solidify under pressure. At that time, a pressure of 7.0 MPa or more is applied to a thick portion that takes 2 seconds or more from the semi-molten state to solidification when the filling into the mold is completed. By adjusting injection conditions such as injection into a mold such as a mold under such conditions, it is possible to very effectively suppress the occurrence of a cast hole in the thick part of the molded body. Thereby, the mechanical property of a molded object can be made favorable.
[0009]
Further, according to the semi-melt molded article according to the fourth feature, the iron-carbon alloy for semi-melt molding shown in the first or second feature is processed by the semi-melt molding method according to the third feature. After that, by performing graphitization heat treatment at a temperature of 850 to 1000 ° C. and a holding time of 30 to 60 minutes, iron having an internal structure having a fine graphite particle size of 60 μm or less and a spheroidization rate of 70% or more It is a carbon-based semi-melt molded article. Therefore, according to this semi-molten molded product, excellent mechanical properties can be retained as spheroidal graphite cast iron with few internal defects.
[0010]
Next, the reason for limiting the content ranges of the component elements contained in the semi-molten forming iron-carbon alloy of the present invention and the semi-molten molded body will be described below. In addition, all component composition is shown by weight%.
The C content is 2.00 to 3.00%.
When C is less than 2.00%, it is necessary to increase the semi-melting temperature required for molding, the heat load on a mold such as a mold is large, and the mold life is shortened.
On the other hand, if C exceeds 3.00%, the amount of eutectic graphite and flake graphite in the alloy structure as a material for semi-melt forming and in the solidified structure by semi-melt forming increases, and mechanical properties are increased. Is unfavorable because it decreases.
The content of C is preferably 2.10 to 2.50%.
[0011]
The Si content is 1.50 to 3.00%.
If Si is less than 1.50%, it is difficult to graphitize white birch in the heat treatment after semi-melt molding, and it is necessary to maintain for a long time.
On the other hand, if the Si content exceeds 3.00%, the toughness of the molded product is lowered due to the formation of silicoferrite, which is not preferable.
The Si content is preferably 1.80 to 2.80%.
[0012]
In addition, the carbon equivalent (C% + 1 / 3Si%) is 2.50 to 3.50%.
If the carbon equivalent is less than 2.50%, it is necessary to increase the semi-melting temperature necessary for molding, the heat load on a mold such as a mold is large, and the mold life is shortened.
On the other hand, if the carbon equivalent exceeds 3.50%, the amount of eutectic graphite and flake graphite increases in the alloy structure as a material for semi-melt forming and in the solidified structure by semi-melt forming. This is not preferable because the properties deteriorate.
The carbon equivalent is preferably 2.80 to 3.20%.
[0013]
The Mg content is 0.015 to 0.035%.
The reason for containing Mg is the following (1), (2), (3).
(1). Mg is an element that promotes whitening in cast iron. This promotes the whitening of the iron-carbon alloy as a material used for semi-melt molding and contributes to the miniaturization of dendrites. Further, it promotes whitening of the structure in the solidification process of the liquid phase during semi-melt molding, and prevents crystallization of eutectic graphite and flake graphite that cause deterioration of mechanical properties.
(2). Mg is an element that increases the viscosity of cast iron in a molten state. Therefore, when filling a mold space such as a mold with a plunger or the like at the time of semi-melt molding, the flow of the injected material tends to be laminar and easy to fill orderly, such as air Entrainment can be prevented.
(3). Mg can make the resulting massive graphite spheroidized during the graphitization of birch. It also promotes refinement of the resulting graphite.
[0014]
The reasons of (1) and (2) above are rather disadvantageous when producing spheroidal graphite cast iron by subjecting the molten metal to Mg treatment, but it is advantageous for semi-melt molding. And about the quantity of Mg which obtains the effect, it becomes necessary and sufficient with the quantity smaller than the case where the said nodular graphite cast iron is manufactured. The reason for this is that, in the case of semi-melting, Mg segregates in the liquid phase, so the amount of Mg only needs to be the amount necessary for the amount of liquid phase at the time of molding (40-60% of the total). .
That is, in the present invention, the Mg content is set to 0.015 to 0.035%.
If it is less than 0.015%, the whitening effect is not sufficient, and graphite tends to crystallize in the thick part during semi-melt molding. Moreover, the effect at the time of the graphitization heat processing of the molded object after semi-melt molding is thin.
On the other hand, if it exceeds 0.035%, problems such as the involvement of Mg oxide may occur and the mechanical strength of the molded article may be deteriorated.
The content of Mg is preferably 0.020 to 0.035%.
[0015]
By containing Mg, the viscosity of the liquid phase is increased during semi-melt molding, and as a result, only the liquid phase does not flow first during semi-melt molding, and the solid phase and liquid phase flow uniformly. And the separation of the solid phase and the liquid phase can be prevented.
Further, when the liquid phase part is eutectic solidified, the tendency of whitening due to Mg is large, so that crystallization of graphite such as flake graphite and eutectic graphite in the thick part is prevented. The redebrite structure obtained by whitening also becomes finer.
[0016]
Regarding the above reason (3), it is generally known that when a solidified molded body whitened by semi-molten molding of cast iron is graphitized by holding at a temperature of 850 ° C. or more, the graphite shape becomes a star shape or a lump shape. It has been.
In the case of the present invention, since Mg is contained, the shape of the graphite by the graphitization heat treatment becomes more spherical from a star shape or a lump shape. Furthermore, since the redebrite structure of the compact solidified by semi-melt molding is fine, the precipitated graphite is fine and the number of grains is large.
[0017]
In addition to Mg, one or both of Ca and Ce can be contained. The content in that case can be 0.005 to 0.050% in the case of Ca and 0.005 to 0.020% in the case of Ce, for example.
As Ca and Ce give the same action as Mg, the effects described in (1), (2) and (3) of the above reason are exhibited.
However, it is difficult to add Ca and Ce stably to the molten metal, and the effect of whitening greatly varies depending on a slight amount, so that the combined use with Mg is desirable.
[0018]
Next, when semi-molten forming a semi-melt forming iron-carbon alloy having the above-described composition, there are few cast holes and other defects even in a molded body having a thick portion, and the structure of the molded body is small. A semi-melt molding method that can be molded so as to have a structure excellent in mechanical properties will be described.
Generally, in the semi-melt molding method, since a solid phase is present at the time of molding, it is said that the occurrence of a cast hole due to solidification shrinkage is less than that in a normal casting method in which a molten metal is cast.
However, the cast hole due to the solidification shrinkage does not become zero, and is likely to occur particularly in the vicinity of the final solidified portion of the thick-walled portion, which may cause problems with deterioration of mechanical properties, airtightness, and the like.
In general, in order to prevent a cast hole, it is effective to install a feeder in a portion where the completion of solidification is late to promote directional solidification, but it is often limited by the shape of the molded body.
Therefore, as a result of repeating the various methods, experiments under injection conditions, the analysis of the flow of the semi-molten product during the semi-molten molding, and the analysis of the solidification process, the present inventor obtained the results until the completion of solidification It is easy to generate a cast hole in the thick wall part that takes 2 seconds or more to complete, and by controlling the degree of pressurization when filling the semi-molten material into the mold, It has been found that the cast hole in the etc. can be controlled.
[0019]
That is, the present inventor relates to a semi-molten forming method of an iron-carbon alloy at a time when filling of a semi-molten material into a mold is completed, and at least 7.0 MPa for a thick portion that takes 2 seconds or more to complete solidification. By setting the pressurizing conditions such as the injection conditions for the filling material so that the pressure of the material is applied, even in the case of a molded body having a thick wall in the semi-melt molding of this type of material, the number of cast holes is significantly reduced. I found that I can do it.
[0020]
In parts where the time required from the completion of filling the mold to the end of solidification is 2 seconds or more, the amount of shrinkage due to solidification shrinkage from the outer peripheral part in contact with the mold and temperature drop cannot be ignored, and a cast hole is generated. Conceivable. Therefore, it is desirable to provide a feeder part for such a part so as to achieve directional solidification. However, even if it does not do so, by applying pressure so that a pressure of 7.0 MPa is applied to the site that requires 2 seconds or more to complete the solidification through a gate or the like when the filling of the mold is completed, It is possible to remarkably reduce the occurrence of a cast hole at the site. In this case, even if the gate portion or the like completes the solidification before the thick portion, the effect of preventing the formation of a cast hole at the thick portion is exhibited.
[0021]
The molded body that is semi-melt molded as described above has no air entrainment and no cast hole in the thick part, and the structure is white cast iron. By subjecting this compact to a graphitization heat treatment for holding at 850 to 1000 ° C. for 30 to 60 minutes, a structure having spherical graphite having a particle size of 60 μm or less and a spheroidization rate of 70% or more can be obtained. Further, the graphite can be further refined by subjecting the base to a martensite structure by quenching or the like before the graphitization heat treatment and then performing the graphitization heat treatment. The molded body having this graphite structure has high strength, high toughness and good mechanical properties. Moreover, since graphite is fine and uniform, it exhibits excellent workability.
[0022]
【Example】
(First embodiment)
For Examples 1 to 8 and Comparative Examples 1 to 9, semi-melt forming iron-carbon alloys having the respective components shown in Table 1 (all indicated by weight%) were cast into a billet shape. Each billet was heated to 1220 ° C. to be in a semi-molten state, filled in a mold space using an injection molding machine schematically shown in FIG. 1, and a test piece was semi-melt molded.
As the structure evaluation of the semi-melt molded test piece, the presence / absence of eutectic graphite, air entrainment, and oxide entrainment were evaluated. The results are shown in Table 1.
In FIG. 1, 1 is a movable mold, 2 is a fixed mold, 3 is a gate, 4 is an injection sleeve, 5 is a plunger, 6 is a semi-molten billet, 7 is a mold space, and 8 is a semi-molten billet 6 inserted. The mouth.
The obtained molded body has a cross-sectional shape as shown in FIG. 2, and a hatched region D is a portion that takes 2 seconds or more to complete the solidification.
[0023]
[Table 1]
Figure 0004063700
[0024]
As is clear from Table 1, in the first examples 1 to 8, defects due to generation of eutectic graphite, air entrainment, and oxide entrapment due to addition of Mg or the like were not observed.
On the other hand, in all of the first comparative examples 1 to 9, the C, Si, and carbon equivalents are within the scope of the present invention, but in the first comparative examples 1 to 6, the Mg content is less than 0.015%. In addition, eutectic graphite was generated, and there was a tendency to entrain air. Moreover, in 1st Comparative Examples 7-9, content of Mg exceeded 0.035%, generation | occurrence | production of eutectic graphite and air entrainment were not seen, but oxide entrainment was seen.
[0025]
(Second embodiment)
A semi-melt forming iron-carbon alloy containing Fe-2.35% C-2.04% Si-0.022% Mg as a component is cast into a billet shape to form a material for semi-melt molding. Heat to 1220 ° C. to make it in a semi-molten state, mold the test piece under the pressurization conditions shown in Table 2 using the injection molding machine shown in FIG. did. The evaluation is shown in Table 2.
The pressurization conditions were set such that the pressurization at the completion of filling the mold inner space 7 was 5.5 to 8.0 MPa for the part D that took 2 seconds or more to complete the solidification.
[0026]
[Table 2]
Figure 0004063700
[0027]
As is apparent from Table 2, when the pressure at the completion of filling the mold inner space 7 is set to 7.0 MPa or more with respect to the portion D that takes 2 seconds or more to complete the solidification, a cast hole is formed. There wasn't. On the other hand, in the case of 6.5 MPa or less, a cast hole occurred.
[0028]
(Third embodiment)
The second examples 1, 2, and 3 were subjected to graphitization heat treatment by being held at 950 ° C. for 50 minutes after semi-melt molding.
On the other hand, for the comparative examples having the same composition as in the second example 1, 2, 3 and not containing Mg, semi-melt molding and subsequent graphitization treatment were performed under the same conditions, and the structure of each sample obtained Compared.
As a result, it was clearly observed that in the second examples 1, 2, and 3, graphite was finely and spheroidized in the structure, and not so in the comparative example.
[0029]
【The invention's effect】
This invention consists of the above structure and an effect | action, According to the iron-carbon type alloy provided for the semi-melt forming of Claim 1, a component composition is weight%, C: 2.00-3.00 %, Si: 1.50 to 3.00%, carbon equivalent (C + 1 / 3Si): 2.50 to 3.50%, Mg: 0.015 to 0.035%, the balance being Fe and inevitable Because it is made of impurities and the structure is whitened,
Reduces the thermal burden of the mold in semi-molten molding and extends its life, and the molded product obtained during semi-melt processing has few cast holes and other defects and has a coarse dendrite structure and eutectic shape. Alternatively, it is possible to make a white-solidified structure free from flake graphite. Further, by heat treatment after semi-melt molding, the structure of the compact can be made into a structure excellent in mechanical properties in which fine lump or spherical graphite is deposited.
In addition, according to the iron-carbon alloy provided for semi-melt molding according to claim 2, in addition to the effect of the configuration according to claim 1, any one or both of Ca and Ce, Since Ca: 0.005 to 0.050% and Ce: 0.005 to 0.020% by weight%,
It is possible to more effectively promote whitening of an iron-carbon alloy as a material to be used for semi-melt molding in a necessary and sufficient amount without adding an excessive amount of Ca and Ce. Can be more effectively promoted. Accordingly, it is possible to more effectively reduce poor filling, solid-liquid separation, air entrainment, and the like when the semi-molten material is injected into the mold space.
Further, by including any one or both of the above Ca and Ce in the component composition shown therein, the whitening of the solidified structure during the semi-molten molding is further promoted, and the deterioration of mechanical properties is caused. It becomes possible to more effectively prevent crystallization of the eutectic or flake graphite.
Further, when one or both of the above Ca and Ce is contained in the component composition shown therein, when the molded body obtained by semi-melt molding is subjected to graphitization heat treatment, the bulk graphitization of birch is further increased. It becomes possible to promote.
Further, according to the semi-melt molding method according to claim 3, the iron-carbon alloy for semi-melt molding according to claim 1 or 2 is made into a semi-molten state in which a solid phase and a liquid phase coexist, and a mold or the like In addition, the pressure of 7.0 MPa or more is applied to the portion where the time required for completion of solidification is 2 seconds or more among the portions in the mold space of the filled material when the filling is completed. Since pressure is applied to the filled material,
Even in the thick part of the molded body that takes 2 seconds or more to complete the solidification, the occurrence of a cast hole can be suppressed very effectively. Therefore, even if it is a molded object with a thick part, the mechanical property can fully be made favorable.
Moreover, according to the semi-melt-molded article according to claim 4, after forming the semi-melt-molding iron-carbon alloy according to claim 1 or 2 by applying the semi-melt-molding method according to claim 3, By performing a graphitization heat treatment at a temperature of 1000 ° C. and a holding time of 30 to 60 minutes, an internal structure having spherical graphite with a graphite particle size of 60 μm or less and a spheroidization rate of 70% or more is obtained.
According to this semi-molten compact, excellent mechanical properties can be retained as spheroidal graphite cast iron with few internal defects.
Further, the graphite can be further refined by subjecting the base to a martensite structure by quenching or the like before the graphitization heat treatment and then performing the graphitization heat treatment.
[Brief description of the drawings]
FIG. 1 is a schematic cross section of an injection molding machine that can be used in the semi-melt molding method of the present invention.
FIG. 2 is a cross-sectional view showing an example of a semi-melt molded body obtained by the injection molding machine of FIG.
[Explanation of symbols]
1 Movable mold 2 Fixed mold 3 Gate 4 Injection sleeve 5 Plunger 6 Semi-molten billet 7 Mold space 8 Insertion slot D Part that takes 2 seconds or more to complete solidification

Claims (4)

半溶融成形用に供される鉄―炭素系合金であって、成分組成が重量%で、
C : 2.00〜3.00%、
Si : 1.50〜3.00%、
炭素当量(C+1/3Si) : 2.50〜3.50%、
Mg : 0.015〜0.035%
を含有すると共に、残部がFe及び不可避不純物からなり、且つ組織を白銑化させてあることを特徴とする半溶融成形用鉄−炭素系合金。
It is an iron-carbon alloy used for semi-melt molding, and its component composition is wt%,
C: 2.00 to 3.00%
Si: 1.50 to 3.00%,
Carbon equivalent (C + 1 / 3Si): 2.50 to 3.50%
Mg: 0.015-0.035%
And the balance is made of Fe and inevitable impurities , and the structure is whitened.
CaとCeの何れか1種若しくは両方を、重量%で
Ca : 0.005〜0.050%、
Ce : 0.005〜0.020%
含有させることを特徴とする請求項1に記載の半溶融成形用鉄−炭素系合金。
Any one or both of Ca and Ce, by weight% Ca: 0.005 to 0.050%,
Ce: 0.005 to 0.020%
The iron-carbon alloy for semi-melt forming according to claim 1, which is contained.
請求項1又は2に記載の半溶融成形用鉄−炭素系合金を固相と液相とが共存した半溶融状態にして金型等の型空間に充填すると共に、該充填された材料の型空間内での部位のうち凝固終了に要する時間が2秒以上かかる部位に対して7.0MPa以上の圧力が充填完了時において加わるように、前記充填された材料に圧力を加えることを特徴とする半溶融成形法。The semi-molten forming iron-carbon alloy according to claim 1 or 2 is filled in a mold space such as a mold in a semi-molten state in which a solid phase and a liquid phase coexist, and the mold of the filled material Pressure is applied to the filled material so that a pressure of 7.0 MPa or more is applied at the completion of filling to a portion of the space that takes 2 seconds or more to complete the solidification. Semi-melt molding method. 請求項1又は2に記載の半溶融成形用鉄−炭素系合金を請求項3の半溶融成形法を施して成形した後、850〜1000℃の温度、30〜60分の保持時間で黒鉛化熱処理を施すことにより、黒鉛粒径が60μm以下で、球状化率が70%以上の球状黒鉛を有する内部組織としたことを特徴とする半溶融成形体。The iron-carbon alloy for semi-melt forming according to claim 1 or 2 is formed by performing the semi-melt forming method of claim 3 and then graphitized at a temperature of 850 to 1000 ° C and a holding time of 30 to 60 minutes. A semi-melt molded article characterized in that an internal structure having spherical graphite having a graphite particle size of 60 μm or less and a spheroidization ratio of 70% or more is obtained by heat treatment.
JP2003090407A 2003-03-28 2003-03-28 Semi-melt forming iron-carbon alloy and semi-melt forming method and semi-melt formed body using the same Expired - Fee Related JP4063700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090407A JP4063700B2 (en) 2003-03-28 2003-03-28 Semi-melt forming iron-carbon alloy and semi-melt forming method and semi-melt formed body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090407A JP4063700B2 (en) 2003-03-28 2003-03-28 Semi-melt forming iron-carbon alloy and semi-melt forming method and semi-melt formed body using the same

Publications (2)

Publication Number Publication Date
JP2004292932A JP2004292932A (en) 2004-10-21
JP4063700B2 true JP4063700B2 (en) 2008-03-19

Family

ID=33404045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090407A Expired - Fee Related JP4063700B2 (en) 2003-03-28 2003-03-28 Semi-melt forming iron-carbon alloy and semi-melt forming method and semi-melt formed body using the same

Country Status (1)

Country Link
JP (1) JP4063700B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131635A (en) * 2008-12-04 2010-06-17 Nippon Steel Corp Die-cast molding method for iron and die-cast molded body
EP2407259A4 (en) * 2009-03-12 2014-04-23 Kogi Corp Process for production of semisolidified slurry of iron-base alloy; process for production of cast iron castings by using the process, and cast iron castings
JP5453480B2 (en) * 2012-04-10 2014-03-26 日本鋳造株式会社 Cast iron billet for thixocasting and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004292932A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US9775647B2 (en) Magnesium alloy
EP2407259A1 (en) Process for production of semisolidified slurry of iron-base alloy; process for production of cast iron castings by using the process, and cast iron castings
CN100588733C (en) A kind of magnesium alloy for semi-solid forming and preparation method of semi-solid blank thereof
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP2010531388A (en) Structural material of Al alloy containing Mg and high Si and method for producing the same
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
CN105088037A (en) Mg-RE-Mn-series multi-element magnesium alloy and preparation method thereof
KR101491216B1 (en) High elastic aluminum alloy and method for producing the same
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
JP4063700B2 (en) Semi-melt forming iron-carbon alloy and semi-melt forming method and semi-melt formed body using the same
JP4141207B2 (en) High strength aluminum alloy casting and manufacturing method thereof
JP3246363B2 (en) Forming method of semi-molten metal
JP3946966B2 (en) Method for producing Sn-based alloy containing Sn-Ti compound
JP3829164B2 (en) Semi-melt molding material manufacturing method
JP4390762B2 (en) Differential gear case and manufacturing method thereof
JP2005298871A (en) Aluminum alloy for plastic working, and its manufacturing method
JP2003126950A (en) Molding method of semi-molten metal
JP6548924B2 (en) Hypoeutectic spheroidal graphite cast iron
JP2006037190A (en) Aluminum alloy, method for molding aluminum alloy casting and chassis structural member for vehicle molded with aluminum alloy
JP6975421B2 (en) Aluminum alloy manufacturing method
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JPH08325652A (en) Method for molding semisolid metal
JP4109734B2 (en) Heat treatment method for Fe castings
JP3473214B2 (en) Forming method of semi-molten metal
JP3339333B2 (en) Method for forming molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4063700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees