[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4063397B2 - Pneumatic radial tire - Google Patents

Pneumatic radial tire Download PDF

Info

Publication number
JP4063397B2
JP4063397B2 JP10933898A JP10933898A JP4063397B2 JP 4063397 B2 JP4063397 B2 JP 4063397B2 JP 10933898 A JP10933898 A JP 10933898A JP 10933898 A JP10933898 A JP 10933898A JP 4063397 B2 JP4063397 B2 JP 4063397B2
Authority
JP
Japan
Prior art keywords
tire
groove
tread portion
tread
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10933898A
Other languages
Japanese (ja)
Other versions
JPH11301213A (en
Inventor
浩幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP10933898A priority Critical patent/JP4063397B2/en
Publication of JPH11301213A publication Critical patent/JPH11301213A/en
Application granted granted Critical
Publication of JP4063397B2 publication Critical patent/JP4063397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1384Three dimensional block surfaces departing from the enveloping tread contour with chamfered block corners

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気入りラジアルタイヤ、より詳細には乗用車やトラック及びバスなどの車両の用途に供する空気入りラジアルタイヤに関し、特に、走行方向を横切る向きに傾斜部分、例えば轍などの凹部分を有する路面を高速走行する際に発生する、ドライバが予測し得ないタイヤの複雑な挙動、いわゆるワンダリング現象を抑制して直進走行安定性を向上させた空気入りラジアルタイヤ、なかでも小さな偏平率を有する高性能ラジアルタイヤに関する。
【0002】
【従来の技術】
空気入りラジアルタイヤ、特に高性能ラジアルタイヤは、最近の車両の高出力化に伴い、車両旋回時に生じる車両の遠心力に見合う横力を発生させるために大きな横剛性を有すること、また高速走行時の駆動・制動性能、操縦安定性などが高度に優れていることが必要であるため、偏平率を小さくしてサイドウォール部高さを抑えトレッド部の接地幅を成るべく広くするタイヤ形状を有している。
【0003】
【発明が解決しようとする課題】
高性能ラジアルタイヤは、平坦路面走行では優れた操縦安定性を発揮する反面、轍の凹部などのような傾斜面を有する路面を高速走行する場合、タイヤには路面の凹部の傾斜度合いに応じて不均一な力が作用する結果、複雑な挙動を示す。
【0004】
例えば小さな偏平率を有するタイヤ、特に偏平率が60%以下の乗用車用ラジアルタイヤは、傾斜路面Isを走行するタイヤ20の正面又は背面を示す図8を参照して、傾斜路面Isから受ける登り勾配方向(矢印にて示す向き)のキャンバースラストFcによりタイヤ20の回転軸心X−X方向分力の横力Fyを発生し、この横力Fyにより傾斜路面Isを駆け登る力を車両に作用させるので、直進走行安定性を損なう。一般に傾斜路面Isの勾配が同一の場合、偏平率が小さいタイヤ程横力Fyの値は大きい。なお符号Frは傾斜路面Isに垂直なタイヤ20への反力である。
【0005】
傾斜路面Isを走行するタイヤ20にキャンバースラストFcが発生する理由は次の通りである。すなわち図8に示すタイヤ20を断面としてこれを図9に示すように、走行中のタイヤ20はその回転軸心X−Xに対し垂直方向に作用する負荷荷重Wにより傾斜路面Isの登り勾配上方側であればある程路面Isにより一層強く押圧され、登り勾配下方側では寧ろ路面Isから浮き気味となる。
【0006】
その結果、タイヤ20への垂直負荷荷重Wの下で、傾斜路面Isの登り勾配上方側を押圧するタイヤ20のサイドウォール部21の撓み変形量は登り勾配下方側サイドウォール部21の撓み変形量に比し著しく大きく、この登り勾配上方側の大きな撓み変形は矢印A方向に向くカーカスプライの倒れ込み変形をもたらし、この変形に伴い倒れ込み変形するカーカスプライに近いベルト22部分には矢印B方向の曲げ変形が生じるため、曲げ変形するベルト22部分を覆うトレッドゴム23部分にせん断変形が生じる。その結果タイヤ20のトレッドゴム23には全体として傾斜路面Isを登る、矢印C方向へ向くせん断力が発生し、このせん断力の接地面全体における合力がキャンバースラストFcに他ならない、ということである。
【0007】
つまり上述したように、走行中のタイヤ20のトレッド部が傾斜路面Isに多少なりとも乗り上げるとタイヤ20には傾斜路面Isの登り勾配向きのキャンバースラストFcが発生し、その横力Fy成分によりドライバの意図とは無関係に高速走行中の車両は急速に傾斜路面Isを駆け登る挙動を示す、いわゆるワンダリング現象を呈し、車両の直進走行安定性が著しく損なわれることになる。
【0008】
このワンダリング改善のためトレッド部の端縁部に面取りを施したり、多数本のサイプ(スリット)加工を施し、これによりキャンバースラストFcの低減を図ることが提案されているが、いずれも糊塗的な対策手段に過ぎず、特に偏平率60%以下の高性能ラジアルタイヤでは全く不十分なものと言わざるを得ず、高性能ラジアルタイヤに相応しい高度に優れた直進走行安定性を発揮できるタイヤが望まれているのが現状である。
【0009】
従ってこの出願の請求項1〜に記載した発明は、轍のように両側に登り勾配の傾斜面を有する凹部が形成されている路面走行でのワンダリング現象の発生を抑制して高速での直進走行安定性に優れる空気入りラジアルタイヤ、特に偏平率が60%以下の高性能ラジアルタイヤの提供を目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、この出願の請求項1に記載した発明は、一対のビード部及び一対のサイドウォール部と、両サイドウォール部に連なるトロイド状トレッド部とを有し、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアルカーカスと、該ラジアルカーカスの外周でトレッド部を強化するベルトとを備え、回転方向指定のトレッドパターンを有する空気入りラジアルタイヤにおいて、
上記タイヤの最大負荷能力に対応する空気圧を充てんしたタイヤを前記最大負荷能力の70%に相当する荷重負荷の下で平板に垂直に押圧したトレッド部の接地状態にて、
トレッド部接地幅の10%以上の距離を接地幅端から隔てるトレッド部ショルダ領域の、トレッド部端を含む少なくとも一部領域が、タイヤの回転軸心を含む平面への投影長さをもってトレッド部端に開口する複数本の溝と、これらの溝によりトレッド周方向に分断される陸部とを有し、かつ
タイヤの荷重負荷転動下にて後から接地する側のみの各分断陸部の、トレッド部端を含む少なくとも一部陸部が、溝縁に沿う残存面取り部を有し、
この残存面取り部は、タイヤ赤道面に最も近い位置からトレッド部端に向うにつれ面取り度合いが漸増することを特徴とする空気入りラジアルタイヤある。
【0011】
ここに上記のタイヤの最大負荷能力とは、JATMA YEAR BOOK(1998年版)に記載された該当タイヤ種類毎の「空気圧−負荷能力表」に掲載されている負荷能力(kg) のうちの最大負荷能力(太字記載)を指し、最大負荷能力に対応する空気圧も上記「空気圧−負荷能力表」に掲載されている空気圧(kPa 又はkgf/cm2)の値を用いるものとする。上記接地幅もまたJATMA YEAR BOOK(1998年版)の「一般情報」のうちの「2.用語の定義」に記載されている「接地幅」の定義に従う。なおタイヤに空気圧を充てんし荷重を負荷するため用いるリムは、同じくJATMA YEAR BOOK(1998年版)に記載されている「タイヤの適用リム」の表に掲載されている該当タイヤ種類毎、タイヤサイズ毎の適用リムである。以上述べたところは以下同じであり、JATMA YEAR BOOK(1998年版)に記載された上記諸事項は以下単にJATMA規格と略記する。
【0012】
また、上記の目的を達するための、この出願の請求項2に記載した発明は、一対のビード部及び一対のサイドウォール部と、両サイドウォール部に連なるトロイド状トレッド部とを有し、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアルカーカスと、該ラジアルカーカスの外周でトレッド部を強化するベルトとを備え、回転方向指定のトレッドパターンを有する空気入りラジアルタイヤにおいて、
上記タイヤの最大負荷能力に対応する空気圧を充てんしたタイヤを前記最大負荷能力の70%に相当する荷重負荷の下で平板に垂直に押圧したトレッド部の接地状態にて、
トレッド部接地幅の10%以上の距離を接地幅端から隔てるトレッド部ショルダ領域の、トレッド部端を含む少なくとも一部領域が、タイヤの回転軸心を含む平面への投影長さをもってトレッド部端に開口する複数本の溝と、これらの溝によりトレッド周方向に分断される陸部とを有し、かつ
タイヤの荷重負荷転動下にて後から接地する側のみの各分断陸部の、トレッド部端を含む少なくとも一部陸部が、溝縁に沿う残存面取り部を有し、
前記複数本の溝それぞれのトレッド部端を含む一部溝又は全溝の溝幅方向直線を含み上記平板表面と互いに垂直な平面による溝断面にて、溝深さ方向の溝幅中央を連ねる線が、上記溝幅方向直線上の溝縁両端を結ぶ線分の中点を足とする垂線に対しトレッド部表面から溝底に向け3°以上の角度で傾斜し、その傾斜方向がタイヤ回転方向と反対向きであることを特徴とする空気入りラジアルタイヤにある。
0013
なおこの場合、溝縁両端を結ぶ線分の垂線に対する傾斜角度の上限は良好な耐偏摩耗性保持の点で20°とするのが望ましい。
ところで、上記の溝幅方向直線とはトレッド部接地面における溝幅中央を連ねる線の法線乃至垂線とその延長線を指す。以下同じである。
【0014】
請求項1および2に記載した発明の好適実施形態として、請求項に記載した発明のように、上記残存面取り部表面が、上記溝の溝幅方向直線を含み上記平板表面と互いに垂直な平面による断面にて円弧形状及び直線形状の少なくとも一方の形状を有するものとする。
【0015】
ここに請求項2および3に記載した発明を発展させた構成は、請求項に記載した発明のように、上記溝断面における溝深さ方向の溝幅中央を連ねる線の上記垂線に対する傾斜角度が、タイヤ赤道面に最も近い位置からトレッド部端に向うにつれ漸増するものである。
【0016】
また前記目的を達成するため、この出願の請求項に記載した発明は、一対のビード部及び一対のサイドウォール部と、両サイドウォール部に連なるトロイド状トレッド部とを有し、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアルカーカスと、該ラジアルカーカスの外周でトレッド部を強化するベルトとを備え、回転方向指定のトレッドパターンを有する空気入りラジアルタイヤにおいて、
上記タイヤの最大負荷能力に対応する空気圧を充てんしたタイヤを前記最大負荷能力の70%に相当する荷重負荷の下で平板に垂直に押圧したトレッド部の接地状態にて、
トレッド部接地幅の10%以上の距離を接地幅端から隔てるトレッド部ショルダ領域の、トレッド部端を含む少なくとも一部領域が、タイヤの回転軸心を含む平面への投影長さをもってトレッド部端に開口する複数本の溝と、これらの溝によりトレッド周方向に分断される陸部とを有し、かつ
上記複数本の溝それぞれのトレッド部端を含む一部溝又は全溝の溝幅方向直線を含み上記平板面と互いに垂直な平面による溝断面にて、溝切込み方向の溝幅中央を連ねる線が、上記溝幅方向直線上の溝縁両端を結ぶ線分の中点を足とする垂線に対しトレッド部表面から溝底に向けタイヤ回転方向と反対向きで傾斜し、その傾斜角度がタイヤ赤道面に最も近い傾斜位置からトレッド部端に向うにつれ漸増して成ることを特徴とする空気入りラジアルタイヤである。
【0017】
ここに上記のタイヤの最大負荷能力、最大負荷能力に対応する空気圧、接地幅及びタイヤに空気圧を充てんし荷重を負荷するため用いるリムとは全て先に述べたJATMA規格に従い、溝幅方向直線も先の定義に従う。
【0018】
請求項に記載した発明の好適実施形態においては、請求項に記載した発明のように、上記溝幅方向直線上の溝縁両端を結ぶ線分の中点を足とする垂線に対する、溝切込み方向の溝幅中央を連ねる線の溝底からの傾斜角度を3°以上とする。この傾斜角度の上限は20°とするのが良好な耐偏摩耗性を保持する上で望ましい。
【0019】
以上請求項1〜に記載した溝及び溝に関連する事項に関し、ここに言う溝とは、広幅の溝すなわち一般呼称としての溝、この溝より狭幅の溝すなわち一般呼称としての細溝、この細溝よりさらに狭幅の一般呼称としてのサイプ(スリット )の全てを総称するものであり、よって溝は広幅溝(溝)、細溝及びサイプのうち少なくとも一つを指し、これらそれぞれの単独配設の場合と組合せ混在配設の場合との双方を可とする。
【0020】
【発明の実施の形態】
以下、この発明の実施の形態の一例を図1〜図5に基づき説明する。
図1は、この発明の一実施形態例における空気入りラジアルタイヤの左半断面図であり、
図2は、図1に示すタイヤトレッド部の一実施形態例のフットプリントによる接地形状転写図であり、
図3は、図1に示すタイヤトレッド部の別の実施形態例のフットプリントによる接地形状転写図であり、
図4は、図2に示す接地形状転写図を得るタイヤの同図上のI I 線に沿う断面図あり、
図5は、図3に示す接地形状転写図を得るタイヤの同図上のV−V線に沿う断面図である。
【0021】
図1において、空気入りラジアルタイヤ1(以下タイヤ1という)は、一対のビード部2(片側のみ示す)と、一対のサイドウォール部3(片側のみ示す)と、一対のサイドウォール部3にトロイド状をなして連なるトレッド部4とを有しビード部3内に埋設したビードコア5相互間にわたり上記各部2、3、4を補強する1プライ以上、図示例は2プライ6−1、6−2のラジアル配列コードのゴム被覆になるカーカス6と、カーカス6の外周でトレッド部3を強化するベルト7とを備え、さらにベルト7の外周側にトレッドゴム8を有する。図示例は乗用車用タイヤ1であり、カーカス6には有機繊維コード、例えばポリエステルコードを適用し、ベルト7には2層のスチールコード交差層と最外層にはナイロンコードの螺旋巻回になるキャッププライとを適用する。
【0022】
タイヤ1をJATMA規格が定める適用リム(図示省略)に組み付け、これにJATMA規格が定める最大負荷能力に対応する空気圧を充てんし、タイヤ1と適用リムとの組立体(図示省略)を表面が平面をなす平板に対し静止させた状態で垂直方向に最大負荷能力の70%に相当する荷重Wの負荷の下で平板に押圧する。
【0023】
そのときしかるべき手段、例えばトレッド部4の踏面4tに遅乾性の塗料を塗布し、ケント紙のように比較的高い引張強度をもち紙厚が比較的厚い紙でかつ塗料の転写可能な紙を平板上に固定する手段を用い、トレッド部4踏面4tの接地状態をあたかもプリントしたように正確に再現させ得る、いわゆるフットプリントを採る。このフットプリントの転写部分を縁取りしたのが図2及び図3に示す接地形状転写図である。
【0024】
以下述べるところは図2、3に示す踏面4tの接地形状転写図をタイヤ1に当てはめ用いて、荷重Wの負荷の下の接地状態におけるトレッド部4は、タイヤ赤道面Eを通る1本の直状の中央主溝10と、その両側に1本宛の直状の側方主溝11とを有し、さらに中央主溝10の両側で互いに「ハ」の字状に末広がりをなして延び側方主溝11に開口する傾斜溝12と、傾斜溝12から枝分かれし傾斜溝12と同じ向きに延び側方主溝11に開口する傾斜枝溝13と、側方主溝11に開口しそこからトレッド部4の端に開口する複数本の溝14とを有する。溝14については後述する。
【0025】
以上から明らかなように、このタイヤ1は回転方向指定のトレッドパターンを有することが前提であり、図2、3ではタイヤ1での回転方向を矢印Dにて示す。なお図2、3は接地形状転写図であるからタイヤ1の荷重負荷転動では図2、3の下方が接地の踏込み側であり上方が蹴出し側となる。図3に示すタイヤ1でのトレッド部4は互いに隣り合う複数本の溝14の間に2本乃至3本のサイプ15を有し、これらサイプ15についても後述する。
【0026】
ここでJATMA規格が定義するトレッド部4の接地幅CWは、平板との接触面におけるタイヤ1の軸方向最大直線距離であり、この接地幅CWの10%以上の距離Lを接地幅端Ceから隔てるトレッド部4のショルダ領域Rsにおいて、該領域Rsのトレッド部4端を含む少なくとも一部領域(図示例はショルダ領域Rs)のトレッドゴム8が、図2に示す例ではトレッド部4端に開口する溝14を有し、図3に示す例では同じくトレッド部4端に開口する溝14と、溝14より著しく幅狭の溝すなわちサイプ15とを有するものとし、これら溝14及びサイプ15はタイヤ1の回転軸心を含む平面(子午断面)、例えば1本の直線PL
で表す平面への投影長さを有する配列になるものとする。サイプ15は細溝に置き換えることもできる。
【0027】
互いに隣り合う溝14はトレッドゴム8を踏面4t周方向に分断して陸部18を形成し、図3に示す例では隣り合う溝14が分断形成した陸部18をサイプ15がさらに細分化し細分陸部18−1、18−2、18−3を形成する。図2、3に示す陸部18は細分陸部18−1、18−2、18−3を含め側方主溝11に開口する溝14及びサイプ15によりブロック化された例であるが、必ずしもブロックである必要はなくラグ状陸部であることを可とし、タイヤの用途、要求性能に基づき最適の陸部形状を自由に選択することができる。
【0028】
ここにまず図4を参照して、陸部18及び細分陸部18−1、18−2のうち少なくとも陸部18(図3では細分陸部18−1、18−2、18−3など全てを含む陸部)については、矢印D方向を回転方向とするタイヤ1の荷重負荷転動下で後から接地する側のみ、すなわち蹴出し側のみのトレッド部4の端Ceを含む少なくとも一部陸部が、タイヤ1に最大負荷能力の70%に相当する荷重Wを負荷したトレッド部4の接地状態で、溝14の縁に沿う残存面取り部Y(丸印にて囲んだ部分)を有するものとする。従ってタイヤ1の荷重負荷転動下で先に接地する側の陸部の溝14の縁には、少なくとも上記接地状態で残存面取り部Yは存在しない。この残存面取り部Yはタイヤ赤道面Eに最も近い位置からトレッド部4側開口端まで連なるのが好適に適合する。なお図2に示すI I 線は溝14に関する溝幅方向直線である。
【0029】
残存面取り部Yの表面形状は図示のように曲率半径rの円弧、図示を省略したが複数の曲率半径をもつ複合円弧、直線及び円弧と直線との複合曲線のいずれもが適合し、いずれを採用するかは要求特性により自由に選択することができる。なお図4に二点鎖線で示す部分はタイヤ1への負荷荷重Wを取り除いたときの形状を図解したものであり、このときの蹴出し側陸部に先に述べた接地状態で残存面取り部Yとなるべき面取り部を設けるのは当然である。
【0030】
図3に示す陸部18については図示を省略したが上記残存面取り部Yを有し、さらに細分陸部18−1、18−2個々についても蹴出し側の少なくとも一部陸部に上記残存面取り部Yを設けることを可とする。また図2、3に示す溝14の全て乃至一部がサイプ15もしくは細溝に代わる場合もあるので、当然に上記残存面取り部Yを有するものとする。
【0031】
次に図5を参照して、トレッド部4の端Ceを含む溝14の一部溝部分又は全溝の断面にて、溝14の切込み方向の溝幅中央を連ねる線Mを、図3に示すV−V線上における溝縁両端14eを結ぶ線分の中点を足とする垂線VLに対し傾斜させると共にトレッド部4の表面、すなわち踏面4t(図1参照)側から溝底Gbに向けタイヤ1の回転方向Dと反対向きに傾斜させるものとする。線Mは直線、曲線及び直線と曲線との複合曲線のいずれであっても良い。なお図5ではサイプ15の図示を省略している。
【0032】
上記の線Mの垂線VLに対する傾斜角度αは、線Mが直線の場合は傾斜角度αで一定であるが、図5に示すように線Mが曲線又は複合曲線の場合は所定の切込み位置での接線角度をとるものとし、これを図5では踏面4tに相当する位置では傾斜角度αT 、溝底Gbでは傾斜角度αB であらわし、線Mが直線以外の場合は溝14の同じ切込み位置でみて、ここに傾斜角度αはタイヤ赤道面Eに最も近い傾斜線Mから溝14が開口するトレッド部4端部に向かうにつれ漸増させるものとする。なお図5に示す二点鎖線部分もまたタイヤ1への荷重Wを取り除いたときの形状を図解したものであり、これから明らかなように先に述べた空気圧充てんのみの状態で溝14は傾斜角度αよりも小さな傾斜角度をもち、上記と同様にこの傾斜角度が漸増する傾斜溝とする。
【0033】
以上は溝14について述べたが、図3に示すサイプ15についても溝14と同じ傾斜方向で同様な傾斜角度αA (図示省略)をもち、さらに溝14と同じく傾斜角度αA をサイプ15が開口するトレッド部4端部に向け漸増させる線MA (図示省略)を有するものとする。溝14が細溝であっても同じである。
【0034】
さて先に説明したように、小さな偏平率をもつ従来タイヤ20、特に60%以下の偏平率をもつタイヤ20は、図8、図9に示すような登り勾配の傾斜路面IS を走行する場合に、タイヤ20への垂直負荷荷重Wにより傾斜路面IS の登り勾配上方になればなる程より強くトレッドゴム23が傾斜路面IS に押圧され、登り勾配下方では寧ろ傾斜路面IS から浮き気味にさえなる。その結果荷重W負荷の下で傾斜路面IS を走行するタイヤ20には登り勾配方向に横力Fyが作用することは先に述べた通りである。この傾斜路面IS 上のトレッド部踏面23tの接地状態に相当する接地形状図を図10に示す。
【0035】
図10は、先に記述した空気圧を充てんしたタイヤ20を最大負荷能力の70%に相当する荷重W負荷の下、キャンバー角度10°で平板にを押圧したときの接地部縁取り図である。図10に示す接地部縁取り図と同じ条件下でのタイヤ20の水平平坦路面の接地状態を同じくフットプリントの接地部縁取り図として図11に示す。図10、図11に示す符号Eはタイヤ赤道面上の線に相当する赤道線である。図10に示す接地部縁取り図はオーバーオールで見て概ね台形形状をなし、しかも殆どタイヤ赤道線Eから片側のトレッド部踏面23tのみが接地しているありさまを示す一方、図11に示す接地部縁取り図はオーバーオールで見てタイヤ赤道線Eを中心軸とする概ね長円形形状をなしているのが分かる。
【0036】
上述したトレッド部踏面の接地状態はタイヤ1の場合でも同様であり、よって荷重W負荷の下で傾斜路面IS を走行するタイヤ1にも登り勾配方向に横力Fyが作用するのも同様であるが、以下に述べる理由により、傾斜路面IS 走行タイヤ1のフットプリント最外側縁取りを連ねる線図として示す図6を参照して、タイヤ1にはその質量の質点を通りタイヤ1への集中負荷荷重Wの作用方向に延びる中心軸Z周りにタイヤ1を傾斜路面IS の下り勾配方向に回転させようとする復元モーメントMzが発生する点においてタイヤ1は従来タイヤ20と著しく異なる。
【0037】
すなわちまず、以下は図4を参照して、トレッド部4の分断陸部18は負荷荷重Wがもたらす接地圧により潰れ変形を生じる。ところが所定配合になる加硫ゴム、ここではトレッドゴム8は非圧縮性の特性を有しているので、潰れ変形時に接地面でも拡張しようとする傾向を有し、この拡張傾向は分断陸部18の溝14の溝縁部において特に顕著である。
【0038】
しかし部分荷重ΔWが作用する陸部18の表面(踏面4t)は路面(S)との間の摩擦接触により動きが拘束されるため拡張変形は抑制される。その結果互いに隣り合う二本の溝14の溝縁近傍で互いに向かい合う、タイヤ赤道面Eに平行な反対方向のせん断力Scrが分断陸部18に働く。しかしトレッド部4の接地状態で、分断陸部18が一方の溝14側の溝縁のみに残存面取り部Yを有し、他方の溝14側の溝縁に先鋭部を有する場合は、溝縁残存面取り部Yのゴム潰れ反力が溝縁先鋭部のゴム潰れ反力に比し低減して相互に反対方向のせん断力Scrの均衡が崩れ、残存面取り部Y側の破線矢印で示すせん断力Scrが先鋭溝縁側の実線矢印で示すせん断力Scrに比しより低減し、これにより各分断陸部18は全体としてタイヤ1の回転方向Dとは反対向きのせん断力ΔFxdを発生する。
【0039】
以上述べた各分断陸部18に発生するせん断力ΔFxdの、接地している分断陸部18全体の合計せん断力Fxdは、水平平坦路面に対するトレッド部4の接地状態では赤道面Eの両側で同じ方向に同じ量だけ発生するのでタイヤ1の中心軸Z周り(図6参照)に回転モーメントを生じさせることはなく、単にタイヤの駆動力発生源として働くに過ぎない。
【0040】
しかしタイヤ1が傾斜路面Isを走行する場合はキャンバー角度を付した図10の場合と同様にトレッド部4は片接地となり、この片接地状態におけるフットプリントの接地部縁取り図を示す図7における各分断陸部18のせん断力ΔFxdはタイヤ赤道面Eから片側のみのトレッド部4、それも接地幅端Ceを含むショルダ部側のみに発生し、片側のみのせん断力ΔFxdの合計せん断力Fxdは片側駆動力発生源として働き、その結果ショルダ領域Rsに発生する合計せん断力Fxdは図6に示すようにタイヤ1の中心軸Z周りにタイヤ1を傾斜路面IS の下り勾配方向に回転させようとする復元モーメントMzを発生させる。
【0041】
復元モーメントMzは横力Fyを相殺するように働き、横力Fyのベクトル量を低減するか、ほぼゼロとするか、場合により僅かにマイナスとし、これによりタイヤ1は傾斜路面Isにトレッド部4の一部が乗り上げてもドライバの意図に反してタイヤ1が傾斜路面Isを駆け登る程の挙動を示すことはなく、その結果轍路面のような凹部が形成された路面の直進走行安定性は顕著に改善される。
【0042】
次に図5を参照して、トレッド部4の接地状態で溝14の切込み方向の溝幅中央を連ねる線Mを垂線VLに対しタイヤ1の回転方向Dと反対向きに傾斜させるということは、荷重無負荷状態で同じ向きに傾斜させておくことが必要であり、タイヤ1への荷重Wの印加により線Mの傾斜度合いが増すように、換言すれば分断陸部18が傾斜度合いを増すように倒れ込み変形しようとする。
【0043】
しかしこの場合も部分荷重ΔWが作用する陸部18の表面(踏面4t)は路面(S)との間の摩擦接触により動きが拘束されるため分断陸部18の倒れ込み変形はこの拘束の範囲内のところで抑制される。この抑制は路面(S)に対し鈍角をなす溝壁面の溝縁14e近傍ほど大きく、この抑制の反力としてのせん断力Sbが分断陸部18にもたらされ、せん断力Sbの方向は図5に矢印で示すようにタイヤ1の回転方向Dと逆向きである。
【0044】
この場合、溝14の切込み方向の溝幅中央を連ねる線Mの垂線VLに対する傾斜角度αは値が大きい程せん断力Sbも大きくなる特性を有し、よって傾斜角度α(αT 、αB )がタイヤ赤道面Eに最も近い傾斜位置からトレッド部4の端に向かうにつれ漸増する構成は、溝14の溝幅中央を連ねる線Mが曲線又は複合曲線の場合も含め、トレッド部4の端に近い部位の分断陸部18ほど大きなせん断力Sbを発生させるので、各分断陸部18のΣSb=ΔFxdの作用点をよりトレッド部4端寄りにシフトさせる。
【0045】
その結果各分断陸部18のせん断力ΔFxdを接地面内で足し合わせた合計せん断力Fxdの作用点もまた、図6に示すタイヤ1の中心軸Zより一層遠く位置し、これにより中心軸Z周りの復元モーメントMzはより一層大きな値となる利点が得られる。この復元モーメントMzに基づき凹部形成路面走行におけるタイヤ1の直進走行安定性向上は先に述べたところと同じである。
【0046】
以上述べた蹴出し側のみの分断陸部18の少なくとも一部陸部が溝14の溝縁に沿う残存面取り部Yを有する構成と、溝14の切込み方向の溝幅中央を連ねる線Mが垂線VLに対しタイヤ1の回転方向Dと反対向きに傾斜し、かつ傾斜角度α(αT 、αB )がタイヤ赤道面Eに最も近い傾斜位置からトレッド部4の端に向かうにつれ漸増する構成とは互いに独立で凹部形成路面走行におけるタイヤ1の直進走行安定性向上の効果を奏する一方、これら二つの構成を組合わせた構成もより一層有効な直進走行安定性の向上効果を奏する。
【0047】
また以上は溝14について述べたが、サイプ15についても同様な効果が得られ、さらに溝14を細溝に置換しても同様な効果を得ることができるのは勿論である。なおタイヤ1に最大負荷能力に対応する空気圧を充てんし、最大負荷能力の70%に相当する荷重Wを印荷し、かつトレッド部4の特定ショルダ領域を接地幅の10%以上としたのは実車における使用条件に近い条件として設定したものである。
【0048】
ここに残存面取り部Yの表面は、図4に示す断面にて曲率半径rの円弧である場合、図示は省略したが溝14に向かうテーパ状切落し直線の場合、これら円弧及び直線の複合曲線の場合のいずれも可とする。また残存面取り部Yはタイヤ赤道面Eに最も近い位置からトレッド部4端に向かうにつれ面取り度合いを漸増をさせるのが有効であり、このようにすればショルダ領域Rsに発生する合計せん断力Fxdの作用点はタイヤ1の中心軸Z(図6参照)よりタイヤ1の外側にシフトするのでより大きな復元モーメントMzを得ることができ、有利である。
【0049】
残存面取り部Yの曲率半径r、溝14への最大切落し高さは0.5〜3mmの範囲内が適合する。なぜなら0.5mm未満では実際上先に述べた効果を得ることができず、3mmを超えると分断陸部18の接地面積が減少し過ぎて却って効果が減殺され過ぎ、いずれも不可である
【0050】
また溝14の溝幅中央を連ねる線Mをタイヤ1の回転方向Dと反対向きに傾斜させる傾斜角度α(αT 、αB )は3°以上とし、傾斜角度α(αT 、αB )は成るべく大きな値が好ましい反面、ショルダ領域Rsの接地圧分布が接地幅端Ceに向かうにつれ減少し、そのため元来ショルダ領域Rsは偏摩耗が発生し易い傾向にあるので限度を超えた大きな傾斜角度α(αT 、αB )は好ましくない点、またタイヤ1の加硫成型時の金型からの型抜け性を良好に保持する点を合わせて傾斜角度α(αT 、αB )の上限は20°を限度とする。この傾斜角度α(αT 、αB )の3°〜20°の範囲内とする点は、残存面取り部Yを有する構成に、線Mをタイヤ1の回転方向Dと反対向きに傾斜させる上記構成を組合わすときにも適用する。
【0051】
【実施例】
乗用車用ラジアルプライタイヤで、サイズが235/45ZR17であり、構造は図1に従い、2プライのラジアル配列ポリエステルコードのゴム被覆になるカーカス6と、2層のスチールコード交差層とナイロンコードのキャッププライ層とのベルト7とを備える。実施例1〜のタイヤ1は図2に示すフットプリントに対応するトレッドパターンを備え、実施例のタイヤ1は図3に示すフットプリントに対応するトレッドパターンを備える。実施例1〜の各タイヤは分断陸部18の残存面取り部Yは断面が曲率半径rの円弧を有するもの、溝14の溝幅中央を連ねる線Mが直線で傾斜角度αにてタイヤ回転方向Dと反対向きに傾斜するもの、これらの複合タイプのものとした。
【0052】
上記のフットプリントはいずれも、JATMA規格(1998年版)が定める適用リムのうちの標準リム8JJにタイヤ1を組み付け、これにJATMA規格(1998年版)に記載されている最大負荷能力650kg(質量) に対応する空気圧240kPa を充てんし、最大負荷能力650kg(質量) の70%に相当する荷重450kgf を負荷したときのトレッド部4の接地形状である。
【0053】
実施例1〜のタイヤグループに対し、図2に示すフットプリントに準じるトレッドパターンを備える比較例タイヤ1を準備し、実施例のタイヤグループに対しては、図3に示すフットプリントに準じるトレッドパターンを備える比較例タイヤ2を準備した。
【0054】
これら実施例1〜の各タイヤは、残存面取り部Yの断面の曲率半径rが、0.5〜2.5mmで漸増するもの、線Mの傾斜角度α=10°一定のもの、線Mの傾斜角度5〜20°で漸増するものの各タイプに分け、一部実施例タイヤはこれらの複合タイプとした。これら残存面取り部Yの断面の曲率半径r及び傾斜角度αそれぞれの有無を、実施例1〜及び比較例1のグループは表1に、実施例及び比較例2のグループは表2にそれぞれ示す。
【0055】
【表1】

Figure 0004063397
【0056】
【表2】
Figure 0004063397
【0057】
実施例1〜のタイヤ及び比較例1、2のタイヤを供試タイヤとし、前記リム及び空気圧を用いて下記2項目の試験を下記試験条件の下で実施した。
(1)キャンバースラストFcの測定:フラットベルト式室内試験機を用い、ベルト速度を60km/hとし、このベルトに各供試タイヤをキャンバー角度5°の下で最大負荷能力650kgの70%に相当する荷重450kgf で押圧し、キャンバースラストFcを測定する。測定結果は比較例1、2をそれぞれのグループで100とする指数にて表し、値は小なる程良い。
(2)実車による直進走行安定性のテスト:個々の供試タイヤを国産乗用車2500ccクラスのFR車の全輪に装着し、前席に2名乗車し轍を形成した乾燥アスファルトのテスト路面を100km/hの速度で走行したときのワンダリング発現度合い、すなわち直進走行安定性をテストドライバのフィーリングにより10点満点で評価した。評点は大きいほど良い。
以上の2項目のテスト結果をタイヤグループ毎に表1、2の右側に示す。
【0058】
表1及び表2が示すテスト結果から、まず実施例1〜のタイヤいずれも比較例1、2のタイヤに比しキャンバースラストFc発生量が著しく低減し、実車による乾燥轍路面走行試験における直進走行安定性が格段に優れていることがわかり、また、残存面取り部Yのみを有する構成の実施例1及び実施例の各タイヤでも比較例1、2のタイヤに比しキャンバースラストFc発生量の著しい低減と直進走行安定性の一層の向上とを達成することができることがわかる。
【0059】
【発明の効果】
この出願の請求項1〜に記載した発明によれば、轍に代表されるような両側に登り勾配の傾斜面を有する凹部が形成されている路面走行でのワンダリング現象の発生が抑制され、その結果高速での直進走行安定性に優れる、特に偏平率が60%以下の高性能ラジアルタイヤと呼ばれる空気入りラジアルタイヤを提供することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態例のタイヤの左半断面図である。
【図2】図1に示すタイヤトレッド部の一実施形態例のフットプリントによる接地形状転写図である。
【図3】図1に示すタイヤトレッド部の別の実施形態例のフットプリントによる接地形状転写図である。
【図4】図2に示す接地形状転写図を得るタイヤの同図上の I I線に沿う断面図である。
【図5】図3に示す接地形状転写図を得るタイヤの同図上のV−V線に沿う断面図である。
【図6】図1に示すタイヤの傾斜路面走行時に発生するせん断力及び復元モーメントの説明図である。
【図7】図1に示すタイヤの傾斜路面走行中のせん断力発生状態を示す説明図である。
【図8】傾斜路面を走行するタイヤの正面図又は背面図である。
【図9】図8に示すタイヤの断面図である。
【図10】図7に示すタイヤをキャンバー角度10°で平板にを押圧したときのフットプリントの接地部縁取り図である。
【図11】図7に示すタイヤのフットプリントの接地部縁取り図である。
【符号の説明】
1 空気入りラジアルタイヤ
2 ビード部
3 サイドウォール部
4 トレッド部
4t 踏面
5 ビードコア
6 カーカス
6−1、6−2 カーカスプライ
7 ベルト
8 トレッドゴム
10 直状中央主溝
11 直状側方主溝
12 傾斜溝
13 傾斜枝溝
14 子午断面への投影長さを有する溝
14e 溝縁
15 サイプ
18 分断陸部
18−1、18−2、18−3 細分陸部
CW 接地幅
Ce 接地幅端
D タイヤ回転方向
Rs ショルダ領域
Y 残存面取り部
M 溝14の切込み方向の溝幅中央を連ねる線
VL 垂線
α 線Mの垂線VLに対する傾斜角度
S 傾斜路面
S 平板表面
Fc キャンバースラスト
Fy 横力
Scr、Sb せん断力
Fxd タイヤ回転方向と反対方向せん断力
Mz 復元モーメント[0001]
BACKGROUND OF THE INVENTION
    The present invention relates to a pneumatic radial tire, and more particularly to a pneumatic radial tire for use in a vehicle such as a passenger car, a truck, and a bus. In particular, the present invention has an inclined portion, for example, a concave portion such as a saddle, in a direction crossing the traveling direction. Pneumatic radial tires that improve the straight running stability by suppressing the so-called wandering phenomenon, which is a driver's unpredictable tire behavior that occurs when traveling on the road at high speed, and has a particularly small flatness Related to high performance radial tires.
[0002]
[Prior art]
    Pneumatic radial tires, especially high-performance radial tires, have high lateral rigidity to generate lateral force commensurate with the centrifugal force of the vehicle that occurs when the vehicle turns due to the recent increase in output of vehicles. Therefore, the tire must have a tire shape that reduces the flatness ratio and suppresses the height of the sidewalls to make the contact width of the tread as wide as possible. is doing.
[0003]
[Problems to be solved by the invention]
    High-performance radial tires exhibit excellent handling stability when running on flat roads, but when traveling at high speeds on road surfaces with sloping surfaces such as saddle recesses, the tires are subject to the degree of inclination of the recesses on the road surface. As a result of inhomogeneous forces acting, complex behavior is exhibited.
[0004]
    For example, a tire having a small flatness, particularly a radial tire for a passenger car having a flatness of 60% or less, refers to FIG. 8 showing the front or back of the tire 20 traveling on the inclined road surface Is, and the climbing gradient received from the inclined road surface Is. The camber thrust Fc in the direction (indicated by the arrow) generates a lateral force Fy having a component force in the direction of the axis XX of the tire 20, and the lateral force Fy causes the vehicle to apply a force to run up the inclined road surface Is. Therefore, it will impair the straight running stability. In general, when the slope of the inclined road surface Is is the same, the value of the lateral force Fy is larger as the tire has a smaller flatness. Reference symbol Fr is a reaction force to the tire 20 perpendicular to the inclined road surface Is.
[0005]
    The reason why the camber thrust Fc is generated in the tire 20 traveling on the inclined road surface Is is as follows. That is, as shown in FIG. 9 with the tire 20 shown in FIG. 8 as a cross section, the running tire 20 has an upward slope on the inclined road surface Is due to a load W acting in a direction perpendicular to the rotational axis XX. The closer to the side, the stronger it is pressed by the road surface Is, and the lower side of the climb slope, rather than the road surface Is.
[0006]
    As a result, the deflection deformation amount of the sidewall portion 21 of the tire 20 that presses the upward slope upward side of the inclined road surface Is under the vertical load W applied to the tire 20 is the deflection deformation amount of the downward slope sidewall portion 21. The large bending deformation on the upper side of the climbing slope is significantly larger than that of the carcass ply in the direction of the arrow A, and the belt 22 near the carcass ply that is deformed by the deformation is bent in the direction of the arrow B. Since deformation occurs, shear deformation occurs in the tread rubber 23 portion that covers the belt 22 portion that undergoes bending deformation. As a result, the tread rubber 23 of the tire 20 as a whole climbs on the inclined road surface Is, a shearing force in the direction of arrow C is generated, and the resultant force of the shearing force on the entire contact surface is nothing but the camber thrust Fc. .
[0007]
    In other words, as described above, when the tread portion of the running tire 20 gets on the inclined road surface Is, the tire 20 generates a camber thrust Fc in the upward gradient direction of the inclined road surface Is, and the driver is driven by the lateral force Fy component. Regardless of the intention of the vehicle, the vehicle traveling at high speed exhibits a so-called wandering phenomenon in which the vehicle rapidly climbs up the inclined road surface Is, and the straight running stability of the vehicle is significantly impaired.
[0008]
    In order to improve this wandering, it has been proposed to chamfer the edge of the tread part or to apply a large number of sipe (slit) processes, thereby reducing the camber thrust Fc. This is only a countermeasure, and it must be said that a high-performance radial tire with a flatness ratio of 60% or less is inadequate, and a tire capable of exhibiting highly straight running stability suitable for a high-performance radial tire. What is desired is the current situation.
[0009]
    So thisapplicationClaims 1 to 16The pneumatic radial which is excellent in straight running stability at a high speed by suppressing the occurrence of wandering phenomenon on road running in which concave portions having slopes with upward slopes are formed on both sides like a kite. An object is to provide a tire, particularly a high-performance radial tire having a flatness ratio of 60% or less.
[0010]
[Means for Solving the Problems]
    To achieve the above purpose, thisapplicationThe invention described in claim 1 includes a pair of bead portions, a pair of sidewall portions, and a toroid-like tread portion that is continuous with both sidewall portions, and these portions are reinforced across bead cores embedded in the bead portions. In a pneumatic radial tire comprising a radial carcass having one or more plies and a belt for reinforcing a tread portion on an outer periphery of the radial carcass, and having a tread pattern for specifying a rotation direction.
    In the ground contact state of the tread portion in which the tire filled with air pressure corresponding to the maximum load capacity of the tire is pressed perpendicularly to the flat plate under a load load corresponding to 70% of the maximum load capacity,
    At least a partial region including the tread portion end of the tread portion shoulder region separating a distance of 10% or more of the tread portion contact width from the end of the contact width has a projection length onto a plane including the rotation axis of the tire.WhatA plurality of grooves opening at the end of the tread portion, and a land portion divided in the tread circumferential direction by these grooves, and
    At least part of the land, including the tread edge, of each split land only on the side that comes into contact with the ground later under the rolling load of the tire has a remaining chamfer along the groove edge.And
  The remaining chamfered portion is gradually chamfered from the position closest to the tire equator surface toward the end of the tread portion.Pneumatic radial tire characterized byInis there.
[0011]
    Here, the maximum load capacity of the tire is the maximum load of the load capacity (kg) listed in the “pneumatic-load capacity table” for each tire type described in JATMA YEAR BOOK (1998 edition). Air pressure (kPa or kgf / cm) that indicates the capacity (in bold), and the air pressure corresponding to the maximum load capacity is also listed in the “Air Pressure-Load Capacity Table” above.2) Value shall be used. The ground contact width also follows the definition of “ground contact width” described in “2. Definition of terms” in “General information” of JATMA YEAR BOOK (1998 edition). In addition, the rim used to fill the tire with air pressure and apply the load is the same for each tire type and tire size listed in the “Trim Applicable Rim” table described in JATMA YEAR BOOK (1998 edition). Applicable rim. The above description is the same below, and the various items described in JATMA YEAR BOOK (1998 edition) are hereinafter simply abbreviated as JATMA standards.
[0012]
In order to achieve the above object, the invention described in claim 2 of the present application has a pair of bead portions and a pair of sidewall portions, and a toroidal tread portion connected to both sidewall portions. In a pneumatic radial tire comprising a radial carcass having one or more plies reinforced between bead cores each embedded in a bead portion, and a belt for reinforcing a tread portion on an outer periphery of the radial carcass, and having a tread pattern for specifying a rotation direction ,
In the ground contact state of the tread portion in which the tire filled with air pressure corresponding to the maximum load capacity of the tire is pressed perpendicularly to the flat plate under a load load corresponding to 70% of the maximum load capacity,
At least a partial region including the tread portion end of the tread portion shoulder region that separates the distance of 10% or more of the tread portion contact width from the end of the tread portion has a projected length onto a plane including the rotation axis of the tire. And a plurality of grooves that are open to each other, and land portions that are divided in the tread circumferential direction by these grooves, and
At least part of the land portion including the tread portion end of each divided land portion only on the side to be grounded later under the load load rolling of the tire has a remaining chamfered portion along the groove edge,
  A line connecting the center of the groove width in the groove depth direction in a groove cross section by a plane perpendicular to the flat plate surface and including a straight line of the groove width direction of the partial groove or the entire groove including the end of the tread portion of each of the plurality of grooves. Is inclined at an angle of 3 ° or more from the surface of the tread portion toward the bottom of the groove with respect to a perpendicular line with the midpoint of the line segment connecting both ends of the groove edge on the straight line in the groove width direction, and the inclination direction is the tire rotation direction. It is a pneumatic radial tire characterized by being in the opposite direction.
[0013]
    In this case, it is desirable that the upper limit of the inclination angle with respect to the perpendicular to the line segment connecting both ends of the groove edge is 20 ° in terms of maintaining good uneven wear resistance.
  By the way, the above-mentioned straight line in the groove width direction means a normal line or a perpendicular line extending from the center of the groove width in the tread portion grounding surface and an extension line thereof. The same applies hereinafter.
[0014]
    Claim 1And 2As a preferred embodiment of the invention described in claim 1.3As described in the invention described above, the surface of the remaining chamfered portion has at least one of an arc shape and a linear shape in a cross section including a straight line in the groove width direction of the groove and perpendicular to the flat plate surface. To do.
[0015]
    Claims here2 and 3The structure developed from the invention described in claim4As described in the invention described above, the inclination angle of the line connecting the center of the groove width in the groove depth direction in the groove cross section with respect to the perpendicular increases gradually from the position closest to the tire equatorial plane toward the tread portion end. .
[0016]
    In order to achieve the above purpose,applicationClaims5The invention described in 1 includes a pair of bead portions and a pair of sidewall portions, and a toroidal tread portion continuous with both sidewall portions, and each ply is reinforced between bead cores embedded in the bead portions. A pneumatic radial tire including a radial carcass and a belt that reinforces a tread portion on the outer periphery of the radial carcass and having a tread pattern with a rotational direction designation.
    In the ground contact state of the tread portion in which the tire filled with air pressure corresponding to the maximum load capacity of the tire is pressed perpendicularly to the flat plate under a load load corresponding to 70% of the maximum load capacity,
    At least a partial region including the tread portion end of the tread portion shoulder region separating a distance of 10% or more of the tread portion contact width from the end of the contact width has a projection length onto a plane including the rotation axis of the tire.WhatA plurality of grooves opening at the end of the tread portion, and a land portion divided in the tread circumferential direction by these grooves, and
    A line connecting the center of the groove width in the groove cutting direction in a groove cross section by a plane perpendicular to the flat plate surface including the groove width direction straight line of the partial groove or the entire groove including the tread end of each of the plurality of grooves. Inclined in the direction opposite to the tire rotation direction from the tread surface to the groove bottom with respect to a normal line with the midpoint of the line segment connecting both ends of the groove edge on the straight line in the groove width direction. A pneumatic radial tire characterized by being gradually increased from an inclined position closest to to a tread portion end.
[0017]
    Here, the maximum load capacity of the tire, the air pressure corresponding to the maximum load capacity, the contact width, and the rim used to fill the tire with air pressure and apply the load are all in accordance with the above-mentioned JATMA standard and the straight line in the groove width direction. Follow previous definition.
[0018]
    Claim5Of the invention described inSuitableIn an embodiment, the claims6As in the invention described in the above, the inclination angle from the groove bottom of the line connecting the center of the groove width in the groove cutting direction with respect to the vertical line with the midpoint of the line segment connecting both ends of the groove edge on the straight line in the groove width direction as described above. 3 ° or more. The upper limit of the inclination angle is preferably 20 ° in order to maintain good uneven wear resistance.
[0019]
    Claims 1 to above6Regarding the groove and the matters related to the groove described in the above, the groove mentioned here is a wide groove, that is, a groove as a general name, a narrower groove than this groove, that is, a narrow groove as a general name, and narrower than this narrow groove. The sipe (slit) as a general term for the width is a general term. Therefore, the groove refers to at least one of a wide groove (groove), a narrow groove, and a sipe, and is combined with each of these single arrangements. Both the case of mixed arrangement is acceptable.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
    Hereinafter, an example of an embodiment of the present invention will be described with reference to FIGS.
    FIG. 1 is a left half sectional view of a pneumatic radial tire according to an embodiment of the present invention.
    FIG. 2 is a grounding shape transfer diagram by a footprint of an embodiment of the tire tread portion shown in FIG.
    FIG. 3 is a ground shape transfer diagram of the footprint of another embodiment of the tire tread portion shown in FIG.
    FIG. 4 is a diagram of the tire obtained from the ground contact shape transfer diagram shown in FIG.I VI VThere is a sectional view along the line,
    FIG. 5 is a cross-sectional view taken along line VV of the tire of the ground shape transfer diagram shown in FIG.
[0021]
    In FIG. 1, a pneumatic radial tire 1 (hereinafter referred to as a tire 1) includes a pair of bead portions 2 (only one side is shown), a pair of sidewall portions 3 (only one side is shown), and a pair of sidewall portions 3. And has a tread portion 4 that is continuous in a shape.,One ply or more that reinforces each of the parts 2, 3, and 4 between the bead cores 5 embedded in the bead part 3, and the illustrated example is a carcass 6 that is a rubber coating of a radial array cord of two plies 6-1 and 6-2. And a belt 7 that reinforces the tread portion 3 on the outer periphery of the carcass 6, and further includes a tread rubber 8 on the outer peripheral side of the belt 7. The illustrated example is a tire 1 for a passenger car. An organic fiber cord, for example, a polyester cord is applied to the carcass 6, and the belt 7 has a two-layer steel cord crossing layer and the outermost layer is a spiral winding of nylon cord. Apply with ply.
[0022]
    The tire 1 is assembled to an applicable rim (not shown) specified by the JATMA standard, filled with air pressure corresponding to the maximum load capacity specified by the JATMA standard, and the assembly of the tire 1 and the applicable rim (not shown) is flat. The flat plate is pressed against the flat plate under a load of a load W corresponding to 70% of the maximum load capacity in the vertical direction.
[0023]
    At that time, for example, a slow-drying paint is applied to the tread surface 4t of the tread portion 4, and a paper having a relatively high tensile strength, a relatively thick paper, and a paint-transferable paper such as Kent paper is flattened. A so-called footprint is used which can accurately reproduce the ground contact state of the tread portion 4 tread surface 4t as if it were printed using means for fixing on the top. The ground transfer shape shown in FIGS. 2 and 3 is obtained by trimming the transfer portion of the footprint.
[0024]
    In the following description, the tread portion 4 in the ground contact state under the load W is applied to one straight line passing through the tire equator plane E using the ground contact shape transfer diagram of the tread 4t shown in FIGS. Having a central central groove 10 and a straight side main groove 11 directed to one on both sides thereof, and extending on both sides of the central main groove 10 so as to spread toward each other in a “C” shape. An inclined groove 12 that opens to the side main groove 11, an inclined branch groove 13 that branches from the inclined groove 12 and extends in the same direction as the inclined groove 12, and opens to the side main groove 11, and opens to the side main groove 11. And a plurality of grooves 14 opened at the end of the tread portion 4. The groove 14 will be described later.
[0025]
    As is clear from the above, this tire 1 is premised on having a tread pattern for designating the rotation direction, and the rotation direction in the tire 1 is indicated by an arrow D in FIGS. 2 and 3 are transfer diagrams of the ground contact shape, and in the load-load rolling of the tire 1, the lower side of FIGS. The tread portion 4 in the tire 1 shown in FIG. 3 has two to three sipes 15 between a plurality of adjacent grooves 14, and these sipes 15 will also be described later.
[0026]
    Here, the ground contact width CW of the tread portion 4 defined by the JATMA standard is the maximum linear distance in the axial direction of the tire 1 on the contact surface with the flat plate, and a distance L of 10% or more of the ground contact width CW from the ground width end Ce. In the shoulder region Rs of the separated tread portion 4, the tread rubber 8 in at least a partial region including the end of the tread portion 4 of the region Rs (the shoulder region Rs in the illustrated example) is open at the end of the tread portion 4 in the example illustrated in FIG. 2. In the example shown in FIG. 3, it is assumed that the groove 14 also has an opening 14 at the end of the tread portion 4 and a groove or sipe 15 that is significantly narrower than the groove 14. The groove 14 and the sipe 15 are tires. A plane (a meridional section) including one rotational axis, for example, one straight line PL
  It is assumed that the array has a projection length onto a plane represented by. The sipe 15 can be replaced with a narrow groove.
[0027]
    The adjacent grooves 14 divide the tread rubber 8 in the circumferential direction of the tread surface 4t to form a land portion 18, and in the example shown in FIG. 3, the sipe 15 further subdivides and subdivides the land portion 18 formed by dividing the adjacent groove 14. Land portions 18-1, 18-2 and 18-3 are formed. The land portion 18 shown in FIGS. 2 and 3 is an example in which the land portions 18-1, 18-2, and 18-3 including the subdivided land portions 18-1, 18-2, and 18-3 are blocked by the grooves 14 and sipes 15 that open to the side main grooves 11. It is not necessary to be a block, and it can be a rug-like land portion, and an optimum land shape can be freely selected based on the use of tires and required performance.
[0028]
    First, referring to FIG. 4, at least the land portion 18 (the subdivided land portions 18-1, 18-2, 18-3, etc. in FIG. 3 are all of the land portion 18 and the subdivided land portions 18-1, 18-2). The land portion including the end Ce of the tread portion 4 only on the side to be grounded later, that is, only on the kicking side, under the load-load rolling of the tire 1 with the direction of the arrow D as the rotation direction. The part has a remaining chamfered portion Y (a portion surrounded by a circle) along the edge of the groove 14 in the ground contact state of the tread portion 4 in which the load 1 corresponding to 70% of the maximum load capacity is applied to the tire 1 And Therefore, the remaining chamfered portion Y does not exist at least in the above-mentioned grounding state at the edge of the groove 14 in the land portion on the side to be grounded first under rolling load load of the tire 1. The remaining chamfered portion Y is preferably adapted to continue from the position closest to the tire equator surface E to the tread portion 4 side opening end. As shown in FIG.I VI VThe line is a straight line in the groove width direction with respect to the groove 14.
[0029]
    As shown in the figure, the surface shape of the remaining chamfered portion Y is an arc having a radius of curvature r, a composite arc having a plurality of curvature radii, a straight line, and a composite curve of a circular arc and a straight line are not shown. It can be freely selected depending on the required characteristics. The portion indicated by the two-dot chain line in FIG. 4 illustrates the shape when the load W applied to the tire 1 is removed, and the remaining chamfered portion in the ground contact state described above at the kick-out land portion at this time It is natural to provide a chamfered portion to be Y.
[0030]
    Although the illustration of the land portion 18 shown in FIG. 3 is omitted, it has the remaining chamfered portion Y, and each of the subdivided land portions 18-1 and 18-2 also has the remaining chamfered portion on at least a part of the land portion on the kicking side. It is possible to provide the part Y. 2 and 3 may be replaced by the sipe 15 or the narrow groove, and therefore, the remaining chamfered portion Y is naturally provided.
[0031]
    Next, referring to FIG. 5, a line M connecting the center of the groove width in the cutting direction of the groove 14 is shown in FIG. 3 in the cross section of the partial groove portion or the entire groove of the groove 14 including the end Ce of the tread portion 4. The tire is inclined with respect to the vertical line VL with the midpoint of the line segment connecting the groove edge both ends 14e on the VV line shown as shown in FIG. 1 is inclined in the direction opposite to the rotation direction D. The line M may be any of a straight line, a curved line, and a combined curve of a straight line and a curved line. In FIG. 5, the sipe 15 is not shown.
[0032]
    The inclination angle α of the line M with respect to the vertical line VL is constant at the inclination angle α when the line M is a straight line, but at a predetermined cutting position when the line M is a curve or a compound curve as shown in FIG. , And in FIG. 5, this is the inclination angle α at the position corresponding to the tread 4t.T In the groove bottom Gb, the inclination angle αB In the case where the line M is not a straight line, the angle of inclination α is seen from the same cut position of the groove 14 and the inclination angle α increases from the inclination line M closest to the tire equatorial plane E toward the end of the tread portion 4 where the groove 14 opens. It shall be gradually increased. The two-dot chain line portion shown in FIG. 5 also illustrates the shape when the load W on the tire 1 is removed, and as is clear from this, the groove 14 is inclined only in the state of air pressure filling described above. The inclined groove has an inclination angle smaller than α, and the inclination angle gradually increases as described above.
[0033]
    Although the groove 14 has been described above, the same inclination angle α in the same inclination direction as the groove 14 also for the sipe 15 shown in FIG.A (Not shown), and the inclination angle α is the same as the groove 14.A That gradually increases toward the end of the tread 4 where the sipe 15 opensA (Not shown). The same applies even if the groove 14 is a narrow groove.
[0034]
    As described above, the conventional tire 20 having a small flatness rate, particularly the tire 20 having a flatness rate of 60% or less, has an inclined road surface I having an ascending slope as shown in FIGS.S When traveling on the road, the inclined road surface I is caused by the vertical load W applied to the tire 20.S The tread rubber 23 becomes stronger as the slope becomes higher above the slope.S It is pressed by the slope, and the slope IS It ’s even floating. As a result, the slope I under the load WS As described above, the lateral force Fy acts on the tire 20 traveling in the upward gradient direction. This slope IS FIG. 10 shows a ground contact shape corresponding to the ground contact state of the upper tread portion tread 23t.
[0035]
    FIG. 10 is a border diagram of the ground contact portion when the tire 20 filled with the air pressure described above is pressed against the flat plate at a camber angle of 10 ° under a load W load corresponding to 70% of the maximum load capacity. FIG. 11 shows the ground contact state of the horizontal flat road surface of the tire 20 under the same conditions as those of the ground contact portion edge diagram shown in FIG. The symbol E shown in FIGS. 10 and 11 is an equator line corresponding to a line on the tire equator plane. 10 shows a generally trapezoidal shape when viewed in overall, and shows that only the tread portion tread 23t on one side is grounded from the tire equator line E, while the grounding portion shown in FIG. It can be seen that the border view has a generally oval shape with the tire equator line E as the central axis when viewed in overalls.
[0036]
    The above-mentioned ground contact state of the tread portion tread is the same in the case of the tire 1, so that the slope I under the load W is loaded.S Similarly, the lateral force Fy acts on the tire 1 traveling in the uphill direction in the climbing direction, but for the reasons described below, the inclined road surface IS Referring to FIG. 6, which is shown as a diagram connecting the outermost borders of the footprint of the running tire 1, the tire 1 passes through the mass point of its mass and extends around the central axis Z extending in the acting direction of the concentrated load load W on the tire 1. Tire 1 on inclined road surface IS The tire 1 is significantly different from the conventional tire 20 in that a restoring moment Mz that attempts to rotate in the downward gradient direction is generated.
[0037]
    That is, first, referring to FIG. 4 below, the divided land portion 18 of the tread portion 4 is crushed and deformed by the contact pressure caused by the load W. However, the vulcanized rubber having a predetermined composition, here, the tread rubber 8 has an incompressible characteristic, and therefore tends to expand on the ground contact surface at the time of crushing deformation. This is particularly noticeable at the groove edge of the groove 14.
[0038]
    However, since the movement of the surface of the land portion 18 (the tread surface 4t) on which the partial load ΔW acts is restricted by the frictional contact with the road surface (S), the expansion deformation is suppressed. as a result,The shearing force Scr in the opposite direction parallel to the tire equator plane E and facing each other in the vicinity of the groove edges of the two adjacent grooves 14 acts on the dividing land 18. However, when the divided land portion 18 has the remaining chamfered portion Y only on the groove edge on the one groove 14 side and the sharp edge portion on the groove edge on the other groove 14 side when the tread portion 4 is in contact with the ground, The rubber crushing reaction force of the remaining chamfered portion Y is reduced as compared with the rubber crushing reaction force of the sharp edge portion of the groove, and the balance of the shearing force Scr in the opposite direction is lost. Scr is further reduced as compared with the shearing force Scr indicated by the solid line arrow on the sharp groove edge side, whereby each dividing land portion 18 generates a shearing force ΔFxd in the direction opposite to the rotation direction D of the tire 1 as a whole.
[0039]
    The total shearing force Fxd of the grounded parting land part 18 of the shearing force ΔFxd generated in each parting land part 18 described above is the same on both sides of the equatorial plane E when the tread part 4 is in contact with the horizontal flat road surface. Since the same amount is generated in the direction, no rotational moment is generated around the central axis Z of the tire 1 (see FIG. 6), and it merely serves as a driving force generation source of the tire.
[0040]
    However, when the tire 1 travels on the sloping road surface Is, the tread portion 4 becomes a single ground as in the case of FIG. 10 with the camber angle, and each of the ground contact portions in FIG. The shearing force ΔFxd of the divided land portion 18 is generated only on the tread portion 4 only on one side from the tire equatorial plane E, which is also only on the shoulder side including the contact width end Ce, and the total shearing force Fxd of the shearing force ΔFxd only on one side is The total shearing force Fxd that acts as a driving force generation source and is generated in the shoulder region Rs as a result is that the tire 1 is inclined around the center axis Z of the tire 1 as shown in FIG.S A restoring moment Mz that attempts to rotate in the downward gradient direction is generated.
[0041]
    The restoring moment Mz works to cancel the lateral force Fy, and the vector amount of the lateral force Fy is reduced, is almost zero, or is slightly negative depending on the case, whereby the tire 1 has a tread portion 4 on the inclined road surface Is. Even if a part of the vehicle rides on the road, the tire 1 will not behave against the driver's intention so as to run up the inclined road surface Is, and as a result, the straight running stability of the road surface in which a concave portion such as a saddle road surface is formed is Remarkably improved.
[0042]
    Next, referring to FIG. 5, the line M connecting the center of the groove width in the cutting direction of the groove 14 in the ground contact state of the tread portion 4 is inclined with respect to the perpendicular VL in the direction opposite to the rotation direction D of the tire 1. It is necessary to incline in the same direction with no load applied, so that the inclination of the line M is increased by applying the load W to the tire 1, in other words, the dividing land portion 18 is increased in inclination. Try to fall and deform.
[0043]
    However, in this case as well, the movement of the surface of the land portion 18 (the tread surface 4t) on which the partial load ΔW acts is constrained by frictional contact with the road surface (S). It is suppressed at the place. This suppression is greater in the vicinity of the groove edge 14e of the groove wall surface forming an obtuse angle with respect to the road surface (S), and a shearing force Sb as a reaction force of this suppression is brought to the divided land portion 18, and the direction of the shearing force Sb is as shown in FIG. The direction of rotation of the tire 1 is opposite to that indicated by an arrow in FIG.
[0044]
    In this case, the inclination angle α of the line M connecting the center of the groove width in the cutting direction of the groove 14 with respect to the perpendicular VL has a characteristic that the shear force Sb increases as the value increases, and therefore the inclination angle α (αT , ΑB ) Gradually increases from the inclined position closest to the tire equatorial plane E toward the end of the tread portion 4, including the case where the line M connecting the center of the groove width of the groove 14 is a curve or a compound curve. Since the shearing force Sb that is larger in the parting land part 18 closer to is generated, the action point of ΣSb = ΔFxd of each parting land part 18 is shifted closer to the end of the tread part 4.
[0045]
    As a result, the point of action of the total shearing force Fxd, which is the sum of the shearing forces ΔFxd of the divided land portions 18 within the contact surface, is also located farther from the central axis Z of the tire 1 shown in FIG. There is an advantage that the surrounding restoring moment Mz becomes a larger value. Based on this restoring moment Mz, the straight running stability improvement of the tire 1 in running on the recess forming road surface is the same as described above.
[0046]
    A structure in which at least a part of the land portion 18 of the dividing land portion 18 only on the kicking side described above has the remaining chamfered portion Y along the groove edge of the groove 14 and a line M connecting the center of the groove width in the cutting direction of the groove 14 are perpendicular. It inclines in the direction opposite to the rotation direction D of the tire 1 with respect to VL, and the inclination angle α (αT , ΑB ) Are gradually independent from the configuration of the tire equatorial plane E closest to the end of the tread portion 4 and are independent of each other, and have the effect of improving the straight running stability of the tire 1 on the recess-formed road surface. A configuration combining the configurations also has an even more effective straight running stability improvement effect.
[0047]
    Although the groove 14 has been described above, the same effect can be obtained with the sipe 15, and it is a matter of course that the same effect can be obtained even if the groove 14 is replaced with a narrow groove. The tire 1 is filled with air pressure corresponding to the maximum load capacity, the load W corresponding to 70% of the maximum load capacity is applied, and the specific shoulder region of the tread portion 4 is set to 10% or more of the ground contact width. This is set as a condition close to the use condition in the actual vehicle.
[0048]
    Here, when the surface of the remaining chamfered portion Y is an arc having a radius of curvature r in the cross section shown in FIG. 4, although not shown, in the case of a taper cut straight line toward the groove 14, a composite curve of these arcs and straight lines is used. Either of the cases is acceptable. Further, it is effective that the remaining chamfered portion Y gradually increases the chamfering degree from the position closest to the tire equator plane E toward the end of the tread portion 4, and in this way, the total shearing force Fxd generated in the shoulder region Rs is increased. The point of action shifts from the center axis Z (see FIG. 6) of the tire 1 to the outside of the tire 1, and therefore a larger restoring moment Mz can be obtained, which is advantageous.
[0049]
    The radius of curvature r of the remaining chamfered portion Y and the maximum cutting height into the groove 14 are in the range of 0.5 to 3 mm. Because if it is less than 0.5 mm, the above-mentioned effect cannot be obtained in practice, and if it exceeds 3 mm, the ground contact area of the dividing land 18 is excessively reduced, and the effect is excessively reduced.
[0050]
    Further, an inclination angle α (α that inclines the line M connecting the center of the groove width of the groove 14 in the direction opposite to the rotation direction D of the tire 1.T , ΑB ) Is 3 ° or more, and the inclination angle α (αT , ΑB ) Is preferably as large as possible, but the contact pressure distribution in the shoulder region Rs decreases as it goes toward the contact width end Ce. Therefore, the shoulder region Rs originally tends to be prone to uneven wear, so that it exceeds the limit. Inclination angle α (αT , ΑB ) Is not preferable, and the inclination angle α (αT , ΑB ) Is limited to 20 °. This inclination angle α (αT , ΑB The point within the range of 3 ° to 20 ° is also applied when the configuration having the remaining chamfered portion Y is combined with the above configuration in which the line M is inclined in the direction opposite to the rotation direction D of the tire 1.
[0051]
【Example】
    A radial ply tire for passenger cars, the size of which is 235 / 45ZR17, and the structure is shown in FIG. 1. A carcass 6 that is rubber-coated with a 2-ply radial arrangement polyester cord, a two-ply steel cord cross layer, and a nylon cord cap ply A belt 7 with a layer. Example 13The tire 1 has a tread pattern corresponding to the footprint shown in FIG.4~6The tire 1 has a tread pattern corresponding to the footprint shown in FIG. Example 16In each of the tires, the remaining chamfered portion Y of the dividing land portion 18 has an arc having a cross section of the radius of curvature r, the line M connecting the center of the groove width of the groove 14 is a straight line, and the direction opposite to the tire rotation direction D at an inclination angle α Those that incline, and those of these composite types.
[0052]
    In all the above footprints, the tire 1 is assembled to the standard rim 8JJ of the applicable rims defined by the JATMA standard (1998 version), and the maximum load capacity described in the JATMA standard (1998 version) is 650 kg (mass). Is the ground contact shape of the tread portion 4 when a load of 450 kgf corresponding to 70% of the maximum load capacity of 650 kg (mass) is applied.
[0053]
    Example 13For the tire group, a comparative tire 1 having a tread pattern according to the footprint shown in FIG.4~6Comparative tire 2 provided with a tread pattern according to the footprint shown in FIG.
[0054]
    Examples 1 to6Each tire has a radius of curvature of the cross section of the remaining chamfer Y.r isIncreasing gradually from 0.5 to 2.5 mm, inclination angle α of line M = 10 ° constant, inclination angle of line MButAlthough gradually increasing at 5 to 20 °, the tires were divided into each type, and some example tires were combined with these types. The presence or absence of each of the curvature radius r and the inclination angle α of the cross section of the remaining chamfered portion Y is described in Examples 13And the group of Comparative Example 1 is shown in Table 1, Examples4~6The groups of Comparative Example 2 are shown in Table 2.
[0055]
[Table 1]
Figure 0004063397
[0056]
[Table 2]
Figure 0004063397
[0057]
    Example 16These tires and the tires of Comparative Examples 1 and 2 were used as test tires, and the following two tests were performed under the following test conditions using the rim and air pressure.
  (1) Measurement of camber thrust Fc: Using a flat belt type indoor testing machine, the belt speed is 60 km / h, and each test tire is equivalent to 70% of the maximum load capacity of 650 kg at a camber angle of 5 °. Press with a load of 450 kgf to measure the camber thrust Fc. The measurement result is represented by an index in which Comparative Examples 1 and 2 are set to 100 for each group, and the smaller the value, the better.
  (2) Straight running stability test with actual vehicle: 100km of dry asphalt test road surface with individual test tires mounted on all the wheels of a domestic passenger car 2500cc class FR car and two passengers on the front seat to form a saddle The degree of wandering when traveling at a speed of / h, that is, straight running stability, was evaluated to a maximum of 10 points based on the feeling of a test driver. The higher the score, the better.
    The test results of the above two items are shown on the right side of Tables 1 and 2 for each tire group.
[0058]
    From the test results shown in Tables 1 and 2, Example 16TiresIsBoth,Compared to the tires of Comparative Examples 1 and 2, the amount of Camber thrust Fc generated was significantly reduced, and it was found that the straight running stability in the dry saddle road running test with an actual vehicle was remarkably superior.Also,Example 1 and Example having a configuration having only the remaining chamfered portion Y4It can be seen that each of the tires can achieve a significant reduction in the amount of camber thrust Fc generated and a further improvement in straight running stability as compared with the tires of Comparative Examples 1 and 2.
[0059]
【The invention's effect】
    thisapplicationClaims 1 to 16According to the invention described in (1), the occurrence of wandering phenomenon on the road surface in which the concave portions having the inclined surfaces with the upward slopes are formed on both sides as represented by the eaves is suppressed, and as a result, the vehicle travels straight at high speed. It is possible to provide a pneumatic radial tire which is excellent in stability, particularly called a high performance radial tire having a flatness ratio of 60% or less.
[Brief description of the drawings]
FIG. 1 is a left half sectional view of a tire according to an embodiment of the present invention.
FIG. 2 is a grounding shape transfer diagram by a footprint of one embodiment of the tire tread portion shown in FIG. 1;
FIG. 3 is a ground shape transfer diagram of a footprint of another embodiment of the tire tread portion shown in FIG. 1;
4 is a diagram of a tire obtained from the ground contact shape transfer diagram shown in FIG.V IV IIt is sectional drawing which follows a line.
5 is a cross-sectional view taken along line VV of the tire of the ground shape transfer diagram shown in FIG. 3;
6 is an explanatory diagram of a shearing force and a restoring moment generated when the tire shown in FIG. 1 travels on an inclined road surface.
7 is an explanatory diagram showing a state in which a shear force is generated during running on the inclined road surface of the tire shown in FIG. 1. FIG.
FIG. 8 is a front view or a rear view of a tire traveling on an inclined road surface.
9 is a cross-sectional view of the tire shown in FIG.
10 is an edge drawing of the grounding portion of the footprint when the tire shown in FIG. 7 is pressed against a flat plate at a camber angle of 10 °. FIG.
11 is a border view of the ground contact portion of the tire footprint shown in FIG. 7. FIG.
[Explanation of symbols]
    1 Pneumatic radial tire
    2 Bead section
    3 Side wall
    4 Tread
    4t tread
    5 Bead core
    6 Carcass
    6-1, 6-2 Carcass ply
    7 Belt
    8 Tread rubber
    10 Straight central main groove
    11 Straight side main groove
    12 Inclined groove
    13 Inclined branch
    14 Groove with projection length on meridional section
    14e Groove edge
    15 Sipe
    18 minutes landing
    18-1, 18-2, 18-3 Subdivision
    CW Grounding width
    Ce Ground width end
    D Tire rotation direction
    Rs shoulder region
    Y Remaining chamfer
    M Line connecting the groove width center in the cutting direction of the groove 14
    VL perpendicular
    Inclination angle of α line M to perpendicular VL
    IS   Ramp surface
    S Flat plate surface
    Fc Camber Thrust
    Fy lateral force
    Scr, Sb Shear force
    Fxd Shear force opposite to tire rotation direction
    Mz Restoring moment

Claims (6)

一対のビード部及び一対のサイドウォール部と、両サイドウォール部に連なるトロイド状トレッド部とを有し、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアルカーカスと、該ラジアルカーカスの外周でトレッド部を強化するベルトとを備え、回転方向指定のトレッドパターンを有する空気入りラジアルタイヤにおいて、
上記タイヤの最大負荷能力に対応する空気圧を充てんしたタイヤを前記最大負荷能力の70%に相当する荷重負荷の下で平板に垂直に押圧したトレッド部の接地状態にて、
トレッド部接地幅の10%以上の距離を接地幅端から隔てるトレッド部ショルダ領域の、トレッド部端を含む少なくとも一部領域が、タイヤの回転軸心を含む平面への投影長さをもちトレッド部端に開口する複数本の溝と、これらの溝によりトレッド周方向に分断される陸部とを有し、かつ
タイヤの荷重負荷転動下にて後から接地する側のみの各分断陸部の、トレッド部端を含む少なくとも一部陸部が、溝縁に沿う残存面取り部を有し、
この残存面取り部は、タイヤ赤道面に最も近い位置からトレッド部端に向うにつれ面取り度合いが漸増することを特徴とする空気入りラジアルタイヤ。
A pair of bead portions and a pair of sidewall portions, a toroidal tread portion connected to both sidewall portions, and a radial carcass of one or more plies that reinforces each portion between bead cores embedded in the bead portions; and In a pneumatic radial tire comprising a belt that reinforces the tread portion on the outer periphery of the radial carcass and having a tread pattern for specifying the rotation direction,
In the ground contact state of the tread portion in which the tire filled with air pressure corresponding to the maximum load capacity of the tire is pressed perpendicularly to the flat plate under a load load corresponding to 70% of the maximum load capacity,
At least a partial region including the tread portion end of the tread portion shoulder region separating a distance of 10% or more of the tread portion contact width from the end of the contact width has a projection length onto a plane including the rotation axis of the tire. A plurality of grooves opened at the ends, and land portions divided in the tread circumferential direction by these grooves, and each of the divided land portions only on the side to be grounded later under the rolling load of the tire. , at least a part land portion including a tread portion end, have a remaining chamfer along the groove edge,
The remaining chamfer pneumatic radial tire characterized that you increasing chamfered degree As toward the tread portion edge from the position closest to the tire equatorial plane.
一対のビード部及び一対のサイドウォール部と、両サイドウォール部に連なるトロイド状トレッド部とを有し、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアルカーカスと、該ラジアルカーカスの外周でトレッド部を強化するベルトとを備え、回転方向指定のトレッドパターンを有する空気入りラジアルタイヤにおいて、
上記タイヤの最大負荷能力に対応する空気圧を充てんしたタイヤを前記最大負荷能力の70%に相当する荷重負荷の下で平板に垂直に押圧したトレッド部の接地状態にて、
トレッド部接地幅の10%以上の距離を接地幅端から隔てるトレッド部ショルダ領域の、トレッド部端を含む少なくとも一部領域が、タイヤの回転軸心を含む平面への投影長さをもちトレッド部端に開口する複数本の溝と、これらの溝によりトレッド周方向に分断される陸部とを有し、かつ
タイヤの荷重負荷転動下にて後から接地する側のみの各分断陸部の、トレッド部端を含む少なくとも一部陸部が、溝縁に沿う残存面取り部を有し、
前記複数本の溝それぞれのトレッド部端を含む一部溝又は全溝の溝幅方向直線を含み上記平板表面と互いに垂直な平面による溝断面にて、溝深さ方向の溝幅中央を連ねる線が、上記溝幅方向直線上の溝縁両端を結ぶ線分の中点を足とする垂線に対しトレッド部表面から溝底に向け3°以上の角度で傾斜し、その傾斜方向がタイヤ回転方向と反対向きであることを特徴とする空気入りラジアルタイヤ。
A pair of bead portions and a pair of sidewall portions, a toroidal tread portion connected to both sidewall portions, and a radial carcass of one or more plies that reinforces each portion between bead cores embedded in the bead portions; and In a pneumatic radial tire comprising a belt that reinforces the tread portion on the outer periphery of the radial carcass and having a tread pattern for specifying the rotation direction,
In the ground contact state of the tread portion in which the tire filled with air pressure corresponding to the maximum load capacity of the tire is pressed perpendicularly to the flat plate under a load load corresponding to 70% of the maximum load capacity,
At least a partial region including the tread portion end of the tread portion shoulder region separating a distance of 10% or more of the tread portion contact width from the end of the contact width has a projection length onto a plane including the rotation axis of the tire. A plurality of grooves opening at the ends, and land portions divided in the tread circumferential direction by these grooves, and
At least part of the land portion including the tread portion end of each divided land portion only on the side to be grounded later under the load load rolling of the tire has a remaining chamfered portion along the groove edge,
A line connecting the center of the groove width in the groove depth direction in a groove cross section by a plane perpendicular to the flat plate surface and including a straight line of the groove width direction of the partial groove or the entire groove including the end of the tread portion of each of the plurality of grooves. Is inclined at an angle of 3 ° or more from the surface of the tread portion toward the bottom of the groove with respect to a perpendicular line with the midpoint of the line segment connecting both ends of the groove edge on the straight line in the groove width direction, and the inclination direction is the tire rotation direction. Pneumatic radial tire characterized by being in the opposite direction.
上記残存面取り部表面が、上記溝の溝幅方向直線を含み上記平板表面と互いに垂直な平面による断面にて円弧形状及び直線形状の少なくとも一方の形状を有する請求項1もしくは2に記載タイヤ。 3. The tire according to claim 1, wherein the surface of the remaining chamfered portion has at least one of an arc shape and a linear shape in a cross section by a plane perpendicular to the flat plate surface including a groove width direction straight line of the groove. 上記溝断面における溝深さ方向の溝幅中央を連ねる線の上記垂線に対する傾斜角度が、タイヤ赤道面に最も近い位置からトレッド部端に向うにつれ漸増する請求項2もしくは3に記載タイヤ。Inclination angle relative to the normal of a line contiguous with the groove width center of the groove depth direction of the groove cross section, a tire according to claim 2 or 3 gradually increases as the toward the tread portion edge from the position closest to the tire equatorial plane. 一対のビード部及び一対のサイドウォール部と、両サイドウォール部に連なるトロイド状トレッド部とを有し、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアルカーカスと、該ラジアルカーカスの外周でトレッド部を強化するベルトとを備え、回転方向指定のトレッドパターンを有する空気入りラジアルタイヤにおいて、
上記タイヤの最大負荷能力に対応する空気圧を充てんしたタイヤを前記最大負荷能力の70%に相当する荷重負荷の下で平板に垂直に押圧したトレッド部の接地状態にて、
トレッド部接地幅の10%以上の距離を接地幅端から隔てるトレッド部ショルダ領域の、トレッド部端を含む少なくとも一部領域が、タイヤの回転軸心を含む平面への投影長さをもちトレッド部端に開口する複数本の溝と、これらの溝によりトレッド周方向に分断される陸部とを有し、かつ
上記複数本の溝それぞれのトレッド部端を含む一部溝又は全溝の溝幅方向直線を含み上記平板面と互いに垂直な平面による溝断面にて、溝切込み方向の溝幅中央を連ねる線が、上記溝幅方向直線上の溝縁両端を結ぶ線分の中点を足とする垂線に対しトレッド部表面から溝底に向けタイヤ回転方向と反対向きで傾斜し、その傾斜角度がタイヤ赤道面に最も近い傾斜位置からトレッド部端に向うにつれ漸増して成ることを特徴とする空気入りラジアルタイヤ。
A pair of bead portions and a pair of sidewall portions, a toroidal tread portion connected to both sidewall portions, and a radial carcass of one or more plies that reinforces each portion between bead cores embedded in the bead portions; and In a pneumatic radial tire comprising a belt that reinforces the tread portion on the outer periphery of the radial carcass and having a tread pattern for specifying the rotation direction,
In the ground contact state of the tread portion in which the tire filled with air pressure corresponding to the maximum load capacity of the tire is pressed perpendicularly to the flat plate under a load load corresponding to 70% of the maximum load capacity,
At least a partial region including the tread portion end of the tread portion shoulder region separating a distance of 10% or more of the tread portion contact width from the end of the contact width has a projection length onto a plane including the rotation axis of the tire. A groove width of a partial groove or a whole groove including a plurality of grooves opened at the ends and a land portion divided in the tread circumferential direction by these grooves, and including the tread end of each of the plurality of grooves. The line connecting the center of the groove width in the groove cutting direction in the groove cross section of the plane including the direction straight line and perpendicular to the flat plate surface is the foot of the midpoint of the line segment connecting both ends of the groove edge on the groove width direction straight line. Inclined in the direction opposite to the tire rotation direction from the tread surface to the groove bottom with respect to the vertical line, and the inclination angle gradually increases from the inclined position closest to the tire equatorial plane toward the tread edge. Pneumatic radial tire .
上記溝幅方向直線上の溝縁両端を結ぶ線分の中点を足とする垂線に対する、溝切込み方向の溝幅中央を連ねる線の溝底からの傾斜角度が3°以上である請求項に記載したタイヤ。Claim with respect to the perpendicular to the foot of the midpoint of the line segment between the groove edge ends on the groove width direction line, the inclination angle from the groove bottom of the line contiguous with the groove width center of the groove cutting direction is less than 3 ° 5 The tire described in 2.
JP10933898A 1998-04-20 1998-04-20 Pneumatic radial tire Expired - Fee Related JP4063397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10933898A JP4063397B2 (en) 1998-04-20 1998-04-20 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10933898A JP4063397B2 (en) 1998-04-20 1998-04-20 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPH11301213A JPH11301213A (en) 1999-11-02
JP4063397B2 true JP4063397B2 (en) 2008-03-19

Family

ID=14507705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10933898A Expired - Fee Related JP4063397B2 (en) 1998-04-20 1998-04-20 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP4063397B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971694B2 (en) * 2006-06-12 2012-07-11 株式会社ブリヂストン Pneumatic tire
JP5665911B2 (en) * 2013-04-30 2015-02-04 株式会社ブリヂストン Heavy duty pneumatic tire
JP7074561B2 (en) * 2018-05-17 2022-05-24 Toyo Tire株式会社 Pneumatic tires
WO2020231389A1 (en) * 2019-05-10 2020-11-19 Compagnie Generale Des Etablissements Michelin Truck tire tread with angled ribs having chamfers on leading edge

Also Published As

Publication number Publication date
JPH11301213A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP6408520B2 (en) Pneumatic radial tire for passenger cars and method of using the same
US5896905A (en) Tread for heavy-vehicle tire in which the central ribs are provided with inclined incisions
EP0424155B1 (en) A pneumatic radial tyre
US6000450A (en) Studless tire
EP0688685A2 (en) Pneumatic Tires
EP0588623A1 (en) Radial tyre
JP3321262B2 (en) Heavy-duty pneumatic tires for construction vehicles
EP0791486B1 (en) Pneumatic radial tire
JP2001121927A (en) Pneumatic tire
JPH11123909A (en) Pneumatic tire
JP4118390B2 (en) Pneumatic radial tire
JP2942416B2 (en) Radial tires for heavy loads
JP4063397B2 (en) Pneumatic radial tire
JP3875364B2 (en) Pneumatic radial tire
JP3509363B2 (en) Pneumatic radial tire for heavy loads
JP3647999B2 (en) Pneumatic radial tire
JP2657034B2 (en) Radial tires for heavy loads
JP2879699B2 (en) Flat pneumatic tire for heavy loads
JP3516742B2 (en) Pneumatic radial tire
JP3295527B2 (en) Pneumatic tire
JP3832687B2 (en) Pneumatic tires for motorcycles
JPH10250316A (en) Heavy duty pneumatic tire
JP2849188B2 (en) Pneumatic radial tire for heavy loads
JP2944702B2 (en) Heavy duty pneumatic tires
JP4202500B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees