[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4063388B2 - Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same - Google Patents

Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same Download PDF

Info

Publication number
JP4063388B2
JP4063388B2 JP05615998A JP5615998A JP4063388B2 JP 4063388 B2 JP4063388 B2 JP 4063388B2 JP 05615998 A JP05615998 A JP 05615998A JP 5615998 A JP5615998 A JP 5615998A JP 4063388 B2 JP4063388 B2 JP 4063388B2
Authority
JP
Japan
Prior art keywords
less
orientation
aluminum alloy
distribution density
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05615998A
Other languages
Japanese (ja)
Other versions
JPH11236639A (en
Inventor
克史 松本
政洋 柳川
康夫 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26054633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4063388(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP05615998A priority Critical patent/JP4063388B2/en
Priority to US09/375,465 priority patent/US6231809B1/en
Priority to DE19938995A priority patent/DE19938995C5/en
Publication of JPH11236639A publication Critical patent/JPH11236639A/en
Application granted granted Critical
Publication of JP4063388B2 publication Critical patent/JP4063388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形性に優れ、特に表面性状に優れたAl−Mg−Si系アルミニウム合金板(以下、「アルミニウム」は省略する)に関し、例えば屋根、インテリア、カーテンウオール等の建材、器物、電機部品、光学機器、自動車、鉄道車両及び航空機等の輸送機器、一般機械部品等の材料に好適なAl−Mg−Si系合金板に関する。
【0002】
【従来の技術】
成形性に優れるアルミニウム板及びアルミニウム合金としては、従来からAl−Mg系合金が主として用いられてきたが、塗装焼付硬化性が劣ることや、プレス成型時にストレッチャーストレインマークが発生しやすいことから、これに代わる合金として、Al−Mg−Si系合金が注目されるようになってきている。Al−Mg−Si系合金は、常温での成形性及び耐食性に優れ、さらに時効処理により高強度が得られるという利点を持っている。
【0003】
ところが、Al−Mg−Si系合金板材を成形加工した場合、特開平7−228956号公報や特開平8−232052号公報に記載されているように、板材表面にリジングマークと呼ばれる表面荒れが発生することが問題となっている。リジングマークは、板材を成形加工用したときに圧延方向に対して平行方向に新たに生じる筋状の凹凸であり、特に圧延方向に対して90゜への加工、例えば引張り加工、しごき加工、深絞り加工、張出し加工を行った場合、顕著に生じる。このリジングマークが発生すると、インテリア、カメラケース、自動車用外板材等の表面の美麗さが特に要求される製品では外観不良として使用できない。
【0004】
前記特開平7−228956号公報や特開平8−232052号公報は、Al−Mg−Si系合金板材についてリジングマークの発生を防止する方法として、熱間圧延条件やその他の各工程の処理条件を厳密に制御し、微細かつ結晶学的方位がランダムな結晶粒を生じさせることにより、リジングマークの発生を防止しようというものである。
しかし、これらの先行技術はリジングマークが発生しない板材自体の構成を解明したものではないため、表面品質に対する昨今の厳しい要求に関してはこれだけでは不十分であった。
【0005】
【発明が解決しようとする課題】
本発明はかかる問題点に鑑みてなされたものであって、従来のAl−Mg−Si系合金板材において発生していたリジングマークが抑制された成形加工用Al−Mg−Si系アルミニウム合金板を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、Al−Mg−Si系合金板材においてリジングマークの発生を抑制するためには、従来の技術を越えた精密な集合組織制御を行い、最終製品の集合組織として、Goss方位、PP方位、Brass方位の発生を抑制することが有効であることを見いだした。
すなわち、本発明に係る表面性状に優れた成形加工用Al−Mg−Si系合金板は、Al−Mg−Si系合金板であって、集合組織として、Goss方位の方位分布密度が3以下、PP方位の位分布密度が3以下、かつBrass方位の方位分布密度が3以下であることを特徴とする。
【0007】
本発明に用いられるAl−Mg−Si系合金は、Mg:0.2〜1.5%、Si:0.2〜1.5%を含有し、さらに、(1)Mn:1.0wt%以下、Cr:0.3wt%以下、Fe:1.0wt%以下、Zr:0.3wt%以下、V:0.3wt%以下、Ti:0.1wt%以下のうち1種又は2種以上を合計で0.01〜1.5wt%、(2)Cu:1.0wt%以下、Ag:0.2wt%以下、Zn:1.0wt%以下、Sn:0.2wt%以下のうち1種又は2種以上を合計で0.01〜1.5wt%、のいずれか又は両者を組み合わせて含有し、残部Al及び不可避的不純物からなる。
【0008】
【発明の実施の形態】
本発明者らが従来のアルミニウム合金のプレス成形時にリジングマークが発生する原因を解明すべく種々研究を重ねた結果、集合組織の制御が十分になされていなかったためにリジングマークが発生することが明らかになった。
ここで、アルミニウム合金の集合組織について説明すると、アルミニウム合金の場合、下記のCube方位、RW方位、CR方位、Brass方位、Goss方位、PP方位、C方位、S方位と呼ばれる集合組織が存在する。
Cube方位・・・・{001} <100>
RW方位・・・・・・・・{001}<110>
CR方位・・・・・・・・{001}<520>
Brass方位・・{011}<211
Goss方位・・・・{011}<100>
PP方位・・・・・・・・{011}<122>
C方位・・・・・・・・・・{112}<111>
S方位・・・・・・・・・・{123}<634>
なお、本発明では基本的に、これらの方位から±10度以内の方位のずれは同一の方位因子に属するものと定義する。ただしBrass方位とPP方位に関しては±8度以内の方位のずれは同一の方位因子に属するものと定義する。
【0009】
通常のアルミニウム合金の集合組織はこれらの方位因子から成立しており、これらの構成比率が変化すると板材の塑性異方性(後述)が変化し、プレス成形性が良くも悪くもなる。
これらの方位の定量的な評価方法として、方位分布密度がある。これは、ランダムな方位に対する各方位の強度の割合で表され、通常のX線回析法を用いて最低3面の完全正極点図を測定し、それから結晶方位分布関数を用いて求められる[下記参考文献1、2参照]。あるいは、電子線回析法、SEM(Scanning-Electron-Microscopy)−ECP(Electron-Channeling-Pattern)法、SEM−EBSP(Electron-Back-Scatterd-Pattern)法等を用いて測定したデータをもとに、結晶方位分布関数を用いて方位分布密度を求めることができる。また、これらの方位分布は板厚方向に変化しているため、板厚方向に何点か任意にとって平均を取ることによって求める。
参考文献1:長島晋一編著、「集合組織」(丸善株式会社刊)1984、P.8〜44
参考文献2:金属学会セミナー、「集合組織」(日本金属学会編)1981、P.3〜7
【0010】
本発明者らは集合組織を種々変化させたAl−Mg−Si系合金板材につきリジングマーク発生の有無を調べ、その発生メカニズムを研究した。その結果面内塑性異方性が強いGoss方位、PP方位、Brass方位がリジングマーク発生の犯人であることを見出した。
より詳しくは、Goss方位、PP方位、Brass方位においては他の方位に比べてr値(ランクフォード値)の面内異方性が非常に大きく、具体的には、Goss方位では幅方向、PP方位では圧延方向より20°回転した方向、Brass方位では圧延方向より55°回転した方向で引張った場合に板厚減少がほとんど生じないのに対して、これら以外の方位は板厚減少を引き起こし、この板厚減少率の顕著な差が表面の凹凸(リジングマーク)の原因になっていることを見出した。
【0011】
従って、Goss方位、PP方位、Brass方位を低減させることがリジングマークの抑制に効果的であるが、特にGoss方位の方位分布密度を3以下、PP方位の方位分布密度を3以下、かつBrass方位の方位分布密度を3以下としたときリジングマークが抑制でき、それぞれの方位分布密度がこれを越えるとリジングマークが顕著に発生して表面品質が劣化する。Goss方位の方位分布密度が2以下、PP方位の分布密度が2以下、かつ、Brass方位の分布密度が2以下であるとより好ましい。
【0012】
次に、Al−Mg−Si系合金の合金元素について説明する。
(Mg、Si)
これらの元素は、GPゾーンと称されるMg2Si組成の集合体(クラスター)もしくは中間相を形成し、ベーキング処理による硬化に寄与する重要な元素である。また、板材の加工硬化特性を向上させ、プレス成形時の破断限界を高める役割を果たす。さらに、均熱処理中に生成したMg2Si安定相は再結晶方位の優先核生成サイトとして働き、板材の集合組織形成に大きな影響を及ぼす元素である。
Mg、Si含有量がそれぞれ0.2wt%未満になるとベーキング処理時に十分な強度が得られず、それぞれ1.5wt%を越えるとベーキング処理時の硬化特性の劣化、粗大な化合物を形成しそれが破壊の起点となるための成形性の劣化を起こし、さらに所望の集合組織形成を阻害する。より好ましくは、Mg:0.8%以下、Si:1.3%以下である。
【0013】
(Mn、Cr、Fe、Zr、V、Ti)
Mn、Cr、Zr、V、Tiは530℃以上の高温で4hr以上の長時間均質化熱処理することで、微細な析出物を多く形成する。その析出物は再結晶方位の優先核生成サイトとして働き、好適な集合組織を得るために有効である。また結晶粒径を微細化し成形割れ限界を高めるためにも有効である。さらに、Mn、Crはベーキング処理による硬化に寄与する重要な元素である。しかし、Mn、Cr、Zr、V、Tiのいずれかが、それぞれ1.0wt%、0.3wt%、0.3wt%、0.3wt%、0.1wt%を越えると、粗大な化合物を成形することによって破壊の起点となるため顕著に成形性が劣化し、そして所望の集合組織形成を阻害する。
FeはAl7Cu2Fe、Al12(Fe、Mn)3Cu12、(Fe、Mn)Al6、α−AlFeSi、β−AlFeSi等の晶出物を形成し、これらの晶出物は、再結晶方位の優先核生成サイトとして働き、好適な集合組織を得るために有効である。しかし、含有量が1.0wt%を超えると、粗大な化合物を形成することによって破壊の起点になるため、顕著に形成性が劣化し、そして所望の集合組織形成を阻害する。
また、これらの元素の合計が0.01wt%未満では上記の効果がなく、1.5wt%を越えると、粗大な化合物を成形することによって破壊の起点となるため顕著に成形性が劣化し、そして所望の集合組織形成を阻害する。
なお、これらの元素の特に好ましい範囲は、Mn:0.5wt%以下、Cr:0.2wt%以下、Fe:0.5wt%以下、Zr:0.2wt%以下、V:0.2wt%以下、Ti:0.05wt%以下である。
【0014】
(Cu、Ag、Zn、Sn)
これらの元素は、GPゾーンと称されるMg2Si組成の集合体(クラスター)もしくは中間相の形成を促進する元素である。また、Cu、Ag、Znはベーキング処理時の硬化速度を速める働きがあり、Snはベーキング前の段階において室温時効を抑制し、ベーキング時の時効を促進する働きがある。しかし、これらの元素の合計が0.01wt%未満では上記の効果がなく、一方、Cu、Ag、Zn、Sn含有量がそれぞれ1.0wt%、0.2wt%、1.0wt%、0.2wt%を越えるか、それらの合計が1.5%を越えると、粗大な化合物を形成することによって破壊の起点となるため成形性の劣化、そして所望の集合組織形成を阻害する。
なお、これらの元素の特に好ましい範囲は、Cu:0.5wt%以下、Ag:0.1wt%以下、Zn:0.5wt%以下、Sn:0.1wt%以下である。
【0015】
次に好適な製造条件について説明する。
通常の鋳造を行った後均質化熱処理を施すが、Mn、Cr、Fe、Zr、Vなどの遷移金属を添加する場合には、530℃以上の高温で4hr以上の長時間均質化熱処理することで、微細な析出物を多く析出させることができる。これらの析出物は好適な集合組織を得るために有効であり、また結晶粒径を微細化するためにも有効である。次に熱間圧延を行い、冷間圧延を行うが、熱間圧延の開始温度が450℃を越え、かつ熱間圧延終了温度が360℃を越え、かつ最終冷間圧延率が85%以下であることで所望の集合組織を得ることができる。なお、熱間圧延終了後に焼鈍を施してもよい。
【0016】
所望の集合組織を得るために特に大事なことは、溶体化処理前の組織で、Goss方位からBrass方位までの、<110>軸が圧延面法線に平行な方位が属するα方位群[下記参考文献3参照]が発達すると、溶体化処理後のGoss方位、PP方位等の発達の原因になる。そこで溶体化処理前の状態でα方位群の発達を抑制することが必要である。このα方位群は熱間圧延処理中に発達し、あるいは冷間圧延時にも圧下率が高いほど発達する。従って、α方位群を抑制するためには、熱延終了温度を高くして再結晶させることによって熱延時のα方位群を低減させ、かつ冷間圧延率を低減して冷延時のα方位群を低減させることが必要である。そのためには、熱間圧延時の終了温度を360℃を越える温度とし、かつ最終冷間圧延率を85%以下にする。また、熱間圧延を450℃を越える温度で開始すると圧延中に再結晶が起こりやすくなり、圧延時に形成されるα方位群以外の方位も形成されα方位群が減少する。その結果、溶体化処理前の組織でのα方位群が弱くなり、溶体化処理後のGoss、Brass、PP方位が低減し、リジングマークが抑制される。
なお、熱延終了後に焼鈍を施すことによって再結晶させ、熱延α方位群を低減させてもよい。
最後に溶体化処理が施されるが、530℃以上の高温に保持することが望ましい。
参考文献3:伊藤邦雄、「軽金属」43巻(1993)、5号、P.285〜293
【0017】
【実施例】
(実施例1)
Al−0.6%Mg−1.0%Si合金(以下、ベース合金と呼ぶ)、Al−0.6%Mg−1.0%Si−0.1%Mn合金(以下、Mn添加合金と呼ぶ)、Al−0.6%Mg−1.0%Si−0.1%Fe合金(以下、Fe添加合金と呼ぶ)の3組成の合金を通常の方法で鋳造し、550℃で8hrの均質化熱処理を施した。その後熱間圧延(500℃開始)で500mmから10〜1.5mm厚さの板とした。熱間圧延の終了温度を変え、また熱間圧延後の焼鈍(本発明では荒鈍という)の有無、さらには冷間圧延開始板圧を変化させ、冷間圧延で1mm厚さの板とした後、550℃で1分の溶体化処理を施した。
【0018】
これらの板材について15%の引張り変形を与え、その後板の表面を塗装処理し、リジングマーク発生の有無を判定した(リジングマークは塗装後によく目立つようになって発見されるという特性をもつ)。また、成形性の指標として、平面歪み引張り状態の張出し成形試験を行い、割れ限界高さを測定した。
集合組織の測定は、溶体化処理後の板の表面、1/4厚さ、板厚中心部の3面について、通常のX線回析法でターゲットはCuを用い、管電圧50kV、管電流200mAの条件で(100)、(110)、(111)完全正極点図を測定し、それから結晶方位分布関数を用いて各板厚部毎の各方位の方位分布密度を計算し、それらの平均を取って板全体の方位分布密度を求めた。
表1にその結果を示す。本発明材においてリジングマークの発生が抑制され、かつ成形性に優れていることが明らかである。
【0019】
【表1】

Figure 0004063388
【0020】
(実施例2)
表2に示すMg、Si、Mn、Cr、Fe、Zr、V、Tiなどの合金成分を含有する種々の合金を通常の方法で鋳造し、550℃で8hrの均質化処理を施した。その後熱間圧延(開始温度:500℃)を行い、終了温度を変えて、10〜1.5mm厚さの板とした。そして荒鈍を行うことなく冷間圧延で1mm厚さの板とした後、550℃で1分の溶体化処理を施した。
【0021】
【表2】
Figure 0004063388
【0022】
これらの板材について、リジングマーク発生の有無の判定、張り出し成形試験による割れ限界高さの測定及び集合組織の測定を実施例1と同様に行った。
表3にその結果を示す。本発明材においてリジングマークの発生が抑制され、かつ成形性に優れていることが明らかである。
【0023】
【表3】
Figure 0004063388
【0024】
(実施例3)
表4に示すMg、Si、Mn、Cr、Fe、Zr、V、Ti、Cu、Ag、Zn、Snなどの合金成分を含有する種々の合金を通常の方法で鋳造し、550℃で8hrの均質化処理を施した。その後熱間圧延(開始温度:500℃)を行い、終了温度を変えて、10〜1.5mm厚さの板とした。そして荒鈍を行うことなく冷間圧延で1mm厚さの板とした後、550℃で1分の溶体化処理を施した。
【0025】
【表4】
Figure 0004063388
【0026】
これらの板材について、リジングマーク発生の有無の判定、張り出し成形試験による割れ限界高さの測定及び集合組織の測定を実施例1と同様に行った。
表5にその結果を示す。本発明材においてリジングマークの発生が抑制され、かつ成形性に優れていることが明らかである。
【0027】
【表5】
Figure 0004063388
【0028】
【発明の効果】
本発明によれば、リジングマークが抑制された成形加工用Al−Mg−Si系アルミニウム合金板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al—Mg—Si-based aluminum alloy plate (hereinafter, “aluminum” is omitted) excellent in press formability and particularly excellent in surface properties, for example, building materials such as roofs, interiors, curtain walls, equipment, The present invention relates to an Al—Mg—Si alloy plate suitable for materials such as electric parts, optical equipment, automobiles, railway vehicles, airplanes and other transportation equipment, and general machine parts.
[0002]
[Prior art]
As an aluminum plate and aluminum alloy excellent in formability, Al-Mg based alloys have been mainly used conventionally, but since paint bake hardenability is inferior and stretcher strain marks are likely to occur during press molding, As an alternative alloy, an Al—Mg—Si based alloy has been attracting attention. Al-Mg-Si alloys have the advantage that they are excellent in formability and corrosion resistance at room temperature, and high strength can be obtained by aging treatment.
[0003]
However, when an Al—Mg—Si based alloy sheet is formed, surface roughness called ridging marks is generated on the surface of the sheet, as described in JP-A-7-228956 and JP-A-8-232052. It is a problem to do. A ridging mark is a streaky unevenness newly generated in a direction parallel to the rolling direction when a plate material is formed, and in particular, processing at 90 ° with respect to the rolling direction, for example, tensile processing, ironing processing, depth processing, etc. This occurs remarkably when drawing and overhanging are performed. When this ridging mark is generated, it cannot be used as an appearance defect in a product that requires particularly beautiful surfaces such as interiors, camera cases, and automobile outer plate materials.
[0004]
JP-A-7-228956 and JP-A-8-232052 describe hot rolling conditions and other processing conditions as a method for preventing the generation of ridging marks on Al-Mg-Si alloy sheet materials. It is intended to prevent generation of ridging marks by strictly controlling and generating crystal grains having fine and crystallographic orientations random.
However, these prior arts do not elucidate the structure of the plate material itself in which ridging marks are not generated, and this is not sufficient for the recent severe demand for the surface quality.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and an Al-Mg-Si-based aluminum alloy plate for forming processing in which ridging marks generated in conventional Al-Mg-Si-based alloy plate materials are suppressed is provided. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to suppress the generation of ridging marks in the Al—Mg—Si based alloy sheet material, the present inventors perform precise texture control beyond the conventional technique, and the Goss orientation, It has been found that it is effective to suppress the occurrence of PP orientation and Brass orientation.
That is, the Al—Mg—Si based alloy plate for forming process with excellent surface properties according to the present invention is an Al—Mg—Si based alloy plate, and the texture distribution has an orientation distribution density of 3 or less as a texture. It is characterized in that the PP distribution has a density distribution of 3 or less and the Brass distribution has an orientation distribution density of 3 or less.
[0007]
The Al—Mg—Si based alloy used in the present invention contains Mg: 0.2 to 1.5%, Si: 0.2 to 1.5% , and (1) Mn: 1.0 wt%. Hereinafter, Cr: 0.3 wt% or less, Fe: 1.0 wt% or less, Zr: 0.3 wt% or less, V: 0.3 wt% or less, Ti: 0.1 wt% or less, or one or more of them 0.01-1.5 wt% in total, (2) Cu: 1.0 wt% or less, Ag: 0.2 wt% or less, Zn: 1.0 wt% or less, Sn: 0.2 wt% or less It contains two or more kinds in total in a range of 0.01 to 1.5 wt%, or a combination of both, and consists of the balance Al and inevitable impurities.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various studies conducted by the present inventors to elucidate the cause of the generation of ridging marks during press forming of conventional aluminum alloys, it is clear that ridging marks are generated because the texture is not sufficiently controlled. Became.
Here, the texture of the aluminum alloy will be described. In the case of an aluminum alloy, the following textures called Cube orientation, RW orientation, CR orientation, Brass orientation, Goss orientation, PP orientation, C orientation, and S orientation exist.
Cube orientation... {001} <100>
RW orientation ... {001} <110>
CR orientation ... {001} <520>
Brass direction ・ ・ {011} < 211 >
Goss direction ... {011} <100>
PP orientation ... {011} <122>
C-direction ... {112} <111>
S-direction ... {123} <634>
In the present invention, basically, a deviation in orientation within ± 10 degrees from these orientations is defined as belonging to the same orientation factor. However, with respect to the Brass orientation and PP orientation, the deviation of orientation within ± 8 degrees is defined as belonging to the same orientation factor.
[0009]
The texture of a normal aluminum alloy is formed by these orientation factors. When these constituent ratios change, the plastic anisotropy (described later) of the plate material changes, and the press formability becomes good or bad.
There is an orientation distribution density as a quantitative evaluation method of these orientations. This is expressed as a ratio of the intensity of each orientation to a random orientation, and is obtained using a normal orientation X-ray diffraction method and measuring a complete positive map of at least three planes, and then using a crystal orientation distribution function [ See references 1 and 2 below]. Or based on data measured using electron beam diffraction, SEM (Scanning-Electron-Microscopy) -ECP (Electron-Channeling-Pattern), SEM-EBSP (Electron-Back-Scatterd-Pattern), etc. In addition, the orientation distribution density can be obtained using the crystal orientation distribution function. Further, since these orientation distributions change in the plate thickness direction, they are obtained by taking an average for some points in the plate thickness direction.
Reference 1: Book by Shinichi Nagashima, “Aggregation” (published by Maruzen Co., Ltd.) 1984, pages 8 to 44
Reference 2: Seminar of the Japan Institute of Metals, “Texture” (Japan Institute of Metals) 1981, P.3-7
[0010]
The present inventors examined the occurrence mechanism of ridging marks on Al-Mg-Si based alloy sheets having various texture changes, and studied the generation mechanism. As a result, it was found that Goss orientation, PP orientation, and Brass orientation with strong in-plane plastic anisotropy were criminals who generated ridging marks.
More specifically, the in-plane anisotropy of the r value (Rankford value) in the Goss orientation, PP orientation, and Brass orientation is very large compared to other orientations. In the orientation, when the direction is rotated by 20 ° from the rolling direction, and the Brass orientation is pulled in the direction rotated by 55 ° from the rolling direction, the thickness reduction hardly occurs, whereas other orientations cause the thickness reduction. It has been found that this remarkable difference in the plate thickness reduction rate causes surface irregularities (riding marks).
[0011]
Therefore, reducing the Goss azimuth, PP azimuth, and Brass azimuth is effective in suppressing ridging marks, but in particular the azimuth distribution density of the Goss azimuth is 3 or less, the azimuth distribution density of the PP azimuth is 3 or less, and the Brass azimuth When the azimuth distribution density is 3 or less, ridging marks can be suppressed. When the azimuth distribution density exceeds this, ridging marks are remarkably generated and the surface quality is deteriorated. More preferably, the orientation distribution density in the Goss orientation is 2 or less, the distribution density in the PP orientation is 2 or less, and the distribution density in the Brass orientation is 2 or less.
[0012]
Next, alloy elements of the Al—Mg—Si based alloy will be described.
(Mg, Si)
These elements form an aggregate (cluster) or intermediate phase having a Mg 2 Si composition called a GP zone, and are important elements contributing to hardening by baking treatment. Also, it improves the work hardening characteristics of the plate material and plays the role of increasing the breaking limit during press molding. Furthermore, the Mg 2 Si stable phase generated during the soaking process acts as a preferential nucleation site for the recrystallization orientation, and is an element that greatly affects the formation of the texture of the plate material.
If the Mg and Si contents are each less than 0.2 wt%, sufficient strength cannot be obtained during the baking process. If the Mg and Si contents exceed 1.5 wt%, the curing characteristics deteriorate during the baking process and coarse compounds are formed. It causes deterioration of moldability to become a starting point of fracture and further inhibits formation of a desired texture. More preferably, Mg: 0.8% or less, Si: 1.3% or less.
[0013]
(Mn, Cr, Fe, Zr, V, Ti)
Mn, Cr, Zr, V, and Ti form many fine precipitates by performing a long-time homogenizing heat treatment at a high temperature of 530 ° C. or more for 4 hours or more. The precipitate acts as a preferential nucleation site in the recrystallization orientation and is effective for obtaining a suitable texture. It is also effective for reducing the crystal grain size and increasing the limit of molding cracks. Furthermore, Mn and Cr are important elements that contribute to hardening by baking. However, if any of Mn, Cr, Zr, V, and Ti exceeds 1.0 wt%, 0.3 wt%, 0.3 wt%, 0.3 wt%, and 0.1 wt%, a coarse compound is formed. As a result, the moldability is remarkably deteriorated and the formation of a desired texture is inhibited.
Fe forms crystallized substances such as Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 12 , (Fe, Mn) Al 6 , α-AlFeSi, β-AlFeSi, and the like, It works as a preferred nucleation site for recrystallization orientation and is effective for obtaining a suitable texture. However, if the content exceeds 1.0 wt%, the formation of a coarse compound becomes a starting point of destruction, so that the formability is remarkably deteriorated and the formation of a desired texture is inhibited.
Further, if the total of these elements is less than 0.01 wt%, the above effect is not obtained, and if it exceeds 1.5 wt%, the moldability is remarkably deteriorated because it becomes a starting point of fracture by molding a coarse compound, And it inhibits desired texture formation.
Particularly preferable ranges of these elements are Mn: 0.5 wt% or less, Cr: 0.2 wt% or less, Fe: 0.5 wt% or less, Zr: 0.2 wt% or less, V: 0.2 wt% or less. , Ti: 0.05 wt% or less.
[0014]
(Cu, Ag, Zn, Sn)
These elements are elements that promote the formation of aggregates (clusters) or intermediate phases of the Mg 2 Si composition called GP zones. Further, Cu, Ag, and Zn have a function of increasing the curing rate during the baking process, and Sn has a function of suppressing room temperature aging in the stage before baking and promoting aging during baking. However, if the total of these elements is less than 0.01 wt%, the above effect is not obtained, while the contents of Cu, Ag, Zn, and Sn are 1.0 wt%, 0.2 wt%, 1.0 wt%,. If it exceeds 2 wt% or the total thereof exceeds 1.5%, a coarse compound is formed, which becomes a starting point of fracture, so that deterioration of moldability and formation of a desired texture are inhibited.
The particularly preferable ranges of these elements are Cu: 0.5 wt% or less, Ag: 0.1 wt% or less, Zn: 0.5 wt% or less, and Sn: 0.1 wt% or less.
[0015]
Next, suitable manufacturing conditions will be described.
After performing normal casting, homogenization heat treatment is performed. When transition metals such as Mn, Cr, Fe, Zr, and V are added, homogenization heat treatment is performed at a high temperature of 530 ° C or higher for 4 hours or longer. Thus, a lot of fine precipitates can be deposited. These precipitates are effective for obtaining a suitable texture, and are also effective for reducing the crystal grain size. Next, hot rolling is performed, and cold rolling is performed. The hot rolling start temperature exceeds 450 ° C., the hot rolling end temperature exceeds 360 ° C., and the final cold rolling rate is 85% or less. A desired texture can be obtained. In addition, you may anneal after completion | finish of hot rolling.
[0016]
Particularly important for obtaining a desired texture is a structure before solution treatment, from the Goss orientation to the Brass orientation, and the α orientation group to which the <110> axis belongs to the orientation parallel to the rolling surface normal. When Reference Document 3] develops, it causes development of Goss orientation, PP orientation, etc. after solution treatment. Therefore, it is necessary to suppress the development of the α orientation group before the solution treatment. The α orientation group develops during the hot rolling process, or develops as the rolling reduction increases during cold rolling. Therefore, in order to suppress the α direction group, the α direction group at the time of hot rolling is reduced by increasing the hot rolling end temperature and recrystallizing , and the cold rolling rate is reduced to reduce the α direction group at the time of cold rolling. Need to be reduced. For that purpose, the end temperature at the time of hot rolling is set to a temperature exceeding 360 ° C., and the final cold rolling rate is set to 85% or less . In addition, when hot rolling is started at a temperature exceeding 450 ° C. , recrystallization is likely to occur during rolling, and orientations other than the α orientation group formed during rolling are formed, and the α orientation group is reduced. As a result, the α orientation group in the structure before the solution treatment is weakened, the Goss, Brass, PP orientation after the solution treatment is reduced, and ridging marks are suppressed.
In addition, you may recrystallize by giving annealing after completion | finish of a hot rolling, and may reduce a hot rolling (alpha) direction group.
Finally, a solution treatment is performed, but it is desirable to maintain at a high temperature of 530 ° C or higher.
Reference 3: Kunio Ito, “Light Metal”, Volume 43 (1993), No. 5, pp. 285-293
[0017]
【Example】
Example 1
Al-0.6% Mg-1.0% Si alloy (hereinafter referred to as base alloy), Al-0.6% Mg-1.0% Si-0.1% Mn alloy (hereinafter referred to as Mn-added alloy) 3) alloy of Al-0.6% Mg-1.0% Si-0.1% Fe alloy (hereinafter referred to as Fe-added alloy) is cast by a usual method, and is 8 hours at 550 ° C. A homogenized heat treatment was applied. Thereafter, hot rolling (starting at 500 ° C.) gave a plate having a thickness of 500 mm to 10 to 1.5 mm. The end temperature of hot rolling was changed, the presence or absence of annealing after hot rolling (referred to as roughening in the present invention), and the cold rolling start plate pressure was changed to produce a 1 mm thick plate by cold rolling. Thereafter, a solution treatment was performed at 550 ° C. for 1 minute.
[0018]
It gave 15% tensile deformation for these plate members, the surface of the subsequent plate and painting, (with the property that ridging marks are found so conspicuous well after painting) that determine the presence or absence of ridging marks occur. Further, as an index of formability, an overhang forming test in a plane strain tension state was performed, and the crack limit height was measured.
For the measurement of the texture, the surface of the plate after solution treatment, 1/4 thickness, and the center portion of the plate thickness are subjected to normal X-ray diffraction using Cu as the target, tube voltage 50 kV, tube current Measure the (100), (110), (111) complete positive point map under the condition of 200 mA, and then calculate the orientation distribution density of each orientation for each thickness using the crystal orientation distribution function. The orientation distribution density of the entire plate was obtained.
Table 1 shows the results. In the material of the present invention, it is clear that generation of ridging marks is suppressed and the moldability is excellent.
[0019]
[Table 1]
Figure 0004063388
[0020]
(Example 2)
Various alloys containing alloy components such as Mg, Si, Mn, Cr, Fe, Zr, V, and Ti shown in Table 2 were cast by an ordinary method and subjected to a homogenization treatment at 550 ° C. for 8 hours. Thereafter, hot rolling (starting temperature: 500 ° C.) was performed, and the end temperature was changed to obtain a plate having a thickness of 10 to 1.5 mm. And after making into a 1-mm-thick board by cold rolling, without performing roughening, the solution treatment for 1 minute was performed at 550 degreeC.
[0021]
[Table 2]
Figure 0004063388
[0022]
About these board | plate materials, determination of the presence or absence of a ridging mark generation | occurrence | production, the measurement of the crack limit height by an overhang forming test, and the measurement of a texture were performed like Example 1. FIG.
Table 3 shows the results. In the material of the present invention, it is clear that generation of ridging marks is suppressed and the moldability is excellent.
[0023]
[Table 3]
Figure 0004063388
[0024]
(Example 3)
Various alloys containing alloy components such as Mg, Si, Mn, Cr, Fe, Zr, V, Ti, Cu, Ag, Zn, and Sn shown in Table 4 were cast by a usual method, and 8 hours at 550 ° C. A homogenization treatment was performed. Thereafter, hot rolling (starting temperature: 500 ° C.) was performed, and the end temperature was changed to obtain a plate having a thickness of 10 to 1.5 mm. And after making into a 1-mm-thick board by cold rolling, without performing roughening, the solution treatment for 1 minute was performed at 550 degreeC .
[0025]
[Table 4]
Figure 0004063388
[0026]
About these board | plate materials, determination of the presence or absence of a ridging mark generation | occurrence | production, the measurement of the crack limit height by an overhang forming test, and the measurement of a texture were performed like Example 1. FIG.
Table 5 shows the results. In the material of the present invention, it is clear that generation of ridging marks is suppressed and the moldability is excellent.
[0027]
[Table 5]
Figure 0004063388
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the Al-Mg-Si type aluminum alloy plate for shaping | molding in which the ridging mark was suppressed can be obtained.

Claims (4)

Mg:0.2〜1.5wt%、Si:0.2〜1.5wt%を含有し、さらにMn:1.0wt%以下、Cr:0.3wt%以下、Fe:1.0wt%以下、Zr:0.3wt%以下、V:0.3wt%以下、Ti:0.1wt%のうち1種又は2種以上を合計で0.01〜1.5wt%含有し、残部Al及び不可避的不純物からなるAl−Mg−Si系アルミニウム合金板であって、集合組織として、Goss方位の方位分布密度が3以下、PP方位の方位分布密度が3以下、かつBrass方位の方位分布密度が3以下であることを特徴とする表面性状に優れた成形加工用Al−Mg−Si系アルミニウム合金板。  Mg: 0.2 to 1.5 wt%, Si: 0.2 to 1.5 wt%, Mn: 1.0 wt% or less, Cr: 0.3 wt% or less, Fe: 1.0 wt% or less, Contains Zr: 0.3 wt% or less, V: 0.3 wt% or less, Ti: 0.1 wt% or more in total of 0.01 to 1.5 wt%, the balance Al and unavoidable impurities An Al—Mg—Si-based aluminum alloy plate comprising: a texture having an orientation distribution density of Goss orientation of 3 or less, an orientation distribution density of PP orientation of 3 or less, and an orientation distribution density of Brass orientation of 3 or less. An Al—Mg—Si-based aluminum alloy plate for forming having excellent surface properties, characterized in that there is. Mg:0.2〜1.5wt%、Si:0.2〜1.5wt%を含有し、さらにCu:1.0wt%以下、Ag:0.2wt%以下、Zn:1.0wt%以下、Sn:0.2wt%以下のうち1種又は2種以上を合計で0.01〜1.5wt%含有し、残部Al及び不可避的不純物からなるAl−Mg−Si系アルミニウム合金板であって、集合組織として、Goss方位の方位分布密度が3以下、PP方位の方位分布密度が3以下、かつBrass方位の方位分布密度が3以下であることを特徴とする表面性状に優れた成形加工用Al−Mg−Si系アルミニウム合金板。  Mg: 0.2 to 1.5 wt%, Si: 0.2 to 1.5 wt%, Cu: 1.0 wt% or less, Ag: 0.2 wt% or less, Zn: 1.0 wt% or less, Sn: An Al-Mg-Si-based aluminum alloy plate containing one or more of 0.2 wt% or less in total of 0.01 to 1.5 wt%, the balance being Al and inevitable impurities, The Al texture for forming with excellent surface properties, characterized in that the orientation distribution density of Goss orientation is 3 or less, the orientation distribution density of PP orientation is 3 or less, and the orientation distribution density of Brass orientation is 3 or less. -Mg-Si based aluminum alloy plate. 請求項1又は2に記載された組成のアルミニウム合金鋳塊に対し、均質化処理後熱間圧延を行い、続いて冷間圧延を行った後、溶体化処理を行って成形加工用Al−Mg−Si系アルミニウム合金板を製造するに際し、前記均質化処理を530℃以上の温度で4時間以上行い、前記熱間圧延を450℃を越える温度で開始し、かつ360℃を越える温度で終了し、前記冷間圧延を最終冷間圧延率が85%以下になるように行うことを特徴とする請求項1又は2に記載された表面性状に優れた成形加工用Al−Mg−Si系アルミニウム合金板の製造方法。The aluminum alloy ingot having the composition described in claim 1 or 2 is subjected to hot rolling after homogenization, followed by cold rolling, and then subjected to solution treatment to form Al-Mg for forming. -In producing a Si-based aluminum alloy sheet, the homogenization treatment is performed at a temperature of 530 ° C or higher for 4 hours or longer, the hot rolling is started at a temperature exceeding 450 ° C, and finished at a temperature exceeding 360 ° C. 3. The Al—Mg—Si based aluminum alloy for forming with excellent surface properties according to claim 1 , wherein the cold rolling is performed so that a final cold rolling rate is 85% or less. A manufacturing method of a board. 熱間圧延後に焼鈍を行うことを特徴とする請求項3に記載された表面性状に優れた成形加工用Al−Mg−Si系アルミニウム合金板の製造方法。The manufacturing method of the Al-Mg-Si type aluminum alloy plate for shaping | molding excellent in the surface property described in Claim 3 characterized by performing annealing after hot rolling.
JP05615998A 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same Expired - Lifetime JP4063388B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05615998A JP4063388B2 (en) 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same
US09/375,465 US6231809B1 (en) 1998-02-20 1999-08-17 Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture
DE19938995A DE19938995C5 (en) 1998-02-20 1999-08-17 A method for producing an Al-Mg-Si alloy sheet for forming with good surface properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05615998A JP4063388B2 (en) 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same
DE19938995A DE19938995C5 (en) 1998-02-20 1999-08-17 A method for producing an Al-Mg-Si alloy sheet for forming with good surface properties

Publications (2)

Publication Number Publication Date
JPH11236639A JPH11236639A (en) 1999-08-31
JP4063388B2 true JP4063388B2 (en) 2008-03-19

Family

ID=26054633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05615998A Expired - Lifetime JP4063388B2 (en) 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same

Country Status (2)

Country Link
JP (1) JP4063388B2 (en)
DE (1) DE19938995C5 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342112B1 (en) * 1998-09-02 2002-01-29 Alcoa Inc. A1-mg based alloy sheets with good press formability
AT412284B (en) * 2003-03-14 2004-12-27 Miba Gleitlager Gmbh Wrought aluminum
JP4499369B2 (en) * 2003-03-27 2010-07-07 株式会社神戸製鋼所 Al-Mg-Si-based alloy plate with excellent surface properties with reduced generation of ridging marks
FR2855833B1 (en) * 2003-06-05 2007-03-16 Pechiney Rhenalu LAMINATED OR ALUMINUM ALLOY PRODUCT WITH GOOD RESISTANCE TO CORROSION
DE102004030021B4 (en) * 2003-07-09 2009-11-26 Aleris Aluminum Duffel Bvba Rolled product
KR100527974B1 (en) * 2003-08-21 2005-11-09 현대자동차주식회사 A method for restraining ridging of Al-Mg-Si aluminum alloy sheet
ATE317025T1 (en) * 2003-11-05 2006-02-15 Erbsloeh Aluminium Gmbh ALUMINUM PRODUCT MADE FROM AN AL-MG-SI ALLOY CONTAINING AG
DE10351666B3 (en) * 2003-11-05 2005-01-27 Erbslöh Aluminium Gmbh Aluminum product for the inner and outer parts of vehicles is made from an aluminum alloy containing alloying additions of magnesium and silicon
DE102004035043A1 (en) * 2004-07-20 2006-04-13 Daimlerchrysler Ag Shaping of light metal sheet by a shaping tool useful for shaping metal sheets in vehicle production specific heat with treatment prior to shaping at temperatrure below light metal melting point
KR100569454B1 (en) 2004-10-12 2006-04-07 현대자동차주식회사 Manufacturing method of aluminum-magnesium-silicon alloy sheet material in which leaching is suppressed
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
KR100857681B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 Ferritic stainless steel manufacturing method with improved leasing characteristics
JP5059423B2 (en) * 2007-01-18 2012-10-24 株式会社神戸製鋼所 Aluminum alloy plate
JP5354954B2 (en) * 2007-06-11 2013-11-27 住友軽金属工業株式会社 Aluminum alloy plate for press forming
US10161020B2 (en) 2007-10-01 2018-12-25 Arconic Inc. Recrystallized aluminum alloys with brass texture and methods of making the same
US8366846B2 (en) 2008-03-31 2013-02-05 Kobe Steel, Ltd. Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP5495183B2 (en) * 2010-03-15 2014-05-21 日産自動車株式会社 Aluminum alloy and high strength bolt made of aluminum alloy
CN101880805B (en) * 2010-07-30 2012-10-17 浙江巨科铝业有限公司 Method for producing Al-Mg-Si aluminum alloy for automobile body panel
WO2016000937A1 (en) * 2014-07-04 2016-01-07 Aleris Rolled Products Germany Gmbh Aluminium alloy for use in the building industry
CN108396207A (en) * 2017-02-08 2018-08-14 福建祥鑫股份有限公司 A kind of Al-Mg-Si alloy and its special strengthening method
CN114672699A (en) * 2022-03-22 2022-06-28 山东金马汽车装备科技有限公司 High-strength high-plasticity aluminum-based composite material and preparation process thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593479B2 (en) * 1987-07-27 1997-03-26 古河電気工業株式会社 Manufacturing method of aluminum alloy material for forming
JP2823797B2 (en) * 1994-02-16 1998-11-11 住友軽金属工業株式会社 Manufacturing method of aluminum alloy sheet for forming
JPH08109428A (en) * 1994-08-15 1996-04-30 Nippon Steel Corp Aluminum alloy plate excellent in paint bake hardenability and method for producing the same
JP3905143B2 (en) * 1995-05-31 2007-04-18 株式会社神戸製鋼所 Aluminum alloy plate excellent in press formability and method for producing the same

Also Published As

Publication number Publication date
DE19938995C2 (en) 2002-10-24
DE19938995C5 (en) 2010-04-15
DE19938995A1 (en) 2001-03-08
JPH11236639A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
JP4063388B2 (en) Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same
US6231809B1 (en) Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture
JP4499369B2 (en) Al-Mg-Si-based alloy plate with excellent surface properties with reduced generation of ridging marks
WO2009123011A1 (en) Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
US5460666A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
TWI862707B (en) Aluminum alloy
US5580402A (en) Low baking temperature hardenable aluminum alloy sheet for press-forming
JPH0931616A (en) Al-Mg-Si alloy plate excellent in formability and method for producing the same
US20220220588A1 (en) Superplastic-forming aluminum alloy plate and production method therefor
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JPH09249950A (en) Method for producing aluminum alloy sheet excellent in formability and paint bake hardenability
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
EP1141433A2 (en) High strength aluminium alloy sheet and process
JP4202894B2 (en) Mg-containing Al alloy
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPH0547616B2 (en)
JPH07197177A (en) Aluminum alloy rolled sheet for superplastic formation and low in cavitation
JPH06228696A (en) Aluminum alloy sheet for di can body
TWI860415B (en) Aluminum alloy
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same
JPH0257656A (en) Aluminum alloy for automobile panel having excellent zinc phosphate treatability and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

EXPY Cancellation because of completion of term