[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4062169B2 - Positive electrode material for lithium secondary battery - Google Patents

Positive electrode material for lithium secondary battery Download PDF

Info

Publication number
JP4062169B2
JP4062169B2 JP2003141265A JP2003141265A JP4062169B2 JP 4062169 B2 JP4062169 B2 JP 4062169B2 JP 2003141265 A JP2003141265 A JP 2003141265A JP 2003141265 A JP2003141265 A JP 2003141265A JP 4062169 B2 JP4062169 B2 JP 4062169B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
concentration
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003141265A
Other languages
Japanese (ja)
Other versions
JP2004348981A (en
Inventor
昌弘 葛西
豊隆 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003141265A priority Critical patent/JP4062169B2/en
Publication of JP2004348981A publication Critical patent/JP2004348981A/en
Application granted granted Critical
Publication of JP4062169B2 publication Critical patent/JP4062169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高エネルギー密度のリチウム電池用正極材料、特に、車両用途を目的としたリチウム二次電池用正極材料に関する。
【0002】
【従来の技術】
ニッケル酸リチウムを主たる活物質として電気自動車用などのために高出力・高容量の電池を得ようとする試みが、特開2000−77072号公報に開示されている。
【0003】
また、特開平7−37576号公報には、薄片が規則的に積層した層状構造を有する板状の二次粒子を有するニッケル酸リチウムを正極材料に用いる試みが開示されている。
【0004】
しかしながら、上記手段によるならば、電気自動車に要求される出力特性、特に低温での出力を確保することは困難であった。
【0005】
【特許文献1】
特開平7−37576号公報
【0006】
【発明が解決しようとする課題】
電動車両、例えば電気自動車や電動バイクなどの移動体の電源として用いられる二次電池には、民生用の電池よりもはるかに高い出力特性、特に−30℃といった低温での高出力が求められる。
【0007】
本発明は、電池電圧を高くすることで電池の高出力化を図り、特に低温での出力特性を解決しようとするものである。
【0008】
【課題を解決するための手段】
低温での高出力化のために、最も重要なことは、正極材料の放電電位の平坦化である。
【0009】
本発明は、LiおよびNi,Mn,Coを含む酸化物を含有するリチウム二次電池用正極材料であって、酸化物を構成する粒子は、表面のMn濃度が内部のMn濃度よりも高い領域が存在することを特徴とするリチウム二次電池用正極材料を用いることで、リチウム二次電池の電位を平坦化するものである。
【0010】
例えば、表面部分の組成は、LiNi0.3Mn0.6Co0.12であり、内部部分の組成は、LiNi0.5Mn0.3Co0.22であるように構成する。
【0011】
通常は、粒子は均一な組成で形成されるが、本発明では、粒子の表面と内部とでは組成が異なるものである。
【0012】
また、LiおよびNiを少なくとも含有するリチウム二次電池用正極材料であって、前記LiおよびNiの他にMn以外の4価の元素とCo以外の3価の元素を含み、
組成式 LixNia(Mny1-y)b(CozM′1-z)c2
(0<x<1.2,0<y<1,0<z<1,a+b+c=1,9b≦5a+2.7,0<a<1,0<b<1,0<c<1、M:Mnとは異なる4価元素、M′:Coとは異なる3価元素)
で表される組成を有しており、正極材料を構成する粒子は、表面のMn濃度が内部のMn濃度よりも原子比にして10%以上高い領域が存在することを特徴とすることが好ましい。
【0013】
更には、Mn濃度の高い層の厚みが、正極材料を構成する粒子の直径の0.1%以上10%以下であることが望ましい。
【0014】
ここで、4価元素としてはSi,Ge,Snなどの典型元素や、4価をとる遷移金属Ti,V,Fe,Wなどが望ましい。4価元素Mは1種類に限られる必要は無く、上記の元素の複数からなっていてもかまわない。
【0015】
また、3価元素としてはAl,Ga,Inなどの典型元素や、3価をとる遷移金属Sc,Cr,Moや希土類のY,La,Ce,Eu,Gd,Ndなどが望ましい。上記3価元素M′は1種類に限られる必要は無く、上記の元素の複数からなっていてもかまわない。
【0016】
正極材料の表面には、Mn濃度が内部よりも高い濃度を有する層が構成されていることを特徴とする。
【0017】
従来の層状構造を有する正極材料を用いた電池では、放電電位がなだらかな傾斜を持った形状となり、電位の平坦性が悪いという問題があった。
【0018】
これは、従来の正極材料では、放電の際にNiイオンの価数変化が起こり、これによって電池の電圧が決定される。4価のNi4+イオンが、2価のNi2+イオンに価数変化する際の変化に対応する電位の変化は、電位平坦性が悪くなだらかな電圧変化となる。
【0019】
これに対して、Mnスピネル系の正極材料は電位が平坦であるが、容量が低くて寿命が悪いという問題があった。
【0020】
本発明では、正極材料として粒子の径方向にMnの濃度分布がある材料を用いた。Mnイオンの価数変化による電位変化は、平坦であり、電池の出力向上、特に、低温での出力向上に対して効果がある。
【0021】
粒子の濃度分布を、透過電子顕微鏡(TEM)を用いたエネルギー分散型X線分光(EDX)により調べることができ、スピネル型酸化物に類似する構造のもの、六方晶構造の酸化物が生成していると考えている。
【0022】
本発明の本質は、正極活物質の粒子表面に生成した物質により、放電時の電位が支配されるという点である。
【0023】
【発明の実施の形態】
本形態の正極活物質を作製するには、以下のようにすることが好ましい。
【0024】
出発原料は酸化物,水酸化物,炭酸塩,硫酸塩,硝酸塩などを用いる。原料は粉末の形で用い、これを混合機、例えば、ボールミルやバイブレーションミルなどを用いて粉砕,混合する。
【0025】
例えば、LiNi1/3Mn1/3Co1/32なる正極材料を合成する場合は、以下のようにする。
【0026】
出発原料として炭酸リチウム(Li2CO3),二酸化マンガン(MnO2 )の粉末を用いて、これらを金属元素のモル比が得ようとする材料と等比になるように秤量して、混合する。
【0027】
混合した原料粉末を、高純度アルミナ製の容器に入れて、空気雰囲気が800℃〜950℃の温度で、電気炉を用いて焼成(第1焼成)する。室温まで徐冷した焼成粉末を、再び、混合機で粉砕,混合し、空気雰囲気中で1000℃から
1100℃の温度で第2焼成する。
【0028】
得られた粉末を粉砕し、自動ふるいで40ミクロン以下の粒度に分級して正極活物質の前駆体原料を得るものである。
【0029】
次に、得られた前駆体材料を酸性溶液、例えば、硝酸水溶液に投入する。水溶液に硝酸Mnを入れてた後、水酸化ナトリウムのような強アルカリ性水溶液を徐々に入れていくと、前駆体表面にMn水酸化物の析出が生じ、表面のMn濃度が高い粉末原料が得られる。粉末原料を900から1000℃の温度で、空気中で熱処理することで所定の正極材料を得る。
【0030】
本形態を用いて電動車両用リチウム二次電池を作製するためには、以下のようにする。
【0031】
まず、正極活物質を炭素材料粉末の導電材及びポリフッ化ビニリデン(PVDF)等の結着剤とともに混合してスラリーを作製する。
【0032】
正極活物質に対する導電材の混合比は、5〜20重量%が好ましい。このときに、正極活物質の粉末粒子がスラリー中で均一に分散するように、回転翼のような撹拌手段を具備した混合機を用いて十分な混練を行う。
【0033】
十分に混合したスラリーは、例えば、ロール転写式の塗布機などによって厚み15〜25μmのアルミ箔上に両面塗布する。両面塗布した後、プレス乾燥することによって正極の電極板とする。塗布電極合材の厚さは20〜100μmにするのが望ましい。
【0034】
負極は、黒鉛または非晶質炭素、またはそれらの混合物を活物質に用い、正極と同様に結着剤と混合して塗布,プレスし、電極を形成する。電極合材厚は20〜70μmとするのが望ましい。負極の場合は、集電体として厚さ7〜20μmの銅箔を用いる。塗布の混合比は、例えば、負極活物質と結着剤の重量比で90:10とするのが望ましい。
【0035】
塗布電極は所定の長さに切断し、電流引き出し用のタブ部をスポット溶接または超音波溶接により形成する。タブ部は長方形の形状をした集電体と同じ材質の金属箔からできており、電極から電流を取り出すために設置するものである。
【0036】
本形態の移動体用リチウム二次電池では、大電流を流すことが要求されるため、タブは複数本設ける必要がある。タブ付けされた電極は多孔性樹脂、例えばポリエチレン(PE)やポロプロピレン(PP)などからなるセパレータを間に挟んで重ね、これを円筒状に捲いて電極群となし、円筒状容器に収納する。
【0037】
あるいは、セパレータに袋状のものを用いてこの中に電極を収納し、これらを順次重ねて角形容器に収納しても良い。容器の材質はステンレス、またはアルミを用いるのが望ましい。
【0038】
電極群を電池容器に収納した後に、電解液を注入し密封する。
【0039】
電解液としてはジエチルカーボネート(DEC),エチレンカーボネート(EC),プロピレンカーボネート(PC)等の溶媒に電解質として、LiPF6,LiBF4 ,LiClO4 などを溶解させたものを用いるのが望ましい。電解質濃度は、0.7M から1.5M の間とするのが望ましい。電解液を注液して、電池容器を密閉して電池が完成する。
【0040】
(実施例)
本実施例では、原料としてLi2CO3,MnO2 ,CoCO3 を用いて前駆体材料LiNi1/3Mn1/3Co1/32を合成した。
【0041】
原料粉末を混合した後に、高純度アルミナ容器に入れて950℃で20時間の第1焼成と、1050℃で20時間の第2焼成をした。焼成はいずれも、空気中で行った。このようにして作製した前駆体原料100gを0.5M の硝酸水溶液に投入して、同時に25gの硝酸Mnを投入してよく攪拌した。
【0042】
硝酸Mnが完全に溶解しても、前駆体は溶解しなかった。水酸化ナトリウム1N水溶液を滴下して、硝酸Mnを沈殿させてからろ過をして、ろ過された粉末を乾燥させた後、再び、950℃で2時間の熱処理を空気中で行った。このプロセスで作製した正極活物質を粉砕分級し、いずれの場合でも平均粒径D50=9〜11ミクロンとなるようにした。
【0043】
得られた正極材料の粒子の概略図を図1に示す。正極材料の粒子は表面付近にMn濃度が高い(内部に比較してMn濃度が高い)部分1を有し、内部にMn濃度が低い(表面付近に比較してMn濃度が低い)部分2が存在する。粒径がおよそ10ミクロンの粒子を、TEM−EDXで観察してMn濃度を調べた結果を図2に示す。このように表面から0.5ミクロンの厚さのMn高濃度層が形成されていることが分かった。
【0044】
実施例の正極材料と、実施例中の前駆体原料であるLiNi1/3Mn1/3Co1/3O2 を正極材料として用いて、負極に非晶質炭素を用いた電池を作製した。
【0045】
室温での電池容量はいずれも6.2Ah であったが、図3に示すとおり、−30℃での試験では、本発明の正極材料を用いた電池のほうが容量も3.5Ah と、LiNi1/3Mn1/3Co1/32を正極材料として用いた電池に比べて1.2Ah 放電容量も高く、また、放電時の電池電圧も高くなっており、低温での出力特性に優れていることが明らかに示された。図3中、符号3は、本発明の正極材料を用いた電池の放電曲線を、符号4は、LiNi1/3Mn1/3Co1/32を用いた電池の放電曲線をそれぞれ示す。
【0046】
【発明の効果】
本発明によるならば、低温特性に優れた高出力リチウム二次電池を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る正極活物質の粒子構造の概略を示す図である。
【図2】本発明の正極活物質粒子の径方向のMn濃度分布を示す図である。
【図3】電池の放電容量と電池電圧との関係を示した図である。
【符号の説明】
1…Mn高濃度層、2…Mn低濃度層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode material for a lithium battery having a high energy density, and more particularly to a positive electrode material for a lithium secondary battery intended for vehicle use.
[0002]
[Prior art]
An attempt to obtain a battery with a high output and a high capacity for an electric vehicle or the like using lithium nickelate as a main active material is disclosed in Japanese Patent Application Laid-Open No. 2000-77072.
[0003]
Japanese Patent Application Laid-Open No. 7-37576 discloses an attempt to use lithium nickelate having plate-like secondary particles having a layered structure in which thin pieces are regularly stacked as a positive electrode material.
[0004]
However, according to the above means, it has been difficult to ensure output characteristics required for an electric vehicle, in particular, output at a low temperature.
[0005]
[Patent Document 1]
JP-A-7-37576 [0006]
[Problems to be solved by the invention]
A secondary battery used as a power source for a moving body such as an electric vehicle such as an electric vehicle or an electric motorcycle is required to have a much higher output characteristic than a consumer battery, particularly a high output at a low temperature of −30 ° C.
[0007]
The present invention intends to increase the output of a battery by increasing the battery voltage, and to solve the output characteristics particularly at a low temperature.
[0008]
[Means for Solving the Problems]
In order to increase the output at a low temperature, the most important thing is to flatten the discharge potential of the positive electrode material.
[0009]
The present invention relates to a positive electrode material for a lithium secondary battery containing an oxide containing Li and Ni, Mn, and Co, and the particles constituting the oxide are regions in which the surface Mn concentration is higher than the internal Mn concentration. The potential of the lithium secondary battery is flattened by using a positive electrode material for a lithium secondary battery characterized by the presence of.
[0010]
For example, the composition of the surface portion is LiNi 0.3 Mn 0.6 Co 0.1 O 2 , and the composition of the inner portion is LiNi 0.5 Mn 0.3 Co 0.2 O 2 .
[0011]
Usually, the particles are formed with a uniform composition, but in the present invention, the composition is different between the surface and the inside of the particles.
[0012]
Further, a positive electrode material for a lithium secondary battery containing at least Li and Ni, including a tetravalent element other than Mn and a trivalent element other than Co in addition to Li and Ni,
The composition formula Li x Ni a (Mn y M 1-y) b (Co z M '1-z) c O 2
(0 <x <1.2, 0 <y <1, 0 <z <1, a + b + c = 1, 9b ≦ 5a + 2.7, 0 <a <1, 0 <b <1, 0 <c <1, M : Tetravalent element different from Mn, M ': Trivalent element different from Co)
The particles constituting the positive electrode material preferably have a region in which the surface Mn concentration is higher by 10% or more than the internal Mn concentration in terms of atomic ratio. .
[0013]
Furthermore, it is desirable that the thickness of the layer having a high Mn concentration is 0.1% to 10% of the diameter of the particles constituting the positive electrode material.
[0014]
Here, as the tetravalent element, typical elements such as Si, Ge, and Sn, and tetravalent transition metals Ti, V, Fe, and W are desirable. The tetravalent element M need not be limited to one type, and may be composed of a plurality of the above-described elements.
[0015]
As the trivalent element, typical elements such as Al, Ga, and In, transition metals Sc, Cr, and Mo that are trivalent, and rare earth Y, La, Ce, Eu, Gd, and Nd are preferable. The trivalent element M ′ need not be limited to one type, and may be composed of a plurality of the above elements.
[0016]
A layer having a higher Mn concentration than the inside is formed on the surface of the positive electrode material.
[0017]
A battery using a positive electrode material having a conventional layered structure has a problem that the discharge potential has a gentle slope and the flatness of the potential is poor.
[0018]
This is because, in a conventional positive electrode material, a change in the valence of Ni ions occurs during discharge, thereby determining the voltage of the battery. The change in potential corresponding to the change when the valence changes from a tetravalent Ni 4+ ion to a divalent Ni 2+ ion results in a gentle voltage change with poor potential flatness.
[0019]
In contrast, the Mn spinel-based positive electrode material has a flat potential, but has a problem of low capacity and poor life.
[0020]
In the present invention, a material having a Mn concentration distribution in the particle diameter direction is used as the positive electrode material. The potential change due to the valence change of the Mn ion is flat, and is effective for improving the output of the battery, particularly for improving the output at a low temperature.
[0021]
The concentration distribution of the particles can be examined by energy dispersive X-ray spectroscopy (EDX) using a transmission electron microscope (TEM), and an oxide having a structure similar to a spinel oxide or a hexagonal oxide is formed. I think.
[0022]
The essence of the present invention is that the potential at the time of discharge is governed by the substance generated on the particle surface of the positive electrode active material.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
In order to produce the positive electrode active material of this embodiment, the following is preferable.
[0024]
Starting materials are oxides, hydroxides, carbonates, sulfates and nitrates. The raw material is used in the form of powder, and this is pulverized and mixed using a mixer such as a ball mill or a vibration mill.
[0025]
For example, when synthesizing a positive electrode material of LiNi 1/3 Mn 1/3 Co 1/3 O 2 , the following is performed.
[0026]
Using powders of lithium carbonate (Li 2 CO 3 ) and manganese dioxide (MnO 2 ) as starting materials, these are weighed and mixed so that the molar ratio of the metal elements is equal to the material to be obtained. .
[0027]
The mixed raw material powder is put into a container made of high-purity alumina and fired (first firing) using an electric furnace at an air atmosphere of 800 ° C. to 950 ° C. The calcined powder that has been gradually cooled to room temperature is again pulverized and mixed in a mixer, and second calcined at a temperature of 1000 ° C. to 1100 ° C. in an air atmosphere.
[0028]
The obtained powder is pulverized and classified to a particle size of 40 microns or less by automatic sieving to obtain a precursor raw material of the positive electrode active material.
[0029]
Next, the obtained precursor material is put into an acidic solution, for example, a nitric acid aqueous solution. When Mn nitrate is added to the aqueous solution and then a strong alkaline aqueous solution such as sodium hydroxide is gradually added, precipitation of Mn hydroxide occurs on the surface of the precursor, and a powder raw material having a high Mn concentration on the surface is obtained. It is done. A predetermined positive electrode material is obtained by heat-treating the powder raw material at a temperature of 900 to 1000 ° C. in air.
[0030]
In order to produce a lithium secondary battery for an electric vehicle using this embodiment, the following is performed.
[0031]
First, a positive electrode active material is mixed with a conductive material of carbon material powder and a binder such as polyvinylidene fluoride (PVDF) to prepare a slurry.
[0032]
The mixing ratio of the conductive material to the positive electrode active material is preferably 5 to 20% by weight. At this time, sufficient kneading is performed using a mixer equipped with stirring means such as a rotor blade so that the powder particles of the positive electrode active material are uniformly dispersed in the slurry.
[0033]
The sufficiently mixed slurry is coated on both sides of an aluminum foil having a thickness of 15 to 25 μm by, for example, a roll transfer type coating machine. After coating on both sides, a positive electrode plate is obtained by press drying. The thickness of the coating electrode mixture is desirably 20 to 100 μm.
[0034]
For the negative electrode, graphite, amorphous carbon, or a mixture thereof is used as an active material, and mixed with a binder and applied and pressed in the same manner as the positive electrode to form an electrode. The electrode mixture thickness is preferably 20 to 70 μm. In the case of the negative electrode, a copper foil having a thickness of 7 to 20 μm is used as the current collector. The mixing ratio of application is preferably 90:10, for example, by weight ratio of the negative electrode active material and the binder.
[0035]
The coating electrode is cut to a predetermined length, and a tab for drawing current is formed by spot welding or ultrasonic welding. The tab portion is made of a metal foil made of the same material as the current collector having a rectangular shape, and is installed to take out current from the electrode.
[0036]
In the mobile lithium secondary battery of this embodiment, a large current is required to flow, and thus it is necessary to provide a plurality of tabs. The tabbed electrodes are stacked with a separator made of a porous resin, such as polyethylene (PE) or polypropylene (PP), sandwiched between them to form a group of electrodes that are stored in a cylindrical container. .
[0037]
Alternatively, a bag-shaped separator may be used to store electrodes therein, and these may be sequentially stacked and stored in a rectangular container. The container is preferably made of stainless steel or aluminum.
[0038]
After the electrode group is accommodated in the battery container, an electrolytic solution is injected and sealed.
[0039]
As the electrolytic solution, it is desirable to use a solution of LiPF 6 , LiBF 4 , LiClO 4 or the like as an electrolyte in a solvent such as diethyl carbonate (DEC), ethylene carbonate (EC), or propylene carbonate (PC). The electrolyte concentration is preferably between 0.7M and 1.5M. The electrolyte is injected, the battery container is sealed, and the battery is completed.
[0040]
(Example)
In this example, precursor materials LiNi 1/3 Mn 1/3 Co 1/3 O 2 were synthesized using Li 2 CO 3 , MnO 2 , and CoCO 3 as raw materials.
[0041]
After mixing the raw material powders, they were put in a high-purity alumina container and subjected to first firing at 950 ° C. for 20 hours and second firing at 1050 ° C. for 20 hours. All firings were performed in air. 100 g of the precursor raw material thus prepared was put into a 0.5 M nitric acid aqueous solution, and 25 g of Mn nitrate was added at the same time and well stirred.
[0042]
Even when Mn nitrate was completely dissolved, the precursor was not dissolved. A 1N aqueous solution of sodium hydroxide was added dropwise to precipitate Mn nitrate, followed by filtration. The filtered powder was dried, and then again heat treated at 950 ° C. for 2 hours in air. The positive electrode active material produced by this process was pulverized and classified so that the average particle diameter D 50 = 9 to 11 microns in any case.
[0043]
A schematic view of the particles of the obtained positive electrode material is shown in FIG. The particles of the positive electrode material have a portion 1 having a high Mn concentration (higher Mn concentration compared to the inside) near the surface, and a portion 2 having a low Mn concentration (lower Mn concentration compared to the surface) inside. Exists. FIG. 2 shows the result of examining the Mn concentration by observing particles having a particle size of about 10 microns with TEM-EDX. Thus, it was found that a Mn high concentration layer having a thickness of 0.5 microns was formed from the surface.
[0044]
Using the positive electrode material of the example and the precursor raw material in the example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode material, a battery using amorphous carbon for the negative electrode was produced. .
[0045]
Although there were a 6.2Ah Any battery capacity at room temperature, as shown in FIG. 3, the test at -30 ° C., is capacity and 3.5Ah towards the battery using the positive electrode material of the present invention, LiNi 1 / 3 Compared to batteries using Mn 1/3 Co 1/3 O 2 as the positive electrode material, the discharge capacity is higher by 1.2Ah, and the battery voltage during discharge is higher, resulting in excellent output characteristics at low temperatures. It was clearly shown that In FIG. 3, reference numeral 3 indicates a discharge curve of a battery using the positive electrode material of the present invention, and reference numeral 4 indicates a discharge curve of a battery using LiNi 1/3 Mn 1/3 Co 1/3 O 2. .
[0046]
【The invention's effect】
According to the present invention, a high-power lithium secondary battery excellent in low temperature characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a particle structure of a positive electrode active material according to the present invention.
FIG. 2 is a diagram showing a radial Mn concentration distribution of positive electrode active material particles of the present invention.
FIG. 3 is a diagram showing a relationship between a battery discharge capacity and a battery voltage.
[Explanation of symbols]
1 ... Mn high concentration layer, 2 ... Mn low concentration layer.

Claims (5)

リチウム二次電池用正極材料を構成する粒子が、LiおよびNi,Mn,Coを含む酸化物であって、
前記粒子の表面のMn濃度が、前記粒子の内部のMn濃度より高いことを特徴とするリチウム二次電池用正極材料。
The particles constituting the positive electrode material for a lithium secondary battery are oxides containing Li and Ni, Mn, Co,
A positive electrode material for a lithium secondary battery, wherein a Mn concentration on a surface of the particle is higher than a Mn concentration inside the particle.
リチウム二次電池用正極材料を構成する粒子が、LiおよびNi,Mn,Coを含む酸化物であって、
前記粒子の表面に、前記粒子の内部よりもMn濃度が高いLiおよびNi,Mn,Coを含む酸化物の層が形成されていることを特徴とするリチウム二次電池用正極材料。
The particles constituting the positive electrode material for a lithium secondary battery are oxides containing Li and Ni, Mn, Co,
A positive electrode material for a lithium secondary battery, wherein an oxide layer containing Li and Ni, Mn, Co having a Mn concentration higher than the inside of the particle is formed on the surface of the particle.
前記粒子の表面のMn濃度が、前記粒子の内部のMn濃度よりも原子比にして10%以上高い領域が存在することを特徴とする請求項1に記載のリチウム電池用正極材料。  2. The positive electrode material for a lithium battery according to claim 1, wherein a region where the Mn concentration on the surface of the particle is 10% or more higher than the Mn concentration inside the particle is 10% or more. 前記粒子の内部よりもMn濃度が高いLiおよびNi,Mn,Coを含む酸化物の層の厚みが、前記粒子の直径の0.1%以上10%以下であることを特徴とする請求項2に記載のリチウム電池用正極材料。The thickness of the oxide layer containing Li and Ni, Mn, Co having a higher Mn concentration than the inside of the particles is 0.1% to 10% of the diameter of the particles. The positive electrode material for lithium batteries as described in 2. 請求項1〜4に記載の前記正極材料を正極に用いたリチウム二次電池。  A lithium secondary battery using the positive electrode material according to claim 1 for a positive electrode.
JP2003141265A 2003-05-20 2003-05-20 Positive electrode material for lithium secondary battery Expired - Fee Related JP4062169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141265A JP4062169B2 (en) 2003-05-20 2003-05-20 Positive electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141265A JP4062169B2 (en) 2003-05-20 2003-05-20 Positive electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004348981A JP2004348981A (en) 2004-12-09
JP4062169B2 true JP4062169B2 (en) 2008-03-19

Family

ID=33529664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141265A Expired - Fee Related JP4062169B2 (en) 2003-05-20 2003-05-20 Positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4062169B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508943A (en) * 2015-01-23 2018-03-29 ユミコア Lithium metal oxide cathode powder for high voltage lithium ion batteries
CN110048084A (en) * 2018-01-17 2019-07-23 丰田自动车株式会社 All-solid-state battery cathode mix, all-solid-state battery anode, all-solid-state battery and their manufacturing method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997699B2 (en) * 2004-12-10 2012-08-08 新神戸電機株式会社 Lithium secondary battery
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same
US9054374B2 (en) 2005-05-17 2015-06-09 Sony Corporation Cathode active material, method of manufacturing the same and battery
US8445129B2 (en) 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
JP4984436B2 (en) * 2005-05-27 2012-07-25 ソニー株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5168829B2 (en) * 2006-06-28 2013-03-27 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte battery
JP4983124B2 (en) * 2006-07-21 2012-07-25 ソニー株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte battery using the same
WO2009045756A2 (en) * 2007-09-28 2009-04-09 3M Innovative Properties Company Sintered cathode compositions
JP5300370B2 (en) * 2008-08-13 2013-09-25 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5708277B2 (en) * 2011-06-07 2015-04-30 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP2015037067A (en) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 Lithium nickel cobalt manganese positive electrode material powder
JP6213315B2 (en) * 2014-03-10 2017-10-18 株式会社豊田自動織機 Composition comprising surface-treated positive electrode active material, dispersant and solvent
WO2015151606A1 (en) * 2014-03-31 2015-10-08 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
JP6311925B2 (en) * 2014-05-13 2018-04-18 株式会社豊田自動織機 Lithium composite metal oxide and method for producing the same
JP6390915B2 (en) * 2015-07-29 2018-09-19 トヨタ自動車株式会社 Cathode active material for non-aqueous electrolyte secondary battery
CN114639824B (en) * 2022-05-19 2022-08-12 瑞浦兰钧能源股份有限公司 High-safety ternary cathode material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508943A (en) * 2015-01-23 2018-03-29 ユミコア Lithium metal oxide cathode powder for high voltage lithium ion batteries
US10854874B2 (en) 2015-01-23 2020-12-01 Umicore Lithium metal oxide cathode powders for high voltage lithium-ion batteries
CN110048084A (en) * 2018-01-17 2019-07-23 丰田自动车株式会社 All-solid-state battery cathode mix, all-solid-state battery anode, all-solid-state battery and their manufacturing method

Also Published As

Publication number Publication date
JP2004348981A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP7191342B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP4062169B2 (en) Positive electrode material for lithium secondary battery
US10490810B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
JP2023001232A (en) Positive electrode active material for lithium secondary battery and manufacturing method thereof
JP6176109B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5656012B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5448005B2 (en) Positive electrode active material for lithium secondary battery and use thereof
JP2023523667A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP4843918B2 (en) Composite oxide material and positive electrode active material for lithium secondary battery
JPH05242891A (en) Non-aqueous battery
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JP2005196992A (en) Positive pole material for lithium secondary battery and battery
JP2023523668A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
WO2021040033A1 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5713220B2 (en) Lithium secondary battery
JP2004047437A (en) Positive electrode activator for nonaqueous electrolyte secondary battery, and manufacturing method of the same
JPH08162114A (en) Lithium secondary battery
JP6493757B2 (en) Lithium ion secondary battery
JP2008130287A (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2023523209A (en) Positive electrode active material containing spinel composite solid solution oxide, method for producing same, and lithium secondary battery containing same
KR20130108630A (en) Positive active material, process for producing same, and lithium secondary battery including same
JP2016100064A (en) Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module
JP7270941B2 (en) Method for manufacturing positive electrode active material for lithium secondary battery, and positive electrode active material manufactured by said manufacturing method
US10305103B2 (en) Stabilized electrodes for lithium batteries
JP2011006286A (en) Method for producing lithium-containing compound oxide and application of lithium-containing compound oxide obtained by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees