[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4061493B2 - Fluid filled cylindrical vibration isolator - Google Patents

Fluid filled cylindrical vibration isolator Download PDF

Info

Publication number
JP4061493B2
JP4061493B2 JP2003072449A JP2003072449A JP4061493B2 JP 4061493 B2 JP4061493 B2 JP 4061493B2 JP 2003072449 A JP2003072449 A JP 2003072449A JP 2003072449 A JP2003072449 A JP 2003072449A JP 4061493 B2 JP4061493 B2 JP 4061493B2
Authority
JP
Japan
Prior art keywords
fitting
elastic body
outer peripheral
peripheral surface
inner shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003072449A
Other languages
Japanese (ja)
Other versions
JP2004278706A (en
Inventor
昇 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2003072449A priority Critical patent/JP4061493B2/en
Publication of JP2004278706A publication Critical patent/JP2004278706A/en
Application granted granted Critical
Publication of JP4061493B2 publication Critical patent/JP4061493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【技術分野】
本発明は、全体として略円筒形状をもって形成されて内部に封入された非圧縮性流体の流動作用に基づいて主として軸方向に入力される振動に対する防振効果を発揮する流体封入式筒形防振装置に係り、例えば自動車用のエンジンマウントやボデーマウント,メンバマウント,キャブマウント,ストラットバークッション等として用いられ得る、新規な構造の流体封入式筒形防振装置に関するものである。
【0002】
【背景技術】
従来から、振動伝達系を構成する部材間に介装される防振連結体乃至は防振支持体の一種として、インナ軸金具とアウタ筒金具をゴム弾性体で連結せしめた筒形の防振装置が知られており、更に、特許文献1や特許文献2には、内部に封入した非圧縮性流体の流動作用を利用して主として軸方向の入力振動に対する防振効果を得るようにした流体封入式の筒形防振装置が提案されている。これら公報に開示されている従来構造の流体封入式筒形防振装置は、インナ軸金具とアウタ筒金具における軸方向一方の端部間を本体ゴム弾性体で弾性的に連結した一体加硫成形品に対して、それらインナ軸金具とアウタ筒金具の軸方向他方の端部側からそれぞれ略円環形状の隔壁ゴム部材と可撓性蓋部材を嵌め入れて、隔壁ゴム部材を挟んだ軸方向両側に、壁部の一部が本体ゴム弾性体で構成されてインナ軸金具とアウタ筒金具の間への軸方向の振動入力時に圧力変動が生ぜしめられる受圧室と、壁部の一部が可撓性蓋部材で構成されて容積変化が容易に許容される平衡室を形成して、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室をオリフィス通路で相互に連通せしめた構造とされている。
【0003】
【特許文献1】
特公平7−88866号公報
【特許文献2】
特開平8−152041号公報
【0004】
ところで、このような流体封入式筒形防振装置において、本体ゴム弾性体と隔壁ゴム部材は、要求特性が相互に異なることに加えて、形状的に一体成形することが金型構造上困難であることなどの理由から、一般に、隔壁ゴム部材は、本体ゴム弾性体と別体形成される。そして、隔壁ゴム部材の内周部分と外周部分にそれぞれ嵌着リングが加硫接着せしめられて、それら内外周の嵌着リングが本体ゴム弾性体に加硫接着されたインナ軸金具とアウタ筒金具に対して嵌め込まれ、嵌着固定されることによって、隔壁ゴム部材がインナ軸金具とアウタ筒金具の間に跨がって配設されている。また、そこにおいて、アウタ筒金具は比較的容易に絞り加工等が出来ることから、アウタ筒金具の縮径によって隔壁ゴム部材の外周嵌着リングがアウタ筒金具に対して嵌着固定されている。一方、径方向の拡縮変形が困難であるインナ軸金具には、一般に、隔壁ゴム部材の内周嵌着リングが圧入固定されている。
【0005】
ところが、このような従来構造の流体封入式筒形防振装置では、隔壁ゴム部材の内周嵌着リングをインナ軸金具に対して軸方向で比較的に長い距離を圧入しなければならないことから、圧入による組付作業が面倒で時間もかかるという問題があった。また、インナ軸金具の外周面には、本体ゴム弾性体を加硫接着するための接着剤が塗布されていると共に、本体ゴム弾性体が皮膜状に延び出している場合もあり、そこに内周嵌着リングを圧入すると、それら接着剤層やゴム層が剥離して非圧縮性流体中で粉塵状に浮遊し易く、これがオリフィス通路の狭窄や目詰まり等の原因となって防振性能や耐久性が低下するおそれがあった。
【0006】
【解決課題】
ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、本体ゴム弾性体に加硫接着されたインナ軸部材に対して隔壁ゴム部材の内周嵌着リングを、容易に且つ粉塵の発生を抑えつつ圧入固定することの出来る、新規な構造の流体封入式筒形防振装置を提供することにある。
【0007】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。
【0008】
(本発明の態様1)
本発明の態様1の特徴とするところは、インナ軸部材の外周側にアウタ筒部材を離隔配置せしめて該インナ軸部材と該アウタ筒部材における軸方向一方の端部間を本体ゴム弾性体で弾性的に連結した一体加硫成形品に対して、それらインナ軸部材とアウタ筒部材の軸方向他方の端部側からそれぞれ略円環形状の隔壁ゴム部材と可撓性蓋部材を嵌め入れて、該隔壁ゴム部材を挟んだ軸方向両側に、壁部の一部が該本体ゴム弾性体で構成されて該インナ軸部材と該アウタ筒部材の間への軸方向の振動入力時に圧力変動が生ぜしめられる受圧室と、壁部の一部が該可撓性蓋部材で構成されて容積変化が容易に許容される平衡室を形成して、それら受圧室と平衡室に非圧縮性流体を封入すると共に、該受圧室と該平衡室を相互に連通せしめるオリフィス通路を設けた流体封入式筒形防振装置において、前記インナ軸部材の軸方向中間部分の外周面に第一の段差面を設けて該インナ軸部材の外径寸法を軸方向で異ならせ、該第一の段差面よりも前記本体ゴム弾性体側を大径外周面とする一方、前記隔壁ゴム部材の内周部分と外周部分に該インナ軸部材の外周面と前記アウタ筒部材の内周面にそれぞれ嵌着固定される内周嵌着リングと外周嵌着リングを加硫接着せしめて、該内周嵌着リングを該大径外周面に対して圧入固定して、前記インナ軸部材において、前記内周嵌着リングの圧入部位よりも更に前記本体ゴム弾性体側に位置して第二の段差面を設けて、該第二の段差面における該内周嵌着リング側の面の径方向中間部分に前記本体ゴム弾性体の内周側端縁部を位置せしめたことにある。
【0009】
このような本態様に従う構造とされた筒形防振装置においては、内周嵌着リングをインナ軸部材に圧入固定するに際しての圧入距離が実質的に大径外周面の部分だけとなることから、インナ軸部材の長さや嵌着位置に拘わらず圧入距離が充分に小さくされて、内周嵌着リングのインナ軸部材への圧入固定を容易に行うことが可能となる。
【0010】
しかも、本体ゴム弾性体の加硫成形に際してインナ軸部材の表面にゴムバリや接着剤等が被着していた場合でも、それらが内周嵌着リングのインナ軸部材への圧入に際して削りとられることが軽減されることから、液室への異物の混入が回避されて、目的とする防振性能を安定して得ることが可能となる。
【0011】
なお、本態様において、第一の段差面の形状としては、例えば、インナ軸部材の軸直角方向に広がる略円環形状が採用され、好適には、段差面の基端部から本体ゴム弾性体側に向かって次第に径寸法が大きくなるテーパ形状が採用される。また、内周嵌着リングの圧入側端部には、面取り加工が施されることが望ましく、それによって、組み付け作業性の更なる向上が図られ得る。
また、本態様においては、インナ軸部材とアウタ筒部材の間への軸方向の振動入力時にそれら両部材が軸方向で相対変位せしめられることに伴い、受圧室の壁部を構成する本体ゴム弾性体が第二の段差面によって一層効率的に軸方向変位せしめられて、受圧室に効率的な圧力変動が及ぼされる。その結果、受圧室と平衡室の間で相対的な圧力変動が一層効率的に生ぜしめられて、オリフィス通路を通じて流動せしめられる流体流量が増加されることとなり、オリフィス通路を流動する流体の共振作用に基づく防振効果がより有利に発揮され得る。
しかも、本態様では、第二の段差面の軸直角方向への突出高さを調節することにより、インナ軸部材とアウタ筒部材の軸直角方向の対向面間に介在せしめられた本体ゴム弾性体の軸直角方向での肉厚寸法を実質的に変更することも可能であり、それによって、軸直角方向のマウントのばね特性をチューニングすることが出来る。また、本態様では、第二の段差面の軸直角方向への突出高さを周方向で異ならせることにより、例えば、互いに直交する軸直角方向でのばね比を大きくして、車両前後方向で柔らかく、車両左右方向で硬いばね特性を実現すること等も可能となる。
さらに、本態様においては、本体ゴム弾性体の内周側端縁部が第二の段差面における内周嵌着リング側の面の径方向中間部分に位置されていることにより、例えば、金型を用いてインナ軸部材と本体ゴム弾性体を一体加硫成形するに際して、軸方向に型開閉される成形型をその型開閉方向で第二の段差面に当接させることにより本体ゴム弾性体の端縁部のゴム切りをより安全に行うことが出来るのであり、それ故、本体ゴム弾性体におけるインナ軸部材の不要な表面への回り込みによる被着が回避されることとなり、特に、インナ軸部材における内周嵌着リングの圧入部位に対してゴムが回り込んでゴムバリ等が被着されることが防止されることから、内周嵌着リングのインナ軸部材への圧入固定を一層大きな信頼性と安定した固定強度をもって行うことが可能となるのである。
【0012】
(本発明の態様2)
本発明の態様2の特徴とするところは、本発明の前記態様1に係る流体封入式筒形防振装置において、前記隔壁ゴム部材の前記外周嵌着リングが、前記アウタ筒部材の縮径加工によって該アウタ筒部材の内周面に嵌着固定されており、該アウタ筒部材の外周面に開口形成されて周方向に延びる凹溝が該アウタ筒部材で覆蓋されることによって前記オリフィス通路が形成されていることにある。
【0013】
このような本態様においては、オリフィス通路を周方向に延びる充分な長さをもって容易に形成することが出来ることに加え、隔壁ゴム部材のアウタ筒部材に対する連結部位における受圧室と平衡室の間での圧力のリーク(オリフィス通路の短絡)も有利に防止されて、安定した防振性能がより効果的に発揮され得る。
【0018】
(本発明の態様
本発明の態様の特徴とするところは、本発明の前記態様1又は2に係る流体封入式筒形防振装置にあって、前記内周嵌着リングにおいて前記インナ軸部材の前記第一の段差面側に位置せしめられた軸方向端部を、前記大径外周面よりも該第一の段差面側に突出位置せしめたことにある。
【0019】
このような本態様においては、内周嵌着リングをインナ軸部材に圧入固定するに際して必要とされる圧入距離を充分に小さくすることが出来る。また、例えば、内周嵌着リングの軸方向端部に圧力を作用せしめて内周嵌着リングをインナ軸部材の大径外周面に圧入固定する場合に、内周嵌着リングを目的とする固定位置まで一層容易に圧入せしめることが可能となり、組み付け作業が一層容易とされる。
【0020】
【発明の実施形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0021】
先ず、図1には、本発明の一実施形態としての自動車用のエンジンマウント10が、示されている。このエンジンマウント10は、インナ軸部材としての内筒金具12とアウタ筒部材としての外筒金具14が、本体ゴム弾性体16等によって弾性的に連結された構造とされており、図示しない自動車のパワーユニットとボデーの間に装着されて、パワーユニットをボデーに対して防振支持せしめるようになっている。なお、以下の説明中、上下方向は、原則として図1中の上下方向をいうものとする。
【0022】
より詳細には、内筒金具12は、全体として厚肉小径のストレートな略円筒形状を有している。また、内筒金具12の軸方向上端部には、略円板形状を有する拘束板金具18が溶接等で固着されている。拘束板金具18は、内筒金具12と同一中心軸上で軸直角方向に広がって配設されており、中央部分には、内筒金具12の中心孔20と略同じ内径の中央孔22が形成されている。また、内筒金具12と拘束板金具18は、鉄鋼等の金属材により十分な剛性を発揮し得る部材寸法をもって形成されている。そして、この内筒金具12は、中心孔20に挿通される図示しない取付ボルトにより、図示しない自動車のパワーユニットに対して固定されるようになっている。
【0023】
一方、外筒金具14は、内筒金具12の外形寸法よりも十分に大きな内径寸法と内筒金具12よりも小さな軸方向寸法を有しており、内筒金具12に外挿されて、内筒金具12と略同一中心軸上に配設されている。そして、かかる配設状態下、内筒金具12と外筒金具14は、径方向に所定距離を隔てて対向位置せしめられていると共に、外筒金具14が、内筒金具12の軸方向中間部分に位置せしめられており、外筒金具14の軸方向両側から内筒金具12の軸方向両端部が、それぞれ所定長さで突出せしめられている。また、外筒金具14の軸方向上側開口縁部には、径方向外方に広がる円環板形状のフランジ部24が一体形成されており、このフランジ部24が、内筒金具12の拘束板金具18に対して、軸方向で所定距離を隔てて対向せしめられている。更に、外筒金具14は、図示しないブラケット金具や取付ボルト等を介して自動車のボデーに固定されるようになっている。
【0024】
また、このように互いに内外挿状態で配設された内外筒金具12,14は、軸方向の上側端部間が本体ゴム弾性体16によって相互に連結されている。かかる本体ゴム弾性体16は、図2にも示されているように、全体として厚肉の略円環ブロック形状を有しており、内周面が内筒金具12の外周面に加硫接着されていると共に、外周面が外筒金具14の内周面に加硫接着されていることにより、それら内外筒金具12,14を備えた第一の一体加硫成形品26として形成されている。
【0025】
さらに、本体ゴム弾性体16は、軸方向下側部分が内外筒金具12,14の対向面間を軸方向下方に向かって所定長さで延び出していると共に、その軸方向下側端面は、外筒金具14から内筒金具12に向かって径方向内方に行くに従って軸方向外方(軸方向上方)に延びるように傾斜したテーパ状内面28とされている。また、外筒金具14の内周面上には、本体ゴム弾性体16の下側端面から軸方向下方に向かって延び出す筒形のシールゴム層30が、外筒金具14の内周面の略全体を覆うようにして、本体ゴム弾性体16と一体形成されて、外筒金具14に加硫接着されている。更に、シールゴム層30の軸方向下端部には、周方向の全周に亘って連続して延びる複数条のシールリップ32が突設されている。
【0026】
また一方、本体ゴム弾性体16の軸方向上側部分は、外筒金具14の上側開口部から更に軸方向上方に向かって突出せしめられており、その突出先端面34が拘束板金具18に対して加硫接着されている。また、本体ゴム弾性体16が、外筒金具14のフランジ部24上にまで広がって加硫接着されており、該フランジ部24上から僅かに先細テーパ形状となる外周面をもって軸方向上方に突出せしめられている。更に、本体ゴム弾性体16の軸方向上端面(突出先端面34)においても、内外筒金具12,14の径方向対向面間距離に略等しい径方向寸法が設定されており、その全面において拘束板金具18に加硫接着されている。このことからも明らかなように、本実施形態では、内筒金具12や外筒金具14を備えた本体ゴム弾性体16における第一の一体加硫成形品26が、周方向の全周に亘って略一定の断面形状とされている。
【0027】
一方、内外筒金具12,14における軸方向下側の端部間には、薄肉ゴム膜からなる可撓性蓋部材としてのダイヤフラム36が配設されている。このダイヤフラム36は、図3にも示されているように、筒状部の上端開口部が外周側に延び出すと共に、筒状部の下側開口部が内周側に延び出した、周方向の全周に亘って略一定のクランク状断面の筒体形状を有しており、軸方向上端の外周縁部が大径の略円筒形状のアウタリング38に加硫接着されていると共に、軸方向下端の内周縁部が小径の略円筒形状のインナリング40に加硫接着されていることにより、それらアウタリング38とインナリング40を備えた第二の一体加硫成形品42として形成されている。また、インナリング40の内周縁部には、シールゴム層44が配設されて、ダイヤフラム36と一体形成されていると共に、その軸方向中間部分に周方向の全周に亘って略一定断面で延びる複数条のシールリップ46が一体形成されている。そして、アウタリング38が外筒金具14の軸方向下端部に内挿されて嵌着固定されている一方、インナリング40が内筒金具12の軸方向下端部に外挿されて嵌着固定されている。要するに、ダイヤフラム36は、内外筒金具12,14間への装着状態下においても、十分な弛みをもって弛緩状態で配設されており、弾性変形が十分なストロークをもって極めて容易に生ぜしめられ得るようにされているのである。なお、アウタリング38およびインナリング40は、金属等の硬質材で形成されており、外筒金具14や内筒金具12との嵌着面間には、シールゴム層30やシールリップ32およびインナリング40の内周面に被着形成されたシールゴム層44やシールリップ46が挟圧配設されて、それらの嵌着面間が流体密にシールされている。
【0028】
これにより、内外筒金具12,14は、軸方向上側の端部間が本体ゴム弾性体16で流体密に連結されていると共に、軸方向下側の端部間がダイヤフラム36で流体密に連結されており、以て、内外筒金具12,14の径方向対向面間において、外部空間に対して遮断された密閉状態の流体封入領域48が形成されている。そして、この流体封入領域48には、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等の適当な非圧縮性流体が充填されて封入されている。なお、非圧縮性流体の充填と封入は、例えば、ダイヤフラム36の内外筒金具12,14間への組み付けを、かかる非圧縮性流体中で行なうこと等によって有利に為され得る。
【0029】
さらに、本体ゴム弾性体16とダイヤフラム36の間には、隔壁ゴム部材としての隔壁ゴム50が配設されて流体封入領域48に収容されており、この隔壁ゴム50によって、内外筒金具12,14の軸方向中間部分が相互に弾性的に連結されている。かかる隔壁ゴム50は、図4にも示されているように、内外筒金具12,14の径方向対向面間の略中央部分を軸方向にストレートに延びる円筒部52と該円筒部52の軸方向上端部分から内周側に向かって円弧状の断面形状で湾曲せしめられた湾曲環状部54を備えており、周方向の全周に亘って略一定の断面形状とされている。
【0030】
また、隔壁ゴム50には、円筒部52の外周面に対して、略円環形状のオリフィス金具56が加硫接着されていると共に、軸方向上端部に位置せしめられた湾曲環状部54の内周面には、薄肉円筒形状の嵌着筒金具58が加硫接着されている。要するに、隔壁ゴム50は、オリフィス金具56と嵌着筒金具58を備えた第三の一体加硫成形品60として形成されている。
【0031】
ここにおいて、オリフィス金具56は、周方向の全周に亘って略一定の矩形断面で延びる形状を有しており、このオリフィス金具56の内周縁部に対して円筒部52の外周面が加硫接着されて、オリフィス金具56の軸方向上端部から湾曲環状部54が軸方向上方に向かって突設されている。なお、本実施形態では、オリフィス金具56の内周面の略全体が円筒部52で覆われていることにより、オリフィス金具56が円筒部52を介して内筒金具12に当接されることによって、内外筒金具12,14の相対的な変位量を緩衝的に制限する径方向のストッパ機構が構成されている。
【0032】
また、オリフィス金具56には、外周面に開口して周方向に略二周強の長さで螺旋状に延びる凹溝62が形成されている。更に、この凹溝62の一方の周方向端部が、凹溝62の上壁部に形成された連通孔64を通じてオリフィス金具56の軸方向上面に開口せしめられている一方、かかる凹溝62の他方の周方向端部が、凹溝62の下壁部に形成された連通孔66を通じてオリフィス金具56の軸方向下面に開口せしめられている。
【0033】
そして、嵌着筒金具58が、内筒金具12に圧入されて、内筒金具12の軸方向中間部分に対して流体密に固定されていると共に、オリフィス金具56が、外筒金具14に内挿されて、外筒金具14の軸方向中間部分に対して流体密に嵌着固定されている。これにより、オリフィス金具56や嵌着筒金具58を備えた隔壁ゴム50の第三の一体加硫成形品60が、内外筒金具12,14を備えた本体ゴム弾性体16の第一の一体加硫成形品26に対して組み付けられることとなり、隔壁ゴム50が、流体封入領域48に収容された状態で、内外筒金具12,14の各軸方向中央部間に跨がって、それら内外筒金具12,14を連結するようにして配設されている。また、このように隔壁ゴム50が流体封入領域48に配設されることにより、流体封入領域48が隔壁ゴム50を挟んだ軸方向両側に仕切られており、以て、隔壁ゴム50の軸方向上側には、壁部の一部が本体ゴム弾性体16で構成された受圧室68が形成されていると共に、隔壁ゴム50の軸方向下側には、壁部の一部がダイヤフラム36で構成された平衡室70が形成されている。なお、本実施形態では、受圧室68や平衡室70の流体密性を向上させるために、外筒金具14には、オリフィス金具56やアウタリング38を内挿せしめた後、ブラケット金具等を介して自動車ボデーに固定する前に、絞り加工等の縮径加工が施されている。
【0034】
すなわち、受圧室68は、内外筒金具12,14間に入力される振動が及ぼされるようになっており、内外筒金具12,14間への軸方向の振動入力時に本体ゴム弾性体16の弾性変形に伴って圧力変動が生ぜしめられるようになっている。また、平衡室70は、ダイヤフラム36の弾性変形に基づく容積変化が容易に許容されるようになっており、内部の圧力変動が速やかに解消され得るようになっている。なお、隔壁ゴム50は、本体ゴム弾性体16に比べれば十分に小さな拡張ばね剛性をもって形成されているが、ダイヤフラム36に比べれば十分に大きな拡張ばね剛性をもって形成されており、本体ゴム弾性体16の弾性変形に際して、受圧室68と平衡室70の間に相対的な圧力変動が有効に生ぜしめられるようになっている。
【0035】
また、オリフィス金具56は、外周面が外筒金具14に密着されていることにより、凹溝62が周方向の全周に亘って流体密に覆蓋されており、それによって、受圧室68と平衡室70を相互に連通するオリフィス通路72が、外筒金具14の内周面に沿って周方向に延びるようにして形成されている。そして、受圧室68と平衡室70の間に相対的な圧力変動が生ぜしめられた際、このオリフィス通路72を通じて、それら受圧室68と平衡室70の間での流体流動が生ぜしめられるようになっている。
【0036】
そこにおいて、本実施形態では、オリフィス金具56および嵌着筒金具58を備えた隔壁ゴム50の第三の一体加硫成形品60を、内外筒金具12,14を備えた本体ゴム弾性体16の第一の一体加硫成形品26に組み付けるに際して、嵌着筒金具58が内筒金具12の大径外周面74に圧入固定されている。
【0037】
すなわち、内筒金具12の軸方向中間部分には、下方から上方に向かって逆テーパ状に次第に拡径して延びる第一の段差面76が設けられており、それによって、内筒金具12の外径寸法が軸方向で異ならされて、この第一の段差面76を介して内筒金具12の軸方向上部の外周面が大径外周面74とされている。また、大径外周面74の下方部分を除く略全体が、本体ゴム弾性体16の内周面に加硫接着されていると共に、大径外周面74の下方部分が、本体ゴム弾性体16の底部に位置するテーパ状内面28から突出して軸方向下方に向かって所定の長さで延びている。
【0038】
而して、隔壁ゴム50の第三の一体加硫成形品60における嵌着筒金具58が、本体ゴム弾性体16の第一の一体加硫成形品26における外筒金具14の下側開口部から突出せしめられた内筒金具12の軸方向端部より外挿されて、第一の段差面76を介して本体ゴム弾性体16から突出した大径外周面74に圧入固定されると共に、第三の一体加硫成形品60のオリフィス金具56が、外筒金具14の縮径加工によって、外筒金具14の内周面に被着形成されたシールゴム層30に挟圧固定されることにより、第三の一体加硫成形品60が第一の一体加硫成形品26に対して組み付けられている。特に本実施形態では、嵌着筒金具58において内筒金具12の第一の段差面76側に位置せしめられた軸方向端部が、大径外周面74よりも第一の段差面76側に突出位置せしめられている。なお、上述の説明からも明らかなように、本実施形態では、隔壁ゴム50の内周部分と外周部分にそれぞれ加硫接着されて内筒金具12の外周面と外筒金具14の内周面にそれぞれ嵌着固定される内周嵌着リングと外周嵌着リングが、嵌着筒金具58とオリフィス金具56によって構成されている。
【0039】
さらに、内筒金具12における大径外周面74の軸方向中間部分には、環状突起78が突設されている。この環状突起78は、周方向の全体に亘って略一定の矩形断面で延びる厚肉の円環形状を呈しており、本体ゴム弾性体16の下端部付近に位置せしめられて、略全面が本体ゴム弾性体16の内周面に加硫接着されている。即ち、本実施形態では、この環状突起78の軸方向下面によって第二の段差面79が構成されている。
【0040】
また、本実施形態では、第一、第二および第三の一体加硫成形品26,42,60の製造方法や成形金型を含む製造装置等に関して何等限定されるものでないが、例えば、第一の一体加硫成形品26は、図5に示される如き成形金型80を用いて有利に実現され得る。即ち、この成形金型80は、第一の成形型82、第二の成形型84および第三の成形型86を含んで構成されている。
【0041】
これら第一および第二の成形型82,84は、略有底円筒形状を有しており、両型ともに略同じ大きさとされている。また、第一の成形型82の略中央には、底壁部から鉛直方向(図5中、上下方向)に所定の長さで延びるコアピン88が突設されていると共に、コアピン88の周囲には、コアピン88と略同心軸上に配され、且つコアピン88と径方向で所定の離隔距離をもって対向配置される略厚肉円筒形状の環状ブロック90が突設されている。なお、コアピン88と環状ブロック90の対向面間距離は、大径外周面74を備えた内筒金具12の厚さ寸法と略同じに設定されている。
【0042】
また、環状ブロック90の突出側先端面は、外周縁部から中央部に向かって突出高さが次第に大きくされていると共に、該突出側先端面の内周側端部には、周方向の全体に亘って略半球断面乃至は略矩形断面で連続して延びる環状リング92が、軸方向に突出して一体形成されている。更にまた、環状ブロック90の基端部付近には、周方向に連続して延びる複数条の周溝94が形成されている。また、環状ブロック90の周囲には、第一の成形型82の底壁部から鉛直方向に所定の長さで延びる嵌着ピン96の複数本が突設されている。
【0043】
更にまた、第三の成形型86は、略平面視半円断面を有する組み合わせ型98の一対を含んで分割可能に構成されており、これら組み合わせ型98,98の周方向両端面が相互に重ね合わされることにより、略円筒形状を呈している。また、第三の成形型86の内周面は、目的とする第一の一体加硫成形品26の形状に対応した形状とされていると共に、第三の成形型86の軸方向一方の端面には、軸方向に所定の長さで延びる嵌着穴100の複数が開口形成されている。
【0044】
また、本実施形態では、第三の成形型86の内周面に外筒金具14を嵌め込んで支持させると共に、嵌着穴100と第一の成形型82の嵌着ピン96を嵌合させ、更に、拘束板金具18を備えた内筒金具12をコアピン88に外挿する一方、拘束板金具18を配置した第三の成形型86の軸方向端部を第二の成形型84の底部に載置して支持させることにより、第一、第二および第三の成形型82,84,86が型合わせされて、内筒金具12と外筒金具14が同心軸上に配置されると共に、両金具12,14の径方向対向面間に第一の成形型82や第三の成形型86が協働して成形キャビティ102が形成されるようになっている。
【0045】
さらに、かかる型合わせ状態にあって、第一の成形型82における環状ブロック90の先端面に突設された環状リング92が、環状突起78の第二の段差面79に当接されている。なお、環状リング92の内周縁部は、第二の段差面79の外周側から径方向中間部分まで延び出しており、かかる当接周縁部が位置する第二の段差面79の径方向中間部分に成形するゴム弾性体の噛み切り部が設定されている。
【0046】
而して、本実施形態では、図示しない射出装置によりゴム材料を図示しないスプルやランナを介して成形キャビティ102に射出充填することにより、内筒金具12と外筒金具14がそれぞれゴム材料によって加硫接着されて、図2に示される如き内外筒金具12,14を備えた本体ゴム弾性体16の第一の一体加硫成形品26が実現されるようになっている。
【0047】
そこにおいて、特に本実施形態では、環状ブロック90に突設された環状リング92が内筒金具12における環状突起78の第二の段差面79に重ね合わされて型開閉及び型締方向である軸方向で当接せしめられていることにより、本体ゴム弾性体16におけるテーパ状内面28の内周側端縁部104が、環状突起78における軸方向下端面の径方向中間部分に位置して噛み切られるようになっている。
【0048】
上述の如き構造とされたエンジンマウント10は、内筒金具12がパワーユニット側に固定されると共に、外筒金具14がボデー側に固定されることにより、内外筒金具12,14の中心軸が略鉛直方向とされて、図示しない他の複数のエンジンマウントと協働してパワーユニットをボデーに対して防振支持せしめるようにされる。そして、そのような装着状態下において、パワーユニットの振動が内外筒金具12,14間の略軸方向に及ぼされると、本体ゴム弾性体16が弾性変形せしめられて内外筒金具12,14が相対変位せしめられることにより、受圧室68と平衡室70の間に相対的な圧力変動が繰り返して生ぜしめられることとなり、かかる相対的な圧力変動に伴ってオリフィス通路72を通じての流体流動が生ぜしめられる。従って、オリフィス通路72を、防振を目的とする適当な周波数域にチューニングすることにより、例えば走行時のシェイク振動や停車時のアイドリング振動などに対して、オリフィス通路72を流動せしめられる流体の共振作用等の流動作用に基づいて有効な防振効果を得ることが出来るのである。
【0049】
そこにおいて、本実施形態のエンジンマウント10においては、第一の一体加硫成形品26と第三の一体加硫成形品60の組み付けに際して、第三の一体加硫成形品60の嵌着筒金具58が第一の一体加硫成形品26における内筒金具12の大径外周面74に圧入固定されることにより、嵌着筒金具58が内筒金具12の圧入部位まで容易に且つ速やかに挿入されることから、第一の一体加硫成形品26と第三の一体加硫成形品60が容易に組み付けられるのであり、以て、組み付け作業の安定性や効率化が有利に発揮され得る。
【0050】
また、特に本実施形態では、本体ゴム弾性体16におけるテーパ状内面28の内周側端縁部104が、内筒金具12の環状突起78の径方向中間部分に位置せしめられていることにより、内筒金具12の大径外周面74における嵌着筒金具58の圧入部位にゴムが回り込んでゴムバリ等が被着されることが有効に防止されることから、第一の一体加硫成形品26と第三の一体加硫成形品60の組み付け作業性がより一層有利に実現され得ると共に、受圧室68や平衡室70にゴムバリ等の異物が混入されることが軽減乃至は抑制されることに伴い安定した防振性能が有利に確保され得るのである。
【0051】
さらに、本実施形態においては、環状突起78が内筒金具12から軸直角方向に拡がるようにして本体ゴム弾性体16に加硫接着されていることにより、本体ゴム弾性体の軸直角方向での肉厚寸法が実質的に変更されることから、軸直角方向のエンジンマウント10のばね特性を高度に調整することが出来る。
【0052】
以上、本発明の実施形態について詳述してきたが、これはあくまでも例示であり、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
【0053】
例えば、前記実施形態では、本体ゴム弾性体16の軸方向外面に拘束板金具18が加硫接着されていたが、例えば実開平6−22642号公報や特開平8−170686号公報等に記載されているように、そのような拘束板金具18を設けることなく、本体ゴム弾性体16の軸方向外面を全面に亘って自由表面としても良い。
【0054】
また、前記実施形態におけるオリフィス通路72の具体的構造や形状,通路長さや断面積などは、要求される防振特性等に応じて適宜に変更されるものであり、例えば、オリフィス金具56を軸方向に貫通して延びる一つ若しくは複数のオリフィス通路を形成したり、内筒金具12と嵌着筒金具58によって内筒金具12の表面に沿って延びるオリフィス通路を形成したりすることも可能である。
【0055】
さらに、前記実施形態の拘束板金具18には、外筒金具14のフランジ部24に対して軸方向で離隔して対向位置するように緩衝ゴムを突設することも可能であり、それによって、内筒金具12が外筒金具14に対して軸方向下方に相対変位せしめられた際に、緩衝ゴムを介して拘束板金具18がフランジ部24に当接せしめられることにより、内外筒金具12,14の軸方向の相対変位量が制限されて軸方向ストッパ機能が発揮され得る。
【0056】
更にまた、前記実施形態では、内筒金具12に突設された環状突起78は必ずしも設けられる必要はない。また、第二の段差面79よりも軸方向上方の全長に亘る軸方向厚さで環状突起78を形成しても良い。
【0057】
加えて、本発明は、例示の如き自動車用エンジンマウントの他、自動車用のボデーマウントやメンバマウント,キャブマウント,ストラットバークッション等、或いは自動車以外の各種分野に用いられる流体封入式の筒形防振装置に対して、何れも適用可能であることは言うまでもない。
【0058】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた流体封入式筒形防振装置においては、隔壁ゴム部材に加硫接着された内周嵌着リングがインナ軸部材の軸方向中間部分に形成された第一の段差面よりも本体ゴム弾性体側の大径外周面に圧入固定されることにより、内周嵌着リングが目的とする圧入部位まで容易に且つ速やかに導かれて組み付けられることとなり、組み付け作業を容易に行うことが出来ると共に、圧入に際してのゴムバリの剥離等の問題も軽減され得る。
【図面の簡単な説明】
【図1】本発明の一実施形態としての自動車用エンジンマウントを示す縦断面説明図である。
【図2】図1における自動車用エンジンマウントの一部を構成する第一の一体加硫成形品にあって縮径加工を施す前の形態を示す縦断面説明図である。
【図3】図1における自動車用エンジンマウントの一部を構成する第二の一体加硫成形品にあって組み付け前の形態を示す縦断面説明図である。
【図4】図1における自動車用エンジンマウントの一部を構成する第三の一体加硫成形品にあって組み付け前の形態を示す縦断面説明図である。
【図5】図2おける第一の一体加硫成形品の一成形工程を示す縦断面説明図である。
【符号の説明】
10 エンジンマウント
12 内筒金具
14 外筒金具
16 本体ゴム弾性体
26 第一の一体加硫成形品
36 ダイヤフラム
50 隔壁ゴム
56 オリフィス金具
58 嵌着筒金具
68 受圧室
70 平衡室
72 オリフィス通路
74 大径外周面
76 第一の段差面
[0001]
【Technical field】
The present invention is a fluid-filled cylindrical vibration-proofing that exhibits a vibration-proofing effect against vibrations that are input mainly in the axial direction based on the flow action of an incompressible fluid that is formed in a generally cylindrical shape and enclosed inside. More particularly, the present invention relates to a fluid-filled cylindrical vibration isolator having a novel structure that can be used as an engine mount, body mount, member mount, cab mount, strut bar cushion, and the like for automobiles.
[0002]
[Background]
Conventionally, as a type of anti-vibration coupling body or anti-vibration support body interposed between members constituting the vibration transmission system, a cylindrical anti-vibration structure in which an inner shaft bracket and an outer cylinder bracket are connected by a rubber elastic body. In addition, Patent Document 1 and Patent Document 2 disclose fluids that mainly obtain a vibration-proofing effect against input vibrations in the axial direction by utilizing the flow action of an incompressible fluid sealed inside. An encapsulated cylindrical vibration isolator has been proposed. The fluid-filled cylindrical vibration isolator of the conventional structure disclosed in these publications is an integral vulcanization molding in which one end in the axial direction of the inner shaft bracket and the outer tube bracket is elastically connected by a main rubber elastic body. An axial direction in which a substantially annular partition wall rubber member and a flexible lid member are fitted from the other axial end of the inner shaft bracket and outer cylinder bracket to the product, and the partition wall rubber member is sandwiched between them. On both sides, a pressure receiving chamber in which a part of the wall is made of a rubber elastic body and pressure fluctuations are generated when axial vibration is input between the inner shaft bracket and the outer tube bracket, and a part of the wall is An equilibrium chamber that is configured by a flexible lid member and is easily allowed to change in volume is formed, incompressible fluid is enclosed in the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber and the equilibrium chamber are separated by an orifice passage. It is structured to communicate with each other.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 7-88866
[Patent Document 2]
Japanese Patent Laid-Open No. 8-152041
[0004]
By the way, in such a fluid-filled cylindrical vibration isolator, the main rubber elastic body and the partition rubber member are difficult to mold integrally in terms of shape in addition to having different required characteristics. For some reason, the partition rubber member is generally formed separately from the main rubber elastic body. The inner ring metal fitting and the outer cylinder metal fitting in which the fitting rings are vulcanized and bonded to the inner peripheral portion and the outer peripheral portion of the partition rubber member, respectively, and the inner and outer fitting rings are vulcanized and bonded to the main rubber elastic body. The partition rubber member is disposed between the inner shaft fitting and the outer cylinder fitting by being fitted and fixed thereto. Further, since the outer cylinder fitting can be drawn relatively easily, the outer peripheral fitting ring of the partition rubber member is fitted and fixed to the outer cylinder fitting by the reduced diameter of the outer cylinder fitting. On the other hand, the inner peripheral fitting ring of the partition wall rubber member is generally press-fitted and fixed to the inner shaft fitting that is difficult to expand and contract in the radial direction.
[0005]
However, in such a fluid-filled cylindrical vibration isolator having a conventional structure, the inner circumferential fitting ring of the partition rubber member must be pressed into a relatively long distance in the axial direction with respect to the inner shaft fitting. There is a problem that the assembly work by press fitting is troublesome and takes time. In addition, an adhesive for vulcanizing and bonding the main rubber elastic body is applied to the outer peripheral surface of the inner shaft metal fitting, and the main rubber elastic body may extend in the form of a film. When the circumferential fitting ring is press-fitted, the adhesive layer and the rubber layer are peeled off and easily float in the form of dust in the incompressible fluid. There was a risk that durability would be reduced.
[0006]
[Solution]
Here, the present invention has been made in the background as described above, and the problem to be solved is that the inner wall of the partition rubber member is vulcanized and bonded to the main rubber elastic body. An object of the present invention is to provide a fluid-filled cylindrical vibration isolator having a novel structure capable of press-fitting and fixing a circumferential fitting ring easily while suppressing generation of dust.
[0007]
[Solution]
Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized on the basis of.
[0008]
(Aspect 1 of the present invention)
  A feature of the first aspect of the present invention is that an outer cylindrical member is arranged separately on the outer peripheral side of the inner shaft member, and a main rubber elastic body is provided between one end in the axial direction of the inner shaft member and the outer cylindrical member. A substantially annular partition wall rubber member and a flexible lid member are fitted into the elastically connected integral vulcanized molded product from the other axial end side of the inner shaft member and the outer cylindrical member, respectively. Further, on both sides in the axial direction across the partition rubber member, a part of the wall portion is formed of the main rubber elastic body, and pressure fluctuation occurs when axial vibration is input between the inner shaft member and the outer cylindrical member. A pressure receiving chamber that is formed, and an equilibrium chamber in which a part of the wall portion is composed of the flexible lid member and volume change is easily allowed, and an incompressible fluid is supplied to the pressure receiving chamber and the equilibrium chamber. An orifice that seals and allows the pressure receiving chamber and the equilibrium chamber to communicate with each other. In the fluid-filled cylindrical vibration damping device provided with the passage, a first step surface is provided on the outer peripheral surface of the axially intermediate portion of the inner shaft member to vary the outer diameter of the inner shaft member in the axial direction. The main rubber elastic body side of the first stepped surface is a large-diameter outer peripheral surface, while the inner peripheral portion and the outer peripheral portion of the partition rubber member are the outer peripheral surface of the inner shaft member and the inner peripheral surface of the outer cylindrical member. The inner circumference fitting ring and the outer circumference fitting ring to be fitted and fixed to each other are vulcanized and bonded, and the inner circumference fitting ring is press-fitted and fixed to the outer diameter surface of the large diameter.In the inner shaft member, a second step surface is provided at a position closer to the main rubber elastic body than the press-fitted portion of the inner periphery fitting ring, and the inner periphery fitting on the second step surface is provided. The inner peripheral edge of the main rubber elastic body is positioned at the radial intermediate portion of the ring side surface.There is.
[0009]
In the cylindrical vibration isolator having the structure according to this aspect, the press-fitting distance when the inner peripheral fitting ring is press-fitted and fixed to the inner shaft member is substantially only the portion of the large-diameter outer peripheral surface. The press-fitting distance is made sufficiently small regardless of the length and fitting position of the inner shaft member, and the inner peripheral fitting ring can be easily press-fitted and fixed to the inner shaft member.
[0010]
Moreover, even when rubber burrs or adhesives are attached to the surface of the inner shaft member during the vulcanization molding of the main rubber elastic body, they are removed when the inner peripheral fitting ring is pressed into the inner shaft member. Therefore, it is possible to avoid the entry of foreign matter into the liquid chamber and to stably obtain the target vibration isolation performance.
[0011]
  In this aspect, as the shape of the first step surface, for example, a substantially annular shape spreading in the direction perpendicular to the axis of the inner shaft member is adopted, and preferably from the base end portion of the step surface to the main rubber elastic body side. A taper shape with a gradually increasing diameter is adopted. Further, it is desirable that chamfering is performed on the press-fitting side end portion of the inner periphery fitting ring, and thereby further improvement in assembling workability can be achieved.
Further, in this aspect, when the axial vibration is input between the inner shaft member and the outer cylindrical member, both the members are relatively displaced in the axial direction, so that the main rubber elasticity constituting the wall portion of the pressure receiving chamber The body is displaced more effectively in the axial direction by the second step surface, and an efficient pressure fluctuation is exerted on the pressure receiving chamber. As a result, the relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber is more efficiently generated, and the flow rate of the fluid flowing through the orifice passage is increased, and the resonance action of the fluid flowing through the orifice passage is increased. The anti-vibration effect based on can be exhibited more advantageously.
In addition, in this embodiment, the main rubber elastic body interposed between the opposed surfaces of the inner shaft member and the outer cylinder member in the direction perpendicular to the axis by adjusting the protruding height of the second step surface in the direction perpendicular to the axis. It is also possible to substantially change the wall thickness dimension in the direction perpendicular to the axis, so that the spring characteristics of the mount in the direction perpendicular to the axis can be tuned. Further, in this aspect, the protrusion height in the direction perpendicular to the axis of the second step surface is made different in the circumferential direction, for example, to increase the spring ratio in the direction perpendicular to the axis perpendicular to each other, and in the vehicle longitudinal direction. It is possible to realize a spring characteristic that is soft and hard in the left-right direction of the vehicle.
Furthermore, in this aspect, the inner peripheral side edge portion of the main rubber elastic body is positioned at the radially intermediate portion of the inner peripheral fitting ring side surface of the second step surface, for example, a mold When the inner shaft member and the main rubber elastic body are integrally vulcanized and molded by using a mold, the mold rubber that opens and closes in the axial direction is brought into contact with the second step surface in the mold opening and closing direction of the main rubber elastic body. Rubber cutting of the end edge portion can be performed more safely, and therefore, it is avoided that the inner rubber member of the main rubber elastic body is attached to the unnecessary surface of the inner shaft member, particularly the inner shaft member. Since it prevents the rubber from entering around the press-fitting part of the inner ring and the rubber burr etc. from being attached to the inner ring, the inner ring is pressed and fixed to the inner shaft member with greater reliability. And stable fixing strength It is the it is possible to be carried out.
[0012]
(Aspect 2 of the present invention)
A feature of aspect 2 of the present invention is that, in the fluid-filled cylindrical vibration isolator according to aspect 1 of the present invention, the outer peripheral fitting ring of the partition rubber member is formed by reducing the diameter of the outer cylindrical member. The outer cylindrical member is fitted and fixed to the inner peripheral surface of the outer cylindrical member, and the outer circumferential surface of the outer cylindrical member is covered with a concave groove extending in the circumferential direction so that the orifice passage is covered with the outer cylindrical member. That is to be formed.
[0013]
In this embodiment, the orifice passage can be easily formed with a sufficient length extending in the circumferential direction, and in addition, between the pressure receiving chamber and the equilibrium chamber at the connection portion of the partition rubber member to the outer cylinder member. Pressure leakage (orifice passage short circuit) is also advantageously prevented, and stable vibration isolation performance can be more effectively exhibited.
[0018]
(Aspect of the present invention3)
  Aspects of the invention3A feature of the present invention is that the aspect 1 of the present invention is used.Or 2In the fluid-filled cylindrical vibration isolator according to the above, the axial end located on the first step surface side of the inner shaft member in the inner peripheral fitting ring is more than the large-diameter outer peripheral surface. In other words, the projection is located on the first step surface side.
[0019]
In this embodiment, the press-fitting distance required for press-fitting and fixing the inner periphery fitting ring to the inner shaft member can be made sufficiently small. Further, for example, when the inner peripheral fitting ring is press-fitted and fixed to the outer peripheral surface of the inner shaft member with a large diameter by applying pressure to the axial end portion of the inner peripheral fitting ring, the inner peripheral fitting ring is used. It is possible to more easily press-fit to the fixed position, and the assembling work is further facilitated.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
First, FIG. 1 shows an automobile engine mount 10 according to an embodiment of the present invention. The engine mount 10 has a structure in which an inner cylinder fitting 12 as an inner shaft member and an outer cylinder fitting 14 as an outer cylinder member are elastically connected by a main rubber elastic body 16 or the like. It is mounted between the power unit and the body so that the power unit is supported by vibration isolation against the body. In the following description, the vertical direction means the vertical direction in FIG. 1 in principle.
[0022]
More specifically, the inner cylinder fitting 12 has a straight, generally cylindrical shape with a large thickness and a small diameter as a whole. Further, a constraining plate fitting 18 having a substantially disc shape is fixed to the upper end portion in the axial direction of the inner tube fitting 12 by welding or the like. The constraining plate metal 18 is disposed so as to extend in the direction perpendicular to the axis on the same central axis as the inner cylinder metal 12, and a central hole 22 having substantially the same inner diameter as the center hole 20 of the inner cylinder metal 12 is provided at the center. Is formed. Moreover, the inner cylinder metal fitting 12 and the restraint board metal fitting 18 are formed with the member dimension which can exhibit sufficient rigidity with metal materials, such as steel. And this inner cylinder metal fitting 12 is fixed with respect to the power unit of the motor vehicle which is not illustrated with the attachment volt | bolt which is inserted in the center hole 20 and which is not illustrated.
[0023]
On the other hand, the outer cylinder fitting 14 has an inner diameter dimension sufficiently larger than the outer dimension of the inner cylinder fitting 12 and an axial dimension smaller than that of the inner cylinder fitting 12, and is externally inserted into the inner cylinder fitting 12. It is arrange | positioned on the substantially same center axis as the cylinder metal fitting 12. As shown in FIG. Under such an arrangement state, the inner cylinder fitting 12 and the outer cylinder fitting 14 are opposed to each other at a predetermined distance in the radial direction, and the outer cylinder fitting 14 is an axially intermediate portion of the inner cylinder fitting 12. The both ends in the axial direction of the inner cylinder fitting 12 protrude from the both sides in the axial direction of the outer cylinder fitting 14 respectively by a predetermined length. Further, an annular plate-shaped flange portion 24 extending outward in the radial direction is integrally formed at the axially upper opening edge of the outer tube fitting 14, and this flange portion 24 is a restraint plate of the inner tube fitting 12. The metal member 18 is opposed to the metal member 18 at a predetermined distance in the axial direction. Further, the outer cylinder fitting 14 is fixed to the body of the automobile via a bracket fitting, a mounting bolt or the like (not shown).
[0024]
In addition, the inner and outer cylindrical fittings 12 and 14 that are arranged in an extrapolated state in this way are connected to each other between the upper ends in the axial direction by the main rubber elastic body 16. As shown in FIG. 2, the main rubber elastic body 16 has a thick, generally annular block shape as a whole, and its inner peripheral surface is vulcanized and bonded to the outer peripheral surface of the inner cylindrical metal member 12. In addition, the outer peripheral surface is vulcanized and bonded to the inner peripheral surface of the outer cylinder fitting 14, thereby forming the first integral vulcanized molded product 26 including the inner and outer cylinder fittings 12 and 14. .
[0025]
Further, the main rubber elastic body 16 has a lower portion in the axial direction extending between the opposing surfaces of the inner and outer cylindrical fittings 12 and 14 by a predetermined length downward in the axial direction, and its lower end surface in the axial direction is A tapered inner surface 28 is inclined so as to extend outward in the axial direction (upward in the axial direction) from the outer cylindrical member 14 toward the inner cylindrical member 12 in the radial direction. A cylindrical seal rubber layer 30 extending from the lower end surface of the main rubber elastic body 16 toward the lower side in the axial direction is provided on the inner peripheral surface of the outer cylindrical metal member 14. It is integrally formed with the main rubber elastic body 16 so as to cover the whole, and is vulcanized and bonded to the outer cylinder fitting 14. Furthermore, a plurality of seal lips 32 extending continuously over the entire circumference in the circumferential direction are projected from the lower end of the seal rubber layer 30 in the axial direction.
[0026]
On the other hand, the upper portion of the main rubber elastic body 16 in the axial direction protrudes further upward in the axial direction from the upper opening of the outer cylindrical metal member 14, and the protruding front end surface 34 thereof protrudes from the restraining plate metal member 18. It is vulcanized and bonded. Further, the main rubber elastic body 16 is spread and bonded to the flange portion 24 of the outer cylinder fitting 14 and protrudes upward in the axial direction with an outer peripheral surface having a slightly tapered shape from the flange portion 24. I'm hurt. Further, a radial dimension substantially equal to the distance between the radially opposed surfaces of the inner and outer cylindrical metal members 12 and 14 is set on the axial upper end surface (projecting tip surface 34) of the main rubber elastic body 16, and the entire surface thereof is restrained. Vulcanized and bonded to the metal plate 18. As is clear from this, in the present embodiment, the first integrally vulcanized molded product 26 in the main rubber elastic body 16 provided with the inner cylinder fitting 12 and the outer cylinder fitting 14 extends over the entire circumference in the circumferential direction. The cross-sectional shape is substantially constant.
[0027]
On the other hand, a diaphragm 36 as a flexible lid member made of a thin rubber film is disposed between the axially lower ends of the inner and outer cylindrical fittings 12 and 14. As shown in FIG. 3, the diaphragm 36 has a circumferential direction in which the upper end opening of the tubular portion extends to the outer peripheral side and the lower opening of the tubular portion extends to the inner peripheral side. The outer peripheral edge of the upper end in the axial direction is vulcanized and bonded to a large-diameter substantially cylindrical outer ring 38, and the shaft The inner peripheral edge of the lower end in the direction is vulcanized and bonded to a substantially cylindrical inner ring 40 having a small diameter, thereby forming a second integrally vulcanized molded product 42 including the outer ring 38 and the inner ring 40. Yes. Further, a seal rubber layer 44 is disposed on the inner peripheral edge of the inner ring 40, and is integrally formed with the diaphragm 36. The inner ring 40 extends at an intermediate portion in the axial direction with a substantially constant cross section over the entire circumference. A plurality of seal lips 46 are integrally formed. The outer ring 38 is inserted and fixed to the lower end portion in the axial direction of the outer cylinder fitting 14, while the inner ring 40 is inserted and fixed to the lower end portion in the axial direction of the inner cylinder fitting 12. ing. In short, the diaphragm 36 is disposed in a relaxed state with sufficient slackness even when mounted between the inner and outer cylinder fittings 12 and 14, so that elastic deformation can be generated very easily with a sufficient stroke. It has been done. The outer ring 38 and the inner ring 40 are formed of a hard material such as metal, and the seal rubber layer 30, the seal lip 32, and the inner ring are provided between the fitting surfaces of the outer cylinder fitting 14 and the inner cylinder fitting 12. A seal rubber layer 44 and a seal lip 46 deposited on the inner peripheral surface of 40 are disposed under pressure so that a space between the fitting surfaces is fluid-tightly sealed.
[0028]
As a result, the inner and outer cylindrical fittings 12 and 14 are fluid-tightly connected between the axially upper ends by the main rubber elastic body 16 and fluidly connected by the diaphragm 36 between the axially lower ends. Thus, a sealed fluid-sealed region 48 is formed between the radially opposing surfaces of the inner and outer cylindrical fittings 12 and 14 and is blocked from the external space. The fluid sealing region 48 is filled and sealed with a suitable incompressible fluid such as water, alkylene glycol, polyalkylene glycol, or silicone oil. Note that filling and sealing of the incompressible fluid can be advantageously performed by, for example, assembling the diaphragm 36 between the inner and outer cylindrical fittings 12 and 14 in the incompressible fluid.
[0029]
Further, a partition rubber 50 as a partition rubber member is disposed between the main rubber elastic body 16 and the diaphragm 36 and accommodated in the fluid sealing region 48, and the inner and outer cylinder fittings 12, 14 are accommodated by the partition rubber 50. The axial intermediate portions are elastically connected to each other. As shown in FIG. 4, the partition rubber 50 includes a cylindrical portion 52 that extends straight in the axial direction at a substantially central portion between the radially opposed surfaces of the inner and outer cylindrical metal members 12 and 14, and an axis of the cylindrical portion 52. A curved annular portion 54 that is curved with an arcuate cross-sectional shape from the upper end portion in the direction toward the inner peripheral side is provided, and has a substantially constant cross-sectional shape over the entire circumference in the circumferential direction.
[0030]
In addition, a substantially annular orifice fitting 56 is vulcanized and bonded to the outer peripheral surface of the cylindrical portion 52, and the inner wall of the curved annular portion 54 positioned at the upper end in the axial direction is attached to the partition rubber 50. A thin cylindrical fitting tube fitting 58 is vulcanized and bonded to the peripheral surface. In short, the partition rubber 50 is formed as a third integrally vulcanized molded product 60 having an orifice fitting 56 and a fitting cylinder fitting 58.
[0031]
Here, the orifice fitting 56 has a shape extending in a substantially constant rectangular cross section over the entire circumference in the circumferential direction, and the outer peripheral surface of the cylindrical portion 52 is vulcanized with respect to the inner peripheral edge portion of the orifice fitting 56. The curved annular portion 54 is projected from the upper end in the axial direction of the orifice fitting 56 toward the upper side in the axial direction. In the present embodiment, substantially the entire inner peripheral surface of the orifice fitting 56 is covered with the cylindrical portion 52, so that the orifice fitting 56 is brought into contact with the inner cylindrical fitting 12 via the cylindrical portion 52. In addition, a radial stopper mechanism for limiting the relative displacement amount of the inner and outer cylinder fittings 12 and 14 in a buffer manner is configured.
[0032]
In addition, the orifice fitting 56 is formed with a concave groove 62 that opens to the outer peripheral surface and extends in a spiral shape with a length of almost two rounds in the circumferential direction. Further, one circumferential end of the concave groove 62 is opened on the upper surface in the axial direction of the orifice fitting 56 through a communication hole 64 formed in the upper wall portion of the concave groove 62. The other circumferential end is opened on the lower surface in the axial direction of the orifice fitting 56 through a communication hole 66 formed in the lower wall portion of the concave groove 62.
[0033]
The fitting tube fitting 58 is press-fitted into the inner tube fitting 12 and is fluid-tightly fixed to the axially intermediate portion of the inner tube fitting 12, and the orifice fitting 56 is inserted into the outer tube fitting 14. It is inserted and fixed in a fluid-tight manner to the axially intermediate portion of the outer tube fitting 14. As a result, the third integral vulcanized molded product 60 of the partition rubber 50 provided with the orifice fitting 56 and the fitting tubular fitting 58 is converted into the first integral addition of the main rubber elastic body 16 provided with the inner and outer tubular fittings 12 and 14. Since the partition rubber 50 is accommodated in the fluid sealing region 48, the inner and outer cylinders straddle between the axial central portions of the inner and outer cylinder fittings 12 and 14. The metal fittings 12 and 14 are arranged so as to be connected. Further, the partition rubber 50 is arranged in the fluid sealing region 48 in this way, so that the fluid sealing region 48 is partitioned on both sides in the axial direction with the partition rubber 50 interposed therebetween, and thus the axial direction of the partition rubber 50 A pressure receiving chamber 68 in which a part of the wall portion is configured by the main rubber elastic body 16 is formed on the upper side, and a part of the wall portion is configured by the diaphragm 36 on the lower side in the axial direction of the partition rubber 50. A balanced chamber 70 is formed. In the present embodiment, in order to improve the fluid tightness of the pressure receiving chamber 68 and the equilibrium chamber 70, after the orifice fitting 56 and the outer ring 38 are inserted into the outer cylinder fitting 14, the bracket fitting or the like is interposed. Before being fixed to the automobile body, diameter reduction processing such as drawing is performed.
[0034]
That is, the pressure receiving chamber 68 is adapted to receive vibrations input between the inner and outer cylinder fittings 12 and 14, and the elasticity of the main rubber elastic body 16 when an axial vibration is input between the inner and outer cylinder fittings 12 and 14. A pressure fluctuation is generated along with the deformation. Further, the balance chamber 70 is easily allowed to change its volume based on the elastic deformation of the diaphragm 36, so that the internal pressure fluctuation can be quickly eliminated. The partition rubber 50 is formed with sufficiently small expansion spring rigidity as compared with the main rubber elastic body 16, but is formed with sufficiently large expansion spring rigidity as compared with the diaphragm 36, and the main rubber elastic body 16. When elastically deforming, relative pressure fluctuation is effectively generated between the pressure receiving chamber 68 and the equilibrium chamber 70.
[0035]
The orifice fitting 56 has an outer peripheral surface that is in close contact with the outer cylinder fitting 14 so that the groove 62 is fluid-tightly covered over the entire circumference in the circumferential direction, thereby being balanced with the pressure receiving chamber 68. An orifice passage 72 that communicates with the chamber 70 is formed so as to extend in the circumferential direction along the inner circumferential surface of the outer cylinder fitting 14. When a relative pressure fluctuation is generated between the pressure receiving chamber 68 and the equilibrium chamber 70, fluid flow between the pressure receiving chamber 68 and the equilibrium chamber 70 is generated through the orifice passage 72. It has become.
[0036]
Therefore, in the present embodiment, the third integrally vulcanized molded product 60 of the partition wall rubber 50 provided with the orifice fitting 56 and the fitting cylindrical fitting 58 is replaced with the main rubber elastic body 16 provided with the inner and outer cylindrical fittings 12 and 14. When assembled to the first integral vulcanized product 26, the fitting tube fitting 58 is press-fitted and fixed to the large-diameter outer peripheral surface 74 of the inner tube fitting 12.
[0037]
In other words, a first step surface 76 that is gradually enlarged in a reverse taper shape from the lower side to the upper side is provided in the axially intermediate portion of the inner cylindrical metal member 12. The outer diameter is made different in the axial direction, and the outer peripheral surface of the upper portion in the axial direction of the inner cylindrical metal member 12 is made a large diameter outer peripheral surface 74 through the first step surface 76. Further, substantially the entire portion excluding the lower portion of the large-diameter outer peripheral surface 74 is vulcanized and bonded to the inner peripheral surface of the main rubber elastic body 16, and the lower portion of the large-diameter outer peripheral surface 74 is fixed to the main rubber elastic body 16. It protrudes from the tapered inner surface 28 located at the bottom and extends downward in the axial direction by a predetermined length.
[0038]
Thus, the fitting cylinder fitting 58 in the third integral vulcanization molded product 60 of the partition rubber 50 is formed in the lower opening of the outer cylinder fitting 14 in the first integral vulcanization molded product 26 of the main rubber elastic body 16. And is inserted and fixed to the large-diameter outer peripheral surface 74 protruding from the main rubber elastic body 16 through the first step surface 76 through the first stepped surface 76, and is inserted and fixed. The orifice metal fitting 56 of the third integrally vulcanized molded product 60 is clamped and fixed to the seal rubber layer 30 deposited on the inner peripheral surface of the outer cylinder metal fitting 14 by the diameter reduction processing of the outer cylinder metal fitting 14. A third integral vulcanized molded product 60 is assembled to the first integral vulcanized molded product 26. Particularly in the present embodiment, the axial end portion of the fitting tube fitting 58 positioned on the first step surface 76 side of the inner tube fitting 12 is closer to the first step surface 76 side than the large-diameter outer peripheral surface 74. Projected position. As is clear from the above description, in this embodiment, the outer peripheral surface of the inner cylindrical metal member 12 and the inner peripheral surface of the outer cylindrical metal member 14 are vulcanized and bonded to the inner peripheral portion and the outer peripheral portion of the partition rubber 50, respectively. The inner circumferential fitting ring and the outer circumferential fitting ring that are fitted and fixed to each other are constituted by a fitting cylindrical fitting 58 and an orifice fitting 56.
[0039]
Further, an annular protrusion 78 is projected from an intermediate portion in the axial direction of the large-diameter outer peripheral surface 74 of the inner cylindrical metal member 12. The annular projection 78 has a thick annular shape extending in a substantially constant rectangular cross section over the entire circumferential direction, and is positioned in the vicinity of the lower end of the main rubber elastic body 16 so that the substantially entire surface is the main body. The rubber elastic body 16 is vulcanized and bonded to the inner peripheral surface. That is, in the present embodiment, the second step surface 79 is constituted by the lower surface in the axial direction of the annular protrusion 78.
[0040]
In the present embodiment, the manufacturing method of the first, second, and third integrally vulcanized molded products 26, 42, 60 and the manufacturing apparatus including the molding die are not limited at all. One integral vulcanized molded article 26 can be advantageously realized by using a molding die 80 as shown in FIG. That is, the molding die 80 includes a first molding die 82, a second molding die 84, and a third molding die 86.
[0041]
These first and second molding dies 82 and 84 have a substantially bottomed cylindrical shape, and both molds have substantially the same size. Further, a core pin 88 extending in a vertical direction (vertical direction in FIG. 5) from the bottom wall portion with a predetermined length protrudes from the bottom wall portion at a substantially center of the first molding die 82, and around the core pin 88. Is provided with a substantially thick cylindrical annular block 90 that is arranged on a substantially concentric axis with the core pin 88 and is opposed to the core pin 88 in a radial direction with a predetermined separation distance. The distance between the opposed surfaces of the core pin 88 and the annular block 90 is set to be substantially the same as the thickness dimension of the inner cylinder fitting 12 having the large-diameter outer peripheral surface 74.
[0042]
Further, the protruding height of the projecting side end surface of the annular block 90 is gradually increased from the outer peripheral edge portion toward the central portion, and the inner circumferential side end portion of the projecting side distal end surface has an entire circumferential direction. An annular ring 92 extending continuously in a substantially hemispherical cross section or a substantially rectangular cross section is integrally formed so as to protrude in the axial direction. Furthermore, a plurality of circumferential grooves 94 extending continuously in the circumferential direction are formed near the base end portion of the annular block 90. Around the annular block 90, a plurality of fitting pins 96 extending in a vertical direction from the bottom wall portion of the first mold 82 are projected.
[0043]
Furthermore, the third mold 86 is configured to be split including a pair of combination molds 98 having a semicircular cross section in a substantially plan view, and both end surfaces in the circumferential direction of the combination molds 98 and 98 overlap each other. As a result, it has a substantially cylindrical shape. Further, the inner peripheral surface of the third molding die 86 has a shape corresponding to the desired shape of the first integrally vulcanized molded product 26 and one end surface in the axial direction of the third molding die 86. A plurality of fitting holes 100 extending in a predetermined length in the axial direction are formed as openings.
[0044]
Further, in the present embodiment, the outer cylinder fitting 14 is fitted and supported on the inner peripheral surface of the third molding die 86, and the fitting hole 100 and the fitting pin 96 of the first molding die 82 are fitted. Further, the inner cylinder fitting 12 provided with the restraint plate fitting 18 is extrapolated to the core pin 88, while the axial end of the third mold 86 on which the restraint plate fitting 18 is arranged is the bottom of the second shaping die 84. The first, second, and third molding dies 82, 84, and 86 are matched with each other by being placed on and supported by the inner cylinder fitting 12 and the outer cylinder fitting 14 on the concentric shaft. The molding cavity 102 is formed by the cooperation of the first molding die 82 and the third molding die 86 between the radially opposing surfaces of the metal fittings 12 and 14.
[0045]
Further, in this mold matching state, the annular ring 92 protruding from the tip surface of the annular block 90 in the first mold 82 is in contact with the second step surface 79 of the annular protrusion 78. The inner peripheral edge of the annular ring 92 extends from the outer peripheral side of the second step surface 79 to the radial intermediate portion, and the radial intermediate portion of the second step surface 79 where the contact peripheral edge is located. A biting portion of a rubber elastic body to be molded is set.
[0046]
Thus, in this embodiment, the inner cylinder fitting 12 and the outer cylinder fitting 14 are respectively added with the rubber material by injecting and filling the molding cavity 102 with a rubber material via a sprue or runner (not shown) by an injection device (not shown). The first integral vulcanized molded product 26 of the main rubber elastic body 16 having the inner and outer cylindrical fittings 12 and 14 as shown in FIG.
[0047]
Therefore, particularly in the present embodiment, the annular ring 92 protruding from the annular block 90 is overlapped with the second step surface 79 of the annular projection 78 in the inner cylindrical metal member 12 to be the mold opening / closing and clamping direction. , The inner peripheral side edge 104 of the tapered inner surface 28 of the main rubber elastic body 16 is positioned at the radially intermediate portion of the lower end surface in the axial direction of the annular protrusion 78 and bite off. It is like that.
[0048]
In the engine mount 10 having the above-described structure, the inner cylinder fitting 12 is fixed to the power unit side, and the outer cylinder fitting 14 is fixed to the body side so that the central axes of the inner and outer cylinder fittings 12 and 14 are substantially the same. In the vertical direction, the power unit is supported in an anti-vibration manner on the body in cooperation with a plurality of other engine mounts (not shown). Under such a mounted state, when the vibration of the power unit is exerted in the substantially axial direction between the inner and outer cylindrical fittings 12 and 14, the main rubber elastic body 16 is elastically deformed and the inner and outer cylindrical fittings 12 and 14 are relatively displaced. As a result, relative pressure fluctuations are repeatedly generated between the pressure receiving chamber 68 and the equilibrium chamber 70, and fluid flow through the orifice passage 72 is generated in accordance with the relative pressure fluctuations. Therefore, by tuning the orifice passage 72 to an appropriate frequency range for the purpose of vibration isolation, resonance of the fluid that can cause the orifice passage 72 to flow, for example, against shake vibration during traveling or idling vibration during stopping. An effective anti-vibration effect can be obtained based on the fluid action such as action.
[0049]
Therefore, in the engine mount 10 of the present embodiment, when the first integral vulcanized molded product 26 and the third integral vulcanized molded product 60 are assembled, the fitting tube fitting of the third integral vulcanized molded product 60 is installed. 58 is press-fitted and fixed to the large-diameter outer peripheral surface 74 of the inner cylinder fitting 12 in the first integrally vulcanized molded product 26, so that the fitting cylinder fitting 58 can be easily and quickly inserted into the press-fitting site of the inner cylinder fitting 12. Therefore, the first integral vulcanized molded product 26 and the third integral vulcanized molded product 60 can be easily assembled, and thus the stability and efficiency of the assembly operation can be advantageously exhibited.
[0050]
Further, particularly in the present embodiment, the inner peripheral edge 104 of the tapered inner surface 28 of the main rubber elastic body 16 is positioned at the radial intermediate portion of the annular protrusion 78 of the inner cylindrical metal member 12. Since it is effectively prevented that rubber wraps around the press-fitting site of the fitting cylinder fitting 58 on the large-diameter outer peripheral surface 74 of the inner cylinder fitting 12 and rubber burrs and the like are attached, the first integral vulcanization molded product 26 and the third integral vulcanized molded product 60 can be more advantageously realized, and foreign matters such as rubber burrs can be reduced or suppressed from entering the pressure receiving chamber 68 and the equilibrium chamber 70. Accordingly, stable vibration isolation performance can be advantageously ensured.
[0051]
Furthermore, in the present embodiment, the annular protrusion 78 is vulcanized and bonded to the main rubber elastic body 16 so as to extend from the inner cylindrical metal member 12 in the direction perpendicular to the axis, so that the main rubber elastic body in the direction perpendicular to the axis. Since the thickness dimension is substantially changed, the spring characteristics of the engine mount 10 in the direction perpendicular to the axis can be adjusted to a high degree.
[0052]
The embodiment of the present invention has been described in detail above, but this is merely an example, and the present invention is not limited to a specific description in the embodiment, and is based on the knowledge of those skilled in the art. The present invention can be implemented with various changes, modifications, improvements, and the like, and all such embodiments are included in the scope of the present invention without departing from the spirit of the present invention. Needless to say.
[0053]
For example, in the above-described embodiment, the restraint plate fitting 18 is vulcanized and bonded to the outer surface in the axial direction of the main rubber elastic body 16, but is described in, for example, Japanese Utility Model Laid-Open No. 6-22642 and Japanese Patent Laid-Open No. 8-170686. As described above, the axially outer surface of the main rubber elastic body 16 may be a free surface over the entire surface without providing the restraining plate metal member 18.
[0054]
Further, the specific structure and shape of the orifice passage 72 in the above embodiment, the passage length, the cross-sectional area, and the like are appropriately changed according to the required vibration isolating characteristics. It is also possible to form one or a plurality of orifice passages extending through in the direction, or to form an orifice passage extending along the surface of the inner cylinder fitting 12 by the inner cylinder fitting 12 and the fitting cylinder fitting 58. is there.
[0055]
Further, the restraining plate metal 18 of the above-described embodiment can be provided with a shock absorbing rubber so as to be opposed to the flange portion 24 of the outer tube metal 14 so as to be spaced apart from each other in the axial direction. When the inner cylinder fitting 12 is displaced relative to the outer cylinder fitting 14 in the axially lower direction, the restraining plate fitting 18 is brought into contact with the flange portion 24 via the buffer rubber, whereby the inner and outer cylinder fittings 12, The amount of relative displacement in the 14 axial direction is limited, and the axial stopper function can be exhibited.
[0056]
Furthermore, in the above-described embodiment, the annular protrusion 78 protruding from the inner cylinder fitting 12 is not necessarily provided. Alternatively, the annular protrusion 78 may be formed with an axial thickness over the entire length above the second stepped surface 79 in the axial direction.
[0057]
In addition, the present invention is not limited to the engine mount for automobiles as illustrated, but also to the body mounts, member mounts, cab mounts, strut bar cushions, etc. for automobiles, or fluid-filled cylindrical vibration isolations used in various fields other than automobiles. Needless to say, any of them can be applied to the apparatus.
[0058]
【The invention's effect】
As is apparent from the above description, in the fluid-filled cylindrical vibration isolator having the structure according to the present invention, the inner peripheral fitting ring vulcanized and bonded to the partition rubber member is an intermediate portion in the axial direction of the inner shaft member. The inner peripheral fitting ring is easily and quickly guided to the target press-fitting site and assembled by being press-fitted and fixed to the outer peripheral surface having a larger diameter than the first step surface formed on the main rubber elastic body side. As a result, the assembling work can be easily performed, and problems such as peeling of rubber burrs during press-fitting can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an automobile engine mount as an embodiment of the present invention.
FIG. 2 is a longitudinal cross-sectional explanatory view showing a form before a diameter reduction process is performed in the first integrally vulcanized molded product constituting a part of the automobile engine mount in FIG. 1;
FIG. 3 is a longitudinal sectional explanatory view showing a form before assembly in the second integrally vulcanized molded product constituting a part of the automobile engine mount in FIG. 1;
4 is a longitudinal sectional explanatory view showing a form before assembly in the third integrally vulcanized molded product constituting a part of the automobile engine mount in FIG. 1; FIG.
5 is a longitudinal cross-sectional explanatory view showing one molding step of the first integrally vulcanized molded product in FIG. 2; FIG.
[Explanation of symbols]
10 Engine mount
12 Inner tube bracket
14 Outer tube bracket
16 Body rubber elastic body
26 First integral vulcanized molded product
36 Diaphragm
50 Bulkhead rubber
56 Orifice bracket
58 Fitting tube fitting
68 Pressure chamber
70 equilibrium room
72 Orifice passage
74 Large diameter outer peripheral surface
76 First step surface

Claims (5)

インナ軸部材の外周側にアウタ筒部材を離隔配置せしめて該インナ軸部材と該アウタ筒部材における軸方向一方の端部間を本体ゴム弾性体で弾性的に連結した一体加硫成形品に対して、それらインナ軸部材とアウタ筒部材の軸方向他方の端部側からそれぞれ略円環形状の隔壁ゴム部材と可撓性蓋部材を嵌め入れて、該隔壁ゴム部材を挟んだ軸方向両側に、壁部の一部が該本体ゴム弾性体で構成されて該インナ軸部材と該アウタ筒部材の間への軸方向の振動入力時に圧力変動が生ぜしめられる受圧室と、壁部の一部が該可撓性蓋部材で構成されて容積変化が容易に許容される平衡室を形成して、それら受圧室と平衡室に非圧縮性流体を封入すると共に、該受圧室と該平衡室を相互に連通せしめるオリフィス通路を設けた流体封入式筒形防振装置において、
前記インナ軸部材の軸方向中間部分の外周面に第一の段差面を設けて該インナ軸部材の外径寸法を軸方向で異ならせ、該第一の段差面よりも前記本体ゴム弾性体側を大径外周面とする一方、前記隔壁ゴム部材の内周部分と外周部分に該インナ軸部材の外周面と前記アウタ筒部材の内周面にそれぞれ嵌着固定される内周嵌着リングと外周嵌着リングを加硫接着せしめて、該内周嵌着リングを該大径外周面に対して圧入固定して、
前記インナ軸部材において、前記内周嵌着リングの圧入部位よりも更に前記本体ゴム弾性体側に位置して第二の段差面を設けて、該第二の段差面における該内周嵌着リング側の面の径方向中間部分に前記本体ゴム弾性体の内周側端縁部を位置せしめたことを特徴とする流体封入式筒形防振装置。
For an integrally vulcanized molded product in which an outer cylinder member is spaced apart on the outer peripheral side of an inner shaft member and the inner shaft member and one end in the axial direction of the outer cylinder member are elastically connected by a main rubber elastic body The annular rubber member and the flexible lid member are fitted into the inner shaft member and the outer cylindrical member from the other end side in the axial direction, respectively. A pressure receiving chamber in which a part of the wall portion is constituted by the main rubber elastic body, and pressure fluctuation is generated when an axial vibration is input between the inner shaft member and the outer cylindrical member, and a part of the wall portion Is formed of the flexible lid member to form an equilibrium chamber in which volume change is easily allowed, and an incompressible fluid is enclosed in the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber and the equilibrium chamber are separated from each other. Fluid-filled cylindrical vibration isolator with orifice passages communicating with each other Oite,
A first step surface is provided on the outer peripheral surface of the axially intermediate portion of the inner shaft member so that the outer diameter of the inner shaft member varies in the axial direction, and the main rubber elastic body side is closer to the first step surface than the first step surface. On the other hand, the outer peripheral surface of the bulkhead rubber member is fixed to the outer peripheral surface of the inner shaft member and the inner peripheral surface of the outer cylinder member on the inner peripheral portion and the outer peripheral portion of the partition rubber member. By vulcanizing and bonding the fitting ring, the inner circumferential fitting ring is press-fitted and fixed to the large-diameter outer circumferential surface ,
In the inner shaft member, a second step surface is provided at a position closer to the main rubber elastic body side than a press-fitting portion of the inner periphery fitting ring, and the inner periphery fitting ring side of the second step surface is provided. A fluid-filled cylindrical vibration isolator characterized in that an inner peripheral side edge of the main rubber elastic body is positioned in a radially intermediate portion of the surface of the main body .
前記インナ軸部材の外周面に環状突起が形成されていると共に、該環状突起の軸方向端面によって前記第二の段差面が形成されている請求項1に記載の流体封入式筒形防振装置。The fluid-filled cylindrical vibration isolator according to claim 1, wherein an annular protrusion is formed on an outer peripheral surface of the inner shaft member, and the second step surface is formed by an axial end surface of the annular protrusion. . 前記隔壁ゴム部材に軸方向に延びる円筒部を設けて、該隔壁ゴム部材の内周面に前記内周嵌着リングを加硫接着せしめると共に、該隔壁ゴム部材の外周面に前記外周嵌着リングを加硫接着せしめて、該外周嵌着リングよりも該内周嵌着リングが前記インナ軸部材の軸方向で前記本体ゴム弾性体側に位置せしめられるようにした請求項1又は2に記載の流体封入式筒形防振装置。The partition rubber member is provided with a cylindrical portion extending in the axial direction, and the inner peripheral engagement ring is vulcanized and bonded to the inner peripheral surface of the partition rubber member, and the outer peripheral engagement ring is attached to the outer peripheral surface of the partition rubber member. 3. The fluid according to claim 1, wherein the inner circumferential fitting ring is positioned closer to the main rubber elastic body in the axial direction of the inner shaft member than the outer circumferential fitting ring. Enclosed cylindrical vibration isolator. 前記隔壁ゴム部材の前記外周嵌着リングが、前記アウタ筒部材の縮径加工によって該アウタ筒部材の内周面に嵌着固定されており、該アウタ筒部材の外周面に開口形成されて周方向に延びる凹溝が該アウタ筒部材で覆蓋されることによって前記オリフィス通路が形成されている請求項1乃至3の何れかに記載の流体封入式筒形防振装置。The outer peripheral fitting ring of the partition rubber member is fitted and fixed to the inner peripheral surface of the outer cylindrical member by the diameter reduction processing of the outer cylindrical member, and is formed in the outer peripheral surface of the outer cylindrical member so as to be peripheral. The fluid-filled cylindrical vibration isolator according to any one of claims 1 to 3, wherein the orifice passage is formed by covering a concave groove extending in the direction with the outer cylinder member. 前記内周嵌着リングにおいて前記インナ軸部材の前記第一の段差面側に位置せしめられた軸方向端部を、前記大径外周面よりも該第一の段差面側に突出位置せしめた請求項1乃至の何れかに記載の流体封入式筒形防振装置。The axial end portion positioned on the first stepped surface side of the inner shaft member in the inner circumferential fitting ring is positioned so as to protrude toward the first stepped surface side than the large-diameter outer peripheral surface. Item 5. The fluid-filled cylindrical vibration isolator according to any one of Items 1 to 4 .
JP2003072449A 2003-03-17 2003-03-17 Fluid filled cylindrical vibration isolator Expired - Fee Related JP4061493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072449A JP4061493B2 (en) 2003-03-17 2003-03-17 Fluid filled cylindrical vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072449A JP4061493B2 (en) 2003-03-17 2003-03-17 Fluid filled cylindrical vibration isolator

Publications (2)

Publication Number Publication Date
JP2004278706A JP2004278706A (en) 2004-10-07
JP4061493B2 true JP4061493B2 (en) 2008-03-19

Family

ID=33288641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072449A Expired - Fee Related JP4061493B2 (en) 2003-03-17 2003-03-17 Fluid filled cylindrical vibration isolator

Country Status (1)

Country Link
JP (1) JP4061493B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884338B (en) 2010-03-08 2015-01-21 株式会社普利司通 Liquid seal anti-vibration device and manufacturing method thereof
US9222543B2 (en) 2010-03-19 2015-12-29 Bridgestone Corporation Liquid-sealed-type anti-vibration device and method for manufacturing the same
CN103287247B (en) * 2013-06-07 2016-08-10 安徽江淮汽车股份有限公司 A kind of suspended rubber mat
JP7233331B2 (en) * 2019-07-23 2023-03-06 住友理工株式会社 Cylindrical anti-vibration device
JP7305520B2 (en) * 2019-11-13 2023-07-10 株式会社プロスパイラ Anti-vibration device

Also Published As

Publication number Publication date
JP2004278706A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP2510903B2 (en) Fluid-filled mount device and manufacturing method thereof
EP0766021B1 (en) Elastic mount having mounting bracket functioning as stop mechanism and method of producing the same
JP2004036780A (en) Fluid-sealed tubular vibration control device
JP2011179570A (en) Fluid-filled type vibration damping device
JP4061493B2 (en) Fluid filled cylindrical vibration isolator
JP2002181117A (en) Fluid sealing type vibration control device and its manufacturing method
CA2315966C (en) Fluid-filled vibration damping device having improved partition structure
JP3714239B2 (en) Fluid filled vibration isolator
JP5711088B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JP3757829B2 (en) Fluid filled vibration isolator
JP4131410B2 (en) Method for manufacturing fluid-filled cylindrical mount
JP6297371B2 (en) Method for manufacturing fluid-filled vibration isolator
JPH0519696U (en) Fluid chamber partition member for fluid-filled mount
JPH07293627A (en) Cylindrical vibration isolator
JP2004204964A (en) Fluid enclosed-vibration isolator
JPH0461220B2 (en)
JP5256152B2 (en) Fluid filled vibration isolator
JP3736302B2 (en) Method for manufacturing fluid-filled mounting device
JPH07190130A (en) Fluid-filled mount and manufacture thereof
JP2004324701A (en) Fluid-enclosed type cylindrical vibration damper
JP3889515B2 (en) Vibration isolator
JP2003232397A (en) Liquid sealing vibration controller
JP2010255794A (en) Vibration control device
JP2004270815A (en) Anti-vibration equipment
JP2005106152A (en) Fluid enclosed vibration damper and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4061493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees