[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4058164B2 - Magnetic recording / reproducing device - Google Patents

Magnetic recording / reproducing device Download PDF

Info

Publication number
JP4058164B2
JP4058164B2 JP16658198A JP16658198A JP4058164B2 JP 4058164 B2 JP4058164 B2 JP 4058164B2 JP 16658198 A JP16658198 A JP 16658198A JP 16658198 A JP16658198 A JP 16658198A JP 4058164 B2 JP4058164 B2 JP 4058164B2
Authority
JP
Japan
Prior art keywords
film
magnetic
tunnel
fixed
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16658198A
Other languages
Japanese (ja)
Other versions
JP2000003507A (en
Inventor
宏昌 ▲高▼橋
良昭 川戸
裕之 星屋
Original Assignee
株式会社日立グローバルストレージテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立グローバルストレージテクノロジーズ filed Critical 株式会社日立グローバルストレージテクノロジーズ
Priority to JP16658198A priority Critical patent/JP4058164B2/en
Publication of JP2000003507A publication Critical patent/JP2000003507A/en
Application granted granted Critical
Publication of JP4058164B2 publication Critical patent/JP4058164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録再生装置に関し、特に高記録密度磁気記録再生装置に関するものである。
【0002】
【従来の技術】
特開平4−103014 号公報には、反強磁性体を用いた強磁性トンネル効果膜およびこれを用いた磁気抵抗効果素子の記述がある。特開平9−128714 号公報には、強磁性層の膜厚を膜面内で変えた構造の磁気トランスデユーサーの記述がある。
【0003】
【発明が解決しようとする課題】
従来の技術では記録密度の上昇に対応し、微細な記録からの微弱な磁気信号を十分高い感度と出力で再生するような磁気記録再生装置の再生用素子として磁気抵抗効果を用いた素子で対応しているが、現状はさらなる微細化に伴う再生感度および出力の低下,ノイズの低減の問題解決した記憶装置が技術的に必要とされている。
【0004】
近年、強磁性金属の膜を非常に薄い絶縁層を介して積層し、膜厚方向に電流を流した際に観察されるトンネル電流に大きな磁気抵抗効果が生じることが知られている。この場合、従来知られている磁気抵抗効果,巨大磁気抵抗効果素子が膜面方向に電流を流し、外部磁界の方向によって抵抗が変化する減少を出力として測定しているのに対し、トンネル磁気抵抗効果膜では膜厚方向に電流を流す構造であり、従来とは異なるヘッド構造をとる必要がある。
【0005】
一方、磁気構造的にはこのトンネル型磁気抵抗効果素子は従来開発されているスピンバルブという構造と類似し、中間層をはさんで2層に分離した磁性膜を有しており、その磁気的な制御の必要性はスピンバルブ構造と同様に重要なものとなる。その上、トンネル型磁気抵抗効果素子は電流の漏洩や絶縁破壊を制御することが必要である。従って、トンネル型磁気抵抗効果素子の磁気的な特性である固定層の磁化の固定と自由層の磁化回転の規定、及び、自由層の磁区発生の制御は問題である。従来の磁気抵抗効果膜では、例えばハードバイアスという機構のように磁区制御のための硬質磁性膜を磁気抵抗効果膜の両端に配置した構造が用いられていた。トンネル型磁気抵抗効果素子では電流がリークするので、この構造ではトンネル型磁気抵抗効果膜に電流を印加するのが困難である。さらに従来磁気抵抗効果膜に電流を印加するための一対の電極を磁気ギャップ内に横並びに形成していたが、トンネル型磁気抵抗効果膜では電極を厚さ方向に形成することが必要であり、作製上困難である。また、トラック幅を決定する要因として実際の膜の大きさが用いられている。
【0006】
また、トンネル型磁気抵抗効果素子は、活性領域が極薄の絶縁膜を介した磁性膜サンドイッチ構造の厚さ方向に電流が流れるため、この部分が磁気ヘッドの対向面すなわち記録媒体に近接する面に露出した場合に、記録媒体への近接あるいは接触で電流が短絡する恐れがある。同時に対向面を加工することはこのために困難になっている。
【0007】
また、電極の構造についても、高密度記録の実現に伴って素子サイズは微細化し、それに伴って素子自体の電気抵抗が小さくなり、出力が小さくなる問題がある。
【0008】
従って、本発明の目的は、高密度記録に対応したトンネル型磁気抵抗効果磁気ヘッドと、これを用いた磁気記録装置を提供することにあり、具体的には、上述した微細化に伴う再生感度および出力の低下,ノイズの低減,電流短絡などの問題を解決した構造をもった記憶装置を提供することにある。
【0009】
【課題を解決するための手段】
第一に、対向面におけるトンネル型磁気抵抗積層膜の短絡を防ぐため、トンネル型磁気抵抗積層膜の絶縁性バリヤ膜の周辺部の膜厚を厚くする、あるいは絶縁性の高くなる処理を施すことで、周辺部の絶縁性を高くし、素子の対向面における自由側磁性膜と固定側磁性膜の間の短絡を防ぐ構造をとる。かつ、磁気的に他のプロセスの影響の及ばない領域で磁気信号を扱うことができるため、ノイズの低減などに有効と考えられる。
【0010】
第二に、素子の電極を接続するのに、トンネル型磁気抵抗積層膜の上面を高抵抗の膜で覆い、素子の活性領域に相当する部分に穴を空け、これをコンタクトホールとして電極を作製する構造が考えられる。このコンタクトホールによって規定された領域を電流は流れることから、実効トラック幅をこのコンタクトホールで規定できると共に、周辺部の電流短絡を最少限に抑えることができる。また、この高抵抗膜に、反強磁性あるいは硬質磁性材料を選ぶことによって磁区制御を行うことができる。
【0011】
【発明の実施の形態】
本発明の磁気ヘッドは、基本的構造として磁気的なギャップを形成する一対の磁気シールドと上記磁気ギャップ内に配置したトンネル型磁気抵抗効果素子とからなる。トンネル型磁気抵抗効果素子の構成は下部磁気シールド,下部導電ギャップ,トンネル磁気抵抗積層膜,上部導電ギャップ,上部磁気シールドが順次積層されたものである。特にトンネル磁気抵抗積層膜について、トンネル型磁気抵抗積層膜を構成する薄膜は高周波マグネトロンスパッタリング装置により以下のように作製した。アルゴン1〜6ミリトールの雰囲気で、セラミックス基板上に以下の材料を順次積層して作製した。
【0012】
スパッタリングに用いる材料(ターゲット)としてタンタル,ニッケル20原子%−鉄合金,銅,コバルト,クロム−マンガン合金,アルミナの各ターゲットを用いた。必要に応じて、ターゲット上に添加元素の一センチ角のチップを配置して組成を調整した。チップは白金,ニッケル,鉄,コバルトを用いた。
【0013】
積層膜は、各ターゲットを配置したカソードに各々高周波電力を投入して装置内にプラズマを発生させておき、各カソードごとに配置されたシャッターを一つずつ開閉して順次各層を形成した。膜形成時には永久磁石を用いて基板に平行な方向に約80エルステッドの磁界を印加して一軸異方性をもたせるとともに、クロームマンガン膜などの交換結合磁界の方向を各々の方向に誘導した。
【0014】
基体上の素子の形成はフォトレジスト工程によってパターニングした。
【0015】
本発明にあるような同一層内での膜厚を変える方法としては次のような幾つかの方法がある。厚い層を成長して層を部分的に削る場合には、フォトレジスト工程によるパターニングや、CMP,FIBの方法がとられる。また、膜厚の薄い部分で膜を作製し、そのうえにリフトオフパターンを作り、そのパターンの周囲に同一膜を成長させる方法がとられる。これらの方法の選択は、膜厚を変える層の面積、性質および材料による。
【0016】
同様に、同一層内で電気抵抗を変える方法としては、酸素や窒素,炭素,硫黄等のイオンを収束イオンビームを用いて照射し部分的に反応層を作る方法と、イオン打ち込み法を用い、これらのイオンを注入した。このようにして作製した基体はスライダー加工し磁気記録装置に搭載した。
【0017】
以下に本発明の具体的な実施例を図をおって説明する。
【0018】
図1は本発明のトンネル型磁気ヘッドの構成例を示した概略図である。基体50上に下部磁気シールド35,下部導電性ギャップ33,トンネル型磁気積層体101,絶縁ギャップ膜40,上部導電性ギャップ34,上部磁気シールド兼下部磁気コア36,コイル42,上部磁気コア83を形成して構成される。上部磁気シールド36,下部磁気シールド35に導電性材料を用い、これらを引き出した構造にして電極にし、電流の印加と再生出力の検出を行うようにした構造をとった。このときは、上部磁気コア83と上部磁気シールド兼下部磁気コア36はコイル42に電流を印加することで発生する起磁力により、記録媒体との対向面に露出して形成した書き込みギャップ周囲に書き込み磁界を発生させる。
【0019】
対向面と基体表面によって磁気ヘッドの方位は決定し、トラック幅方向61と素子高さ方向62,磁気ヘッド駆動方向63が定義される。対向面からみると下部磁気シールド35と下部導電性ギャップ33とトンネル型積層膜101は直接つながっており、また、上部導電性ギャップ34と上部磁気シールド兼下部磁気コア36はつながっている。下部磁気シールド35から上部磁気シールド36までのあいだに、挟まれたトンネル型磁気抵抗効果膜については、図2に示すような構造をもつ。このため、対向面においては固定側磁性膜11と自由側磁性膜12とのあいだに絶縁材料からなるバリヤ膜17が挟まれた構造である。このバリヤ膜の材料はAl23やZr23,SiO2 などの酸化物,炭化物,窒化物を用いることを特徴とする。
【0020】
この膜の作製法としては金属薄膜を作成し、これをプラズマ照射やイオン打ち込み等で化学結合を強制的に行う場合と酸素あるいは窒素の雰囲気中で放置あるいは熱処理する方法がある。簡単のため、ここではこれらの処理を化学反応処理と呼ぶことにする。先に説明したように固定側磁性膜と自由側の絶縁バリヤ層と呼ばれる層の周囲が厚くなっており、この厚くなった部分が対向面に露出した構造となっている。
【0021】
この作製法としては、金属膜を酸化させてバリヤ膜を作成する場合は金属膜を作成し、これをミリングやFIB(集束イオンビームミリング法)で薄く加工し、しかる後に化学反応処理を行う場合と、はじめからバリヤ膜に相当する材料からなる膜を作成し、これを加工し化学反応処理を行う方法、またはバリヤ膜に相当する材料からなる膜を作成しこれを加工したものをそのままバリヤ膜として用いる場合があるが、これらについても大きさに違いはあるが、トンネル磁気抵抗効果は認められた。また、膜厚を変えずにバリヤ膜に相当する膜の表面に部分的に導電性のイオンを打ち込むあるいは高エネルギーの軽元素を打ち込むことで酸素結合を破壊して部分的に電気伝導率を変える方法も有効である。
【0022】
図3(a),(b)は一般的なトンネル型磁気抵抗積層体の膜構成の一例をあげたものである。トンネル型磁気抵抗積層体102は自由側磁性層12,バリヤ層17,固定側磁性層11を積層した構造である。固定側磁性層11は反強磁性バイアス膜71と固定強磁性膜72からなり、固定強磁性膜72は直接重ねて接合した反強磁性バイアス膜71による交換結合により一方向異方性を印加されている。自由側磁性膜は自由強磁性膜12と磁気分離膜兼下地膜18,磁区制御膜16を積層してなる。自由側磁性膜12は単層の磁性膜であっても良い。軟磁性膜と磁気抵抗効果膜の積層体であるほうがより効果が大きい。磁区制御膜16は硬磁性膜と下地膜からなる。下地膜は省略できるが、あったほうが硬磁性膜の特性が安定する。
【0023】
磁気的分離膜兼下地膜18は磁区制御膜16と自由側磁性膜12との膜面を介した相互作用を十分に弱め、分離する機能を持つと共に、この上に形成する膜の特性を安定させる機能をもつ。図中に本実施例で用いた各膜の組成を記してある。反強磁性バイアス膜71としてCr45Mn45Pt1030ナノメートル、固定側強磁性膜72としてCo膜3ナノメートル、バリヤ膜17としてAl23が10ナノメートルを部分的に3ナノメートルまで薄くしたもの、磁気抵抗増加膜74としてCo1ナノメートル、軟磁性膜75としてNi81Fe19膜5ナノメートル、磁気的分離兼下地膜18としてTa膜20ナノメートル、硬磁性膜77としてCoPt膜10ナノメートル、下地膜78としてCr膜5ナノメートルをそれぞれ用いた。
【0024】
図4はトンネル型磁気抵抗積層体を構成する膜の磁気的な異方性の印加方向を示した図である。磁区制御膜16は残留磁化がトラック幅方向61に平行になるように着磁する。自由強磁性膜12は検知すべき磁界が素子高さ方向62に平行に入るのに対し、磁化が回転する機構をとるべく弱い異方性をトラック幅方向61に平行な方向に誘導する。固定側磁性膜11はその残留磁化が素子高さ方向63に平行な方向になるように交換結合を誘導する。
【0025】
上述したような構成について本発明のトンネル磁気抵抗効果素子およびこれを搭載した磁気記録再生装置を試験した結果、充分な出力と良好なバイアス特性を有し動作の信頼性も良好であった。
【0026】
一方、これとは別に図5に示すようにトンネル型積層膜102について、固定側磁性層11が下側、自由側磁性層12が上部になっており、自由側磁性層12の上に高抵抗の磁区制御膜16が積層され、その上に上部電極兼上部磁気シールド兼下部磁気コア36がでている構造を検討した。高抵抗磁区制御膜16の材料にはNIOを用いた。この高抵抗磁区制御膜16の膜厚がトンネル型積層膜上で薄くなっておりシールド36に電気的に接続している。膜中で膜厚を変える方法としてCMP(化学的機械研磨法)やFIBなどを用いた。
【0027】
このようにして磁区制御膜16上に膜厚の部分的に薄い部分、あるいはコンタクトホールとなる穴をあけることで、磁区制御膜上部の電極とトンネル磁気抵抗効果膜を電気的に接続した構造を作成した。このとき磁区制御膜16上に作成する穴の大きさ、特にトラック幅方向61の長さを実際のトラック幅に相当する大きさにして、シールドの長さはトンネル磁気抵抗効果活性領域102のトラック幅方向61の長さによって決まるトラック幅よりも小さくすると、実際のトラック幅は磁区制御膜16上に作成する穴の大きさによって規定されるようになる。これは、トンネル磁気抵抗効果膜中を上部シールド36から下部シールド35へほぼまっすぐに電流が流れるためである。このような構造をとることで、事実上のトラック幅を規定する構造になっているものも作製した。
【0028】
このため、トンネル磁気抵抗効果膜の膜の活性領域を十分な大きさで作成し、トラック幅を上部のコンタクトホールの大きさで決めることができ、高密度記録に対応できる構造を得ることができた。上述したような構成について、本発明のトンネル磁気抵抗効果素子およびこれを搭載した図6の磁気記録再生装置を試験した結果、充分な出力と良好なバイアス特性を有し動作の信頼性も良好であった。
【0029】
【発明の効果】
以上詳述したように、本発明によれば良好なバイアス特性と、電気的に安定でノイズを低減したヘッドが得られ、また、再生トラック幅もトンネル磁気抵抗効果膜の活性部分の大きさとは異なる、磁区制御膜上に開口した穴の大きさで規定できる制御性が向上する事から、高い記録密度に耐えうる良好な再生出力とバイアス特性を有する磁気ヘッドおよび高記録密度再生装置を得ることができる。
【図面の簡単な説明】
【図1】本発明のトンネル型磁気抵抗ヘッドの構成例を示した斜視図である。
【図2】本発明のトンネル型磁気抵抗積層膜の構成例を示した側断面図である。
【図3】(a),(b)は本発明のトンネル型磁気抵抗ヘッドのトンネル型磁気抵抗積層膜の構成例を示した断面図である。
【図4】本発明のトンネル型磁気抵抗効果ヘッドのトンネル型磁気抵抗積層体を構成する膜の磁気的な異方性の印加方向を示した説明図である。
【図5】本発明のトンネル型磁気抵抗効果ヘッドのトンネル型磁気抵抗積層膜の磁気異方性の構成例を示した説明図である。
【図6】本発明のトンネル型磁気抵抗効果ヘッドを搭載した磁気再生装置の構成例を示した説明図である。
【符号の説明】
101…トンネル型磁気抵抗積層体露出部、102…活性領域のトンネル型磁気抵抗積層体、11…固定側磁性膜、12…自由側磁性膜、15…自由強磁性膜、16…磁区制御膜、17…バリア膜、18…磁気的分離膜兼下地膜、33…下部導電ギャップ、34…上部導電ギャップ、35…下部磁気シールド、36…上部磁気シールド、40…絶縁ギャップ膜、41…電極端子、42…コイル、50…基体、61…トラック幅方向、62…素子高さ方向、63…磁気ヘッドの駆動方向、64…対向面、65…トンネル型磁気抵抗積層体の活性領域、66…自由強磁性膜の異方性の方向、67…磁区制御膜の残留磁化の方向、68…固定側磁性膜の残留磁化の方向、71…反強磁性膜、72…固定強磁性膜、74…磁気抵抗増加膜、75…軟磁性膜、77…硬磁性膜、78…下地膜、81…磁気デイスク、82…モーター、83…アクチュエーター、84…制御機構、85…データ再生複合系。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic recording / reproducing apparatus, and more particularly to a high recording density magnetic recording / reproducing apparatus.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 4-103014 describes a ferromagnetic tunnel effect film using an antiferromagnetic material and a magnetoresistive effect element using the same. Japanese Patent Application Laid-Open No. 9-128714 describes a magnetic transducer having a structure in which the film thickness of a ferromagnetic layer is changed in the film plane.
[0003]
[Problems to be solved by the invention]
The conventional technology supports the increase in recording density, and supports elements using the magnetoresistive effect as reproducing elements for magnetic recording and reproducing devices that reproduce weak magnetic signals from fine recording with sufficiently high sensitivity and output. However, at present, there is a technical need for a storage device that solves the problem of reduction in reproduction sensitivity, output, and noise due to further miniaturization.
[0004]
In recent years, it has been known that a large magnetoresistive effect is generated in a tunnel current observed when a ferromagnetic metal film is laminated through a very thin insulating layer and a current is passed in the film thickness direction. In this case, the tunnel magnetoresistive effect and the giant magnetoresistive effect element known in the art measure the decrease in which the resistance changes depending on the direction of the external magnetic field as the output while the current flows in the film surface direction. The effect film has a structure in which current flows in the film thickness direction, and it is necessary to adopt a head structure different from the conventional one.
[0005]
On the other hand, in terms of magnetic structure, this tunnel-type magnetoresistive effect element is similar to the structure of a spin valve that has been developed in the past, and has a magnetic film separated into two layers with an intermediate layer interposed therebetween. The need for proper control is as important as the spin valve structure. In addition, the tunnel magnetoresistive element needs to control current leakage and dielectric breakdown. Therefore, there are problems in the magnetization characteristics of the fixed layer, the regulation of the magnetization rotation of the free layer, and the control of magnetic domain generation in the free layer, which are the magnetic characteristics of the tunnel magnetoresistive element. In the conventional magnetoresistive film, for example, a structure in which hard magnetic films for magnetic domain control are arranged at both ends of the magnetoresistive film as in a mechanism called hard bias is used. Since current leaks in the tunnel type magnetoresistive effect element, it is difficult to apply current to the tunnel type magnetoresistive effect film in this structure. Furthermore, a pair of electrodes for applying a current to the magnetoresistive effect film has been formed side by side in the magnetic gap, but in the tunnel type magnetoresistive effect film, it is necessary to form the electrodes in the thickness direction. It is difficult to manufacture. Further, the actual film size is used as a factor for determining the track width.
[0006]
Also, in the tunnel type magnetoresistive effect element, an electric current flows in the thickness direction of the magnetic film sandwich structure through an insulating film whose active region is an extremely thin film, so this portion is a surface facing the magnetic head, that is, a surface close to the recording medium. When exposed to light, current may be short-circuited due to proximity to or contact with the recording medium. For this reason, it is difficult to process the opposing surface at the same time.
[0007]
In addition, with regard to the structure of the electrodes, there is a problem that the element size is miniaturized with the realization of high-density recording, and accordingly, the electric resistance of the element itself is reduced and the output is reduced.
[0008]
Accordingly, an object of the present invention is to provide a tunnel type magnetoresistive magnetic head compatible with high-density recording and a magnetic recording apparatus using the same, and specifically, the reproduction sensitivity associated with the above-mentioned miniaturization. Another object of the present invention is to provide a memory device having a structure that solves problems such as output reduction, noise reduction, and current short circuit.
[0009]
[Means for Solving the Problems]
First, in order to prevent a short circuit of the tunnel-type magnetoresistive multilayer film on the opposite surface, the thickness of the peripheral part of the insulating barrier film of the tunnel-type magnetoresistive multilayer film is increased or a process for increasing the insulation is performed. Therefore, the insulating property of the peripheral portion is increased, and a structure is adopted in which a short circuit between the free-side magnetic film and the fixed-side magnetic film on the opposing surface of the element is prevented. In addition, the magnetic signal can be handled in a region that is not affected by other processes magnetically, so that it is considered effective for reducing noise.
[0010]
Secondly, to connect the electrodes of the element, the upper surface of the tunnel magnetoresistive laminated film is covered with a high resistance film, and a hole is made in a portion corresponding to the active region of the element, and this is used as a contact hole to produce an electrode A structure that can be considered. Since current flows through the region defined by this contact hole, the effective track width can be defined by this contact hole, and current short circuit in the peripheral portion can be minimized. In addition, magnetic domain control can be performed by selecting an antiferromagnetic or hard magnetic material for the high resistance film.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The magnetic head of the present invention comprises a pair of magnetic shields forming a magnetic gap as a basic structure and a tunnel type magnetoresistive effect element disposed in the magnetic gap. The tunnel magnetoresistive element is configured by sequentially laminating a lower magnetic shield, a lower conductive gap, a tunnel magnetoresistive laminated film, an upper conductive gap, and an upper magnetic shield. In particular, with respect to the tunnel magnetoresistive laminated film, the thin film constituting the tunnel type magnetoresistive laminated film was produced by a high frequency magnetron sputtering apparatus as follows. The following materials were sequentially laminated on a ceramic substrate in an atmosphere of 1 to 6 mTorr of argon.
[0012]
As a material (target) used for sputtering, each target of tantalum, nickel 20 atomic% -iron alloy, copper, cobalt, chromium-manganese alloy, and alumina was used. If necessary, the composition was adjusted by placing a tip of one centimeter square of the additive element on the target. The chip was made of platinum, nickel, iron, or cobalt.
[0013]
In the laminated film, high frequency power was applied to each cathode on which each target was placed to generate plasma in the apparatus, and each layer was sequentially formed by opening and closing the shutters arranged for each cathode. When the film was formed, a permanent magnet was used to apply a magnetic field of about 80 oersted in a direction parallel to the substrate to provide uniaxial anisotropy, and the direction of an exchange coupling magnetic field such as a chromium manganese film was induced in each direction.
[0014]
Element formation on the substrate was patterned by a photoresist process.
[0015]
There are several methods for changing the film thickness in the same layer as in the present invention as follows. When a thick layer is grown and the layer is partially removed, patterning by a photoresist process, CMP, or FIB is used. Further, a method is used in which a film is formed at a thin part, a lift-off pattern is formed thereon, and the same film is grown around the pattern. The choice of these methods depends on the area, nature and material of the layer that changes film thickness.
[0016]
Similarly, as a method of changing electric resistance in the same layer, a method of partially forming a reaction layer by irradiating ions of oxygen, nitrogen, carbon, sulfur, etc. using a focused ion beam, and an ion implantation method, These ions were implanted. The substrate thus produced was processed with a slider and mounted on a magnetic recording apparatus.
[0017]
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a schematic view showing a configuration example of a tunnel type magnetic head of the present invention. A lower magnetic shield 35, a lower conductive gap 33, a tunnel type magnetic laminate 101, an insulating gap film 40, an upper conductive gap 34, an upper magnetic shield / lower magnetic core 36, a coil 42, and an upper magnetic core 83 are formed on a base 50. Formed and configured. A conductive material was used for the upper magnetic shield 36 and the lower magnetic shield 35, and these were drawn out to form an electrode to apply a current and detect a reproduction output. At this time, the upper magnetic core 83 and the upper magnetic shield / lower magnetic core 36 write around the write gap formed on the surface facing the recording medium by the magnetomotive force generated by applying a current to the coil 42. Generate a magnetic field.
[0019]
The orientation of the magnetic head is determined by the facing surface and the substrate surface, and a track width direction 61, an element height direction 62, and a magnetic head driving direction 63 are defined. When viewed from the opposite surface, the lower magnetic shield 35, the lower conductive gap 33, and the tunnel-type laminated film 101 are directly connected, and the upper conductive gap 34 and the upper magnetic shield / lower magnetic core 36 are connected. The tunnel-type magnetoresistive film sandwiched between the lower magnetic shield 35 and the upper magnetic shield 36 has a structure as shown in FIG. For this reason, the barrier film 17 made of an insulating material is sandwiched between the fixed-side magnetic film 11 and the free-side magnetic film 12 on the facing surface. The barrier film is made of an oxide, carbide, or nitride such as Al 2 O 3 , Zr 2 O 3 , or SiO 2 .
[0020]
As a method for forming this film, there are a method in which a metal thin film is prepared and chemical bonding is forcibly performed by plasma irradiation or ion implantation, and a method in which it is left in an oxygen or nitrogen atmosphere or heat-treated. For simplicity, these processes are referred to as chemical reaction processes here. As described above, the periphery of the layer called the fixed-side magnetic film and the free-side insulating barrier layer is thick, and the thickened portion is exposed to the opposing surface.
[0021]
As a manufacturing method, when a barrier film is formed by oxidizing a metal film, a metal film is formed, and this is thinly processed by milling or FIB (focused ion beam milling method), and then a chemical reaction process is performed. Then, a film made of a material corresponding to the barrier film is created from the beginning, and this is processed and subjected to a chemical reaction treatment, or a film made of a material corresponding to the barrier film is created and processed as it is. Although there are some differences in the size of these, the tunnel magnetoresistance effect was recognized. In addition, by partially implanting conductive ions or a high energy light element on the surface of the film corresponding to the barrier film without changing the film thickness, oxygen bonds are broken to partially change electric conductivity. The method is also effective.
[0022]
3A and 3B show an example of a film configuration of a general tunnel type magnetoresistive laminate. The tunnel-type magnetoresistive laminate 102 has a structure in which a free-side magnetic layer 12, a barrier layer 17, and a fixed-side magnetic layer 11 are laminated. The fixed-side magnetic layer 11 is composed of an antiferromagnetic bias film 71 and a fixed ferromagnetic film 72, and the fixed ferromagnetic film 72 is applied with unidirectional anisotropy by exchange coupling with the antiferromagnetic bias film 71 directly overlapped and joined. ing. The free-side magnetic film is formed by laminating a free ferromagnetic film 12, a magnetic separation film / underlayer film 18, and a magnetic domain control film 16. The free-side magnetic film 12 may be a single-layer magnetic film. A laminated body of a soft magnetic film and a magnetoresistive film is more effective. The magnetic domain control film 16 includes a hard magnetic film and a base film. The base film can be omitted, but the presence of the base film stabilizes the characteristics of the hard magnetic film.
[0023]
The magnetic separation film / underlying film 18 has a function of sufficiently weakening and separating the interaction through the film surface of the magnetic domain control film 16 and the free-side magnetic film 12, and stabilizes the characteristics of the film formed thereon. It has a function to let you. The composition of each film used in this example is shown in the figure. The antiferromagnetic bias film 71 is Cr45Mn45Pt1030 nanometers, the fixed ferromagnetic film 72 is Co film 3 nanometers, and the barrier film 17 is Al 2 O 3 partially thinned from 10 nanometers to 3 nanometers. Co1 nanometer as the increase film 74, Ni81Fe19 film 5 nanometer as the soft magnetic film 75, Ta film 20 nanometer as the magnetic separation and underlayer 18, CoPt film 10 nanometer as the hard magnetic film 77, and Cr film as the underlayer 78 Each 5 nanometer was used.
[0024]
FIG. 4 is a diagram showing the direction of application of magnetic anisotropy of the film constituting the tunnel magnetoresistive laminate. The magnetic domain control film 16 is magnetized so that the residual magnetization is parallel to the track width direction 61. The free ferromagnetic film 12 induces a weak anisotropy in a direction parallel to the track width direction 61 in order to take a mechanism of rotating the magnetization while the magnetic field to be detected enters parallel to the element height direction 62. The fixed-side magnetic film 11 induces exchange coupling so that the residual magnetization is in a direction parallel to the element height direction 63.
[0025]
As a result of testing the tunnel magnetoresistive effect element of the present invention and the magnetic recording / reproducing apparatus equipped with the tunnel magnetoresistive effect element according to the present invention as described above, it has a sufficient output and a good bias characteristic and has a good operation reliability.
[0026]
On the other hand, as shown in FIG. 5, in the tunnel-type laminated film 102, the fixed side magnetic layer 11 is on the lower side and the free side magnetic layer 12 is on the upper side, and the high resistance is formed on the free side magnetic layer 12. The structure in which the magnetic domain control film 16 is stacked and the upper electrode / upper magnetic shield / lower magnetic core 36 is formed on the magnetic domain control film 16 is studied. NIO was used as the material of the high resistance magnetic domain control film 16. The film thickness of the high resistance magnetic domain control film 16 is thin on the tunnel type laminated film and is electrically connected to the shield 36. CMP (chemical mechanical polishing), FIB, or the like was used as a method for changing the film thickness in the film.
[0027]
In this way, by forming a partially thin portion or a hole to be a contact hole on the magnetic domain control film 16, a structure in which the electrode on the magnetic domain control film and the tunnel magnetoresistive film are electrically connected is formed. Created. At this time, the size of the hole formed on the magnetic domain control film 16, particularly the length in the track width direction 61 is set to a size corresponding to the actual track width, and the length of the shield is set to the track of the tunnel magnetoresistive effect active region 102. If the track width is smaller than the track width determined by the length in the width direction 61, the actual track width is defined by the size of the hole formed on the magnetic domain control film 16. This is because current flows almost straight from the upper shield 36 to the lower shield 35 in the tunnel magnetoresistive film. By adopting such a structure, a structure having a structure for defining the actual track width was also produced.
[0028]
For this reason, the active region of the tunnel magnetoresistive film can be formed with a sufficient size, the track width can be determined by the size of the upper contact hole, and a structure that can handle high-density recording can be obtained. It was. As a result of testing the tunnel magnetoresistive effect element of the present invention and the magnetic recording / reproducing apparatus of FIG. 6 equipped with the tunnel magnetoresistive effect element of the present invention with the above-described configuration, it has a sufficient output and good bias characteristics and has a good operation reliability. there were.
[0029]
【The invention's effect】
As described above in detail, according to the present invention, a head having good bias characteristics, an electrically stable and noise-reduced head can be obtained, and the reproduction track width is also the size of the active portion of the tunnel magnetoresistive film. Since the controllability that can be defined by the size of the different holes opened on the magnetic domain control film is improved, it is possible to obtain a magnetic head and a high recording density reproducing apparatus having good reproduction output and bias characteristics that can withstand high recording density Can do.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration example of a tunnel type magnetoresistive head of the present invention.
FIG. 2 is a side sectional view showing a configuration example of a tunneling magnetoresistive laminated film of the present invention.
3A and 3B are cross-sectional views showing a configuration example of a tunneling magnetoresistive laminated film of the tunneling magnetoresistive head of the present invention.
FIG. 4 is an explanatory diagram showing the direction of application of magnetic anisotropy of a film constituting the tunnel magnetoresistive stack of the tunnel magnetoresistive head of the present invention.
FIG. 5 is an explanatory view showing a configuration example of magnetic anisotropy of a tunnel magnetoresistive laminated film of the tunnel magnetoresistive head of the present invention.
FIG. 6 is an explanatory view showing a configuration example of a magnetic reproducing apparatus equipped with a tunnel type magnetoresistive head of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Tunnel type magnetoresistive laminated body exposure part, 102 ... Tunnel type magnetoresistive laminated body of active region, 11 ... Fixed side magnetic film, 12 ... Free side magnetic film, 15 ... Free ferromagnetic film, 16 ... Magnetic domain control film, DESCRIPTION OF SYMBOLS 17 ... Barrier film, 18 ... Magnetic separation film | membrane and base film, 33 ... Lower conductive gap, 34 ... Upper conductive gap, 35 ... Lower magnetic shield, 36 ... Upper magnetic shield, 40 ... Insulating gap film, 41 ... Electrode terminal, 42 ... Coil, 50 ... Base, 61 ... Track width direction, 62 ... Element height direction, 63 ... Driving direction of magnetic head, 64 ... Opposing surface, 65 ... Active region of tunnel-type magnetoresistive laminate, 66 ... Free strength Direction of anisotropy of magnetic film, 67: Direction of residual magnetization of magnetic domain control film, 68: Direction of residual magnetization of fixed side magnetic film, 71: Antiferromagnetic film, 72: Fixed ferromagnetic film, 74: Magnetoresistance Increase film, 75 ... soft magnetic Film, 77 ... hard magnetic film, 78 ... underlayer film, 81 ... magnetic disk, 82 ... motor, 83 ... actuator, 84 ... control mechanism, 85 ... data reproducing composite systems.

Claims (2)

記録媒体に近接する対向面を介して前記記録媒体上に記録された信号を再生する磁気ヘッドを有する磁気記録再生装置において、
前記磁気ヘッドが_トンネル型磁気抵抗効果素子_を有し、
前記トンネル型磁気抵抗効果素子の構成が下部磁気シールド,下部導電ギャップ,トンネル磁気抵抗積層膜,上部導電ギャップ,上部磁気シールドが順次積層されてなり、前記トンネル磁気抵抗積層膜が、その磁化方向が固定されるように、検知すべき磁界方向に対して_平行な方向に磁気異方性が印加されている固定側磁性膜と、前記検知すべき磁界方向に対して面内に_直交する方向に前記固定側磁性膜に対してよりも弱く異方性が印加されている自由側磁性膜と、前記固定側磁性膜と前記自由側磁性膜の間に形成された絶縁性材料からなるバリヤ膜とを有するサンドイッチ構造を少なくとも前記トンネル型磁気抵抗効果素子の活性領域に有しており、_
前記バリヤ膜において、バリヤ膜膜面外周部の膜厚が所定の電流に対して絶縁性を有する臨界膜厚よりも厚く、かつ膜面中央部分の膜厚が外周部よりも薄くなっていることを特徴とする磁気記録再生装置。
In a magnetic recording / reproducing apparatus having a magnetic head for reproducing a signal recorded on the recording medium through an opposing surface close to the recording medium,
The magnetic head includes a tunnel type magnetoresistive element;
The tunnel magnetoresistive element is composed of a lower magnetic shield, a lower conductive gap, a tunnel magnetoresistive laminated film, an upper conductive gap, and an upper magnetic shield, which are sequentially laminated. A fixed-side magnetic film to which magnetic anisotropy is applied in a direction parallel to the magnetic field direction to be detected so as to be fixed, and a direction orthogonal to the in-plane with respect to the magnetic field direction to be detected And a barrier film made of an insulating material formed between the fixed-side magnetic film and the free-side magnetic film. At least in the active region of the tunnel magnetoresistive element,
In the barrier film, the film thickness at the outer peripheral portion of the barrier film surface is thicker than the critical film thickness having insulation against a predetermined current, and the film thickness at the central portion of the film surface is thinner than the outer peripheral portion. Magnetic recording / reproducing apparatus characterized by the above.
記録媒体に近接する対向面を介して前記記録媒体上に記録された信号を再生する磁気ヘッドを有する磁気記録再生装置において、In a magnetic recording / reproducing apparatus having a magnetic head for reproducing a signal recorded on the recording medium through an opposing surface close to the recording medium,
前記磁気ヘッドがトンネル型磁気抵抗効果素子を有し、前記トンネル型磁気抵抗効果素子の構成が下部磁気シールド,下部導電ギャップ,トンネル磁気抵抗積層膜,上部導電ギャップ,上部磁気シールドが順次積層されてなり、前記トンネル磁気抵抗積層膜が、その磁化方向が固定されるように、検知すべき磁界方向に対して平行な方向に磁気異方性が印加されている固定側磁性膜と、前記検知すべき磁界方向に対して面内に直交する方向に前記固定側磁性膜に対してよりも弱く異方性が印加されている自由側磁性膜と、前記固定側磁性膜と前記自由側磁性膜の間に形成された絶縁性材料からなるバリヤ膜とを有するサンドイッチ構造を少なくとも前記トンネル型磁気抵抗効果素子の活性領域に有しており、The magnetic head has a tunnel type magnetoresistive effect element, and the tunnel type magnetoresistive effect element has a lower magnetic shield, a lower conductive gap, a tunnel magnetoresistive laminated film, an upper conductive gap, and an upper magnetic shield sequentially laminated. The tunneling magnetoresistive laminated film has a fixed-side magnetic film in which magnetic anisotropy is applied in a direction parallel to the magnetic field direction to be detected so that the magnetization direction is fixed; A free side magnetic film in which anisotropy is applied weaker than the fixed side magnetic film in a direction perpendicular to the plane of the power magnetic field, and the fixed side magnetic film and the free side magnetic film Having at least an active region of the tunnel-type magnetoresistive effect element having a sandwich structure having a barrier film made of an insulating material formed therebetween,
前記バリヤ膜において、バリヤ膜膜面外周部の電気抵抗が所定の電圧に対して十分絶縁体で、In the barrier film, the electric resistance of the outer peripheral portion of the barrier film surface is sufficiently insulating with respect to a predetermined voltage,
かつ膜面中央部分が外周部よりも電気抵抗が低いことを特徴とする磁気記録再生装置。A magnetic recording / reproducing apparatus characterized in that the central portion of the film surface has a lower electrical resistance than the outer peripheral portion.
JP16658198A 1998-06-15 1998-06-15 Magnetic recording / reproducing device Expired - Fee Related JP4058164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16658198A JP4058164B2 (en) 1998-06-15 1998-06-15 Magnetic recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16658198A JP4058164B2 (en) 1998-06-15 1998-06-15 Magnetic recording / reproducing device

Publications (2)

Publication Number Publication Date
JP2000003507A JP2000003507A (en) 2000-01-07
JP4058164B2 true JP4058164B2 (en) 2008-03-05

Family

ID=15833938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16658198A Expired - Fee Related JP4058164B2 (en) 1998-06-15 1998-06-15 Magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JP4058164B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050011A (en) 2000-08-03 2002-02-15 Nec Corp Magnetoresistive effect element, magnetoresistive effect head, magnetoresistive conversion system, and magnetic recording system

Also Published As

Publication number Publication date
JP2000003507A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US6258470B1 (en) Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film
JP3022023B2 (en) Magnetic recording / reproducing device
US20020034055A1 (en) Spin valve magnetoresistive sensor having CPP structure
US6741431B2 (en) Magnetic head and magnetic recording/reproduction device
US20030011941A1 (en) Spin-valve type magnetoresistive element and its manufacturing method
KR19980041787A (en) Magnetic tunnel junction device with longitudinal bias
US6603643B2 (en) Magnetoresistive head containing oxide layer
US20050094317A1 (en) Magnetoresistance effect element, magnetic head, head suspension assembly, magnetic reproducing apparatus, magnetoresistance effect element manufacturing method, and magnetoresistance effect element manufacturing apparatus
JP3603062B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic device using the same
US6556391B1 (en) Biasing layers for a magnetoresistance effect magnetic head using perpendicular current flow
JP3817399B2 (en) Magnetoresistive sensor
JP3587792B2 (en) Magnetic sensing element and method of manufacturing the same
JP2000030227A (en) Thin-film magnetic head and its production
JP4005356B2 (en) Magnetoresistive head, magnetoresistive head manufacturing method, and information reproducing apparatus
JP4058164B2 (en) Magnetic recording / reproducing device
JPH09288807A (en) Thin film magnetic head
JP2000113428A (en) Thin-film device, thin-film magnetic head and magneto- resistive element and their production
JPH11259824A (en) Magnetic recording and reproducing device and magnetoresistive effect magnetic head to be used for the same
JP2907148B2 (en) Magnetoresistive element using ferromagnetic tunnel effect film and method of manufacturing the same
JPH08235542A (en) Magnetic reluctance effect element
US6671138B2 (en) Multi-layer magnetoresistive head and information-reproducing system
JP3677582B2 (en) Thin film magnetic head
JPH09231516A (en) Magnetic sensor
JP3565484B2 (en) Exchange coupling film, magnetoresistive element, magnetoresistive head, and method of manufacturing exchange coupling film
JP2004128026A (en) Magnetoresistive effect element, magnetic head, magnetic recording device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees