JP4053530B2 - Zero-plane anchoring liquid crystal alignment method and liquid crystal device - Google Patents
Zero-plane anchoring liquid crystal alignment method and liquid crystal device Download PDFInfo
- Publication number
- JP4053530B2 JP4053530B2 JP2004266837A JP2004266837A JP4053530B2 JP 4053530 B2 JP4053530 B2 JP 4053530B2 JP 2004266837 A JP2004266837 A JP 2004266837A JP 2004266837 A JP2004266837 A JP 2004266837A JP 4053530 B2 JP4053530 B2 JP 4053530B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- liquid
- interface
- polymer
- alignment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
Description
本発明は、ゼロ面アンカリング液晶配向法及びその液晶デバイスに関するものである。なお、ここで、「ゼロ面アンカリング」について触れると、「ゼロアンカリング」とは「アンカリングのない、配向強制力のない」ことを意味するので、「ゼロ面アンカリング」は面内に配向強制力がないことを意味する。アンカリング(配向強制力)には、面内(水平配置している分子の軸がある水平面内)に方向を規定する力と、面外(水平、垂直、或いは角度がある場合は、その角度)を規定する力の2種類があり、この場合は、水平又は斜め配向は強制するが、面内方向の配向強制力がゼロと言う意味である。但し、垂直配向の場合は、ゼロと考えてよい。 The present invention relates to a zero-plane anchoring liquid crystal alignment method and a liquid crystal device thereof. Here, when referring to “zero-plane anchoring”, “zero-anchoring” means “no anchoring and no alignment forcing”, so “zero-plane anchoring” is in-plane. It means that there is no orientation forcing. Anchoring (orientation force) includes the force that defines the direction in the plane (within the horizontal plane where the axis of the horizontally arranged molecule is located) and the angle when there is an out-of-plane (horizontal, vertical, or angle) angle. In this case, the horizontal or oblique orientation is forced, but the orientation forcing force in the in-plane direction is zero. However, in the case of vertical alignment, it may be considered zero.
図8は従来の固体配向膜による液晶配向制御を示す模式図である。 FIG. 8 is a schematic diagram showing liquid crystal alignment control by a conventional solid alignment film.
図8において、1は固体配向層、2は固体配向膜、3はネマティック相液晶〔LC(N)〕を示している。 In FIG. 8, 1 is a solid alignment layer, 2 is a solid alignment film, and 3 is a nematic phase liquid crystal [LC (N)].
従来技術として、液晶ディスプレイの表示原理〔TN(Twisted Nematic)型液晶、FLC(強誘電性液晶)、IPS(In−Plane Swiching)方式、光配向方式等〕のほとんどが、基板による液晶の配向方向を事前に規定する動作モードを用いている。しかし、FLCを除いてこれらの表示モードには原理的にメモリ性がない。また、V−shape等の特殊な表示モード以外では、駆動閾値が存在する。反対に、自由な界面で液晶を保持できれば、本来液晶の異方軸はすべての方向に、エネルギー的に縮退しているため、外場(電場・磁場・電磁場等)で異方軸の向きを自由に制御し、かつ任意の向きに異方軸をメモリできるはずである。しかし、これを達成しようとすると、流動性に富む液晶を固定するために必要な固体のセル表面という境界面で、必ず配向場が拘束されて、対称性が破れてしまうことになる。 Conventionally, most of the display principles of liquid crystal displays (TN (Twisted Nematic) type liquid crystal, FLC (ferroelectric liquid crystal), IPS (In-Plane Switching) type, optical alignment type, etc.)) Is used in advance. However, with the exception of FLC, these display modes have no memory in principle. In addition, there is a drive threshold except for a special display mode such as V-shape. On the other hand, if the liquid crystal can be held at a free interface, the anisotropic axis of the liquid crystal is inherently degenerate in all directions, so the direction of the anisotropic axis in the external field (electric field, magnetic field, electromagnetic field, etc.) It should be possible to control freely and memorize the anisotropic axis in any orientation. However, if this is to be achieved, the alignment field is always constrained at the boundary of the solid cell surface necessary to fix the liquid crystal rich in fluidity, and the symmetry is broken.
このように、液晶ディスプレイの容器界面では、液晶の配向場を規定せざるを得ないので、水平、斜め、垂直などの様々な配向技術が開発されてきた。特に、斜め、水平配向の場合、面内に配向の自由度があるにもかかわらず、界面に最初から水平一軸配向性を強制する方法が用いられる。一般には、基板上に適当な高分子薄膜を塗布し、これを布等でこするというラビング法や、光配向性等の性質を持つ分子を基板表面に固着させ、その後、光を用いて基板表面に軸性を持たせる技術が用いられる。 Thus, since the alignment field of the liquid crystal must be defined at the container interface of the liquid crystal display, various alignment techniques such as horizontal, oblique, and vertical have been developed. In particular, in the case of oblique and horizontal alignment, a method of forcing a horizontal uniaxial alignment property from the beginning at the interface is used even though there is a degree of alignment freedom in the plane. In general, an appropriate polymer thin film is applied onto a substrate, and a rubbing method of rubbing this with a cloth or the like, molecules having properties such as photo-orientation are fixed to the substrate surface, and then the substrate is used with light. A technique for imparting axiality to the surface is used.
この最も大きな理由は、FLCやTNのように表示モードの原理からの要請、或いは、無電場でも液晶を一様に配向させることができるという以外に、固体表面では、完全なランダム性を与え難く、面内の対称性を崩さずに水平配向するのが難しいという点が挙げられる。 The main reason for this is that it is difficult to give complete randomness to the solid surface other than the requirement from the principle of the display mode such as FLC and TN, or that the liquid crystal can be uniformly aligned even without an electric field. In other words, it is difficult to perform horizontal alignment without breaking the in-plane symmetry.
これに反して、固体・アモルファス状態の表面に十分波長の短いランダム性を与えて、液晶の配向軸を消滅させる試みがあるが、固体表面では本質的に液晶分子のミクロな運動が拘束されているので、外場によってその異方軸を回転させるためには、液晶の配向弾性力に比較すると途方もなく大きな力と、緩和時間が必要となる。 On the other hand, there is an attempt to give the surface of solid / amorphous state randomness with sufficiently short wavelength to extinguish the alignment axis of the liquid crystal, but on the solid surface, the micro motion of liquid crystal molecules is essentially constrained. Therefore, in order to rotate the anisotropic axis by an external field, a tremendous force and relaxation time are required compared with the alignment elastic force of the liquid crystal.
上記事情を回避し、液晶分子のミクロな運動性を失わせずに、巨視的な配向制御をする方法として、固体界面でなく、液体と液晶の界面を用いる方法が挙げられる。ただし、液晶ディスプレイ等に用いられている液晶材料は流動性に富み、表示装置として用いるためには必ず液晶材料を挟み込むセルが必要となり、固体表面との接触が必要となってしまう。事前に十分多量な低分子物質を基板に塗布する試みもあるが、見かけ上短時間(拡散時間は、物質や温度に依存する)は流体が後から注入した液晶材料との間に存在するが、当然この液体は液晶材料に溶けて拡散してしまう(下記特許文献1)。 As a method for macroscopic alignment control without losing the micro mobility of liquid crystal molecules while avoiding the above circumstances, there is a method using an interface between a liquid and a liquid crystal instead of a solid interface. However, a liquid crystal material used for a liquid crystal display or the like is rich in fluidity, so that a cell sandwiching the liquid crystal material is necessary for use as a display device, and contact with a solid surface is required. Although there is an attempt to apply a sufficiently large amount of low molecular weight material to the substrate in advance, an apparently short time (diffusion time depends on the material and temperature) exists between the liquid crystal material into which the fluid is injected later. Of course, this liquid dissolves in the liquid crystal material and diffuses (Patent Document 1 below).
一方、液晶に不溶の物質を混合することにより、相分離現象により液体−液晶界面を試料内に作ることができる。ただし、水−油の混合系に見られるように、互いに溶け合わない物質同士の作る界面は、大きな表面張力の存在により球形となってしまうので、液晶表示素子の界面としての利用は極めて困難である。 On the other hand, by mixing a substance insoluble in the liquid crystal, a liquid-liquid crystal interface can be formed in the sample by a phase separation phenomenon. However, as seen in the water-oil mixed system, the interface formed by the substances that do not dissolve in each other becomes spherical due to the presence of a large surface tension, so that it is extremely difficult to use as an interface of a liquid crystal display element. is there.
本願発明者は、下記非特許文献1,2において、基板に対する親和性をモデル化することで、片側にSiOの斜方蒸着膜、一方にラビングしたPVAの膜を用意し、液晶に単純な炭化水素を混合した2成分系を用いて、等方相−ネマティック相の2相共存状態で、本発明の目的とする完全ぬれ状態の液体−液晶界面を実現した。これにより、水平(斜め)配向で配向を強制する軸のない界面が得られた。 The inventor of the present application prepares an obliquely deposited SiO film on one side and a rubbed PVA film on one side by modeling the affinity for the substrate in the following Non-Patent Documents 1 and 2, and the liquid crystal is simply carbonized. Using a two-component system in which hydrogen is mixed, a liquid-liquid crystal interface in a completely wet state intended by the present invention is realized in a two-phase coexistence state of isotropic and nematic phases. This resulted in an axisless interface that forced the alignment in horizontal (oblique) orientation.
しかしながら、単純液体の混合では、完全ぬれ状態が得られるのは、共存相が存在する0.6℃の間と狭い温度範囲に限定されている。これは単純液体との混合系の作る希釈型の相図では、混合物質と液晶物質との相溶性を下げて、共存相領域を広げようとすると逆に、2相の濃度差が広がるために界面張力が大きくなり、液体−液晶界面は完全ぬれ状態からはずれ、部分ぬれ状態となって液滴になってしまうことがさけられないためである。従って、このような希釈型の相図を持つ系では、本質的に完全ぬれ状態の液体(液晶)−液晶界面を、広い温度範囲で実現することは不可能である。もちろん、このような完全ぬれ界面を用いた液晶表示デバイスとしての応用性やその特性(360度回転対称性、メモリ性、無閾値性など)については、特許文献や発表文献は見受けられない。
本発明は、上記状況を鑑みて、狭い温度範囲でしか実現されていない、液体−液晶界面を、通常の表示素子が要求する十分広い温度範囲で実現することができるゼロ面アンカリング液晶配向法及びその液晶デバイスを提供することを目的とする。 In view of the above circumstances, the present invention provides a zero-plane anchoring liquid crystal alignment method capable of realizing a liquid-liquid crystal interface, which is realized only in a narrow temperature range, in a sufficiently wide temperature range required by a normal display element. And it aims at providing the liquid crystal device.
本発明は、上記目的を達成するために、
〔1〕ゼロ面アンカリング液晶配向法において、液晶試料に高分子を添加することで、液体−前記高分子が添加された液晶相分離を安定に誘起し、前記液体−前記高分子が添加された液晶界面を用いて、前記高分子が添加された液晶を面内に配向強制力がなく、水平・垂直・斜めの所定の方向に配向させるとともに、前記液体−前記高分子が添加された液晶界面を安定化させるため、界面活性剤を混合することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the zero-plane anchoring liquid crystal alignment method, by adding a polymer to a liquid crystal sample, liquid-phase separation with the addition of the liquid-polymer is stably induced, and the liquid-polymer is added. Using the liquid crystal interface, the liquid crystal to which the polymer is added has no in- plane alignment force and is aligned in a predetermined horizontal, vertical, or oblique direction, and the liquid-liquid crystal to which the polymer is added In order to stabilize the interface, a surfactant is mixed .
〔2〕上記〔1〕記載のゼロ面アンカリング液晶配向法において、前記液体−高分子が添加された液晶界面と、基板表面の幾何学的凹凸を組み合わせることを特徴とする。 [ 2 ] The zero-plane anchoring liquid crystal alignment method according to [1] above, wherein the liquid crystal interface to which the liquid-polymer is added and the geometric irregularities of the substrate surface are combined.
〔3〕上記〔1〕記載のゼロ面アンカリング液晶配向法において、前記液体−高分子が添加された液晶界面を配向膜の作製プロセスに用いることを特徴とする。 [ 3 ] The zero-plane anchoring liquid crystal alignment method according to [1] above, wherein the liquid crystal interface to which the liquid-polymer is added is used in a process for forming an alignment film.
〔4〕液晶デバイスであって、上記〔1〕〜〔3〕の何れか一項記載のゼロ面アンカリング液晶配向法によって作製される。 [ 4 ] A liquid crystal device, which is produced by the zero-plane anchoring liquid crystal alignment method described in any one of [1] to [ 3 ].
〔5〕液晶光スイッチングデバイスであって、上記〔4〕記載の液晶デバイスを用いて、外場の変化による液晶配向回転手段により、液晶のスイッチングを行うことを特徴とする。 [ 5 ] A liquid crystal optical switching device, wherein the liquid crystal device according to the above [ 4 ] is used to perform liquid crystal switching by means of liquid crystal alignment rotation by a change in external field.
〔6〕上記〔5〕記載の液晶光スイッチングデバイスにおいて、前記外場は電場又は磁場であることを特徴とする。 [ 6 ] The liquid crystal optical switching device according to [ 5 ], wherein the external field is an electric field or a magnetic field.
〔7〕上記〔5〕記載の液晶光スイッチングデバイスにおいて、前記外場は光照射であることを特徴とする。 [ 7 ] The liquid crystal optical switching device according to [ 5 ], wherein the external field is light irradiation.
本発明によれば、狭い温度範囲でしか実現されていない、液体−液晶界面を、通常の表示素子が要求する十分広い温度範囲で実現することができる。 According to the present invention, the liquid-liquid crystal interface, which is realized only in a narrow temperature range, can be realized in a sufficiently wide temperature range required by a normal display element.
ゼロ面アンカリング液晶配向法において、液晶試料に高分子を添加することで、液体−前記高分子が添加された液晶相分離を安定に誘起し、前記液体−前記高分子が添加された液晶界面を用いて、前記高分子が添加された液晶を面内に配向強制力がなく、水平・垂直・斜めの所定の方向に配向させるとともに、前記液体−前記高分子が添加された液晶界面を安定化させるため、界面活性剤を混合する。よって、狭い温度範囲でしか実現されていない、完全ぬれ状態の液体−高分子が添加された液晶界面を、通常の表示素子が要求する十分広い温度範囲で実現することができる。更に、界面活性剤添加による完全ぬれ状態の液体−液晶界面の安定化を図ることができる。 In the zero-plane anchoring liquid crystal alignment method, by adding a polymer to a liquid crystal sample, the liquid-liquid crystal phase separation to which the polymer is added is stably induced, and the liquid-liquid crystal interface to which the polymer is added The liquid crystal to which the polymer is added is oriented in a predetermined horizontal, vertical, or oblique direction without any forcing force in the plane, and the liquid-liquid crystal interface to which the polymer is added is stabilized. In order to make it into a surface, a surfactant is mixed . Therefore, a liquid crystal interface to which a completely wetted liquid-polymer is added, which is realized only in a narrow temperature range, can be realized in a sufficiently wide temperature range required by a normal display element. Furthermore, the liquid-liquid crystal interface in a completely wet state can be stabilized by adding a surfactant.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
(1)まず、広い温度域で完全ぬれ状態の液体−液晶界面を実現する混合系について説明する。 (1) First, a mixed system that realizes a liquid-liquid crystal interface in a completely wet state in a wide temperature range will be described.
図1は本発明にかかる各種の液体−液晶界面のために最適化された高分子−液晶混合系の相図であり、図1(a)は単純液体−液晶混合系の相図、図1(b)は高分子−液晶混合系の相図、図1(c)は完全ぬれ状態の液体−液晶界面のために最適化された高分子−液晶混合系の相図である。これらの図は、横軸に濃度、縦軸に温度を示し、図中、11は単純液体領域(I)、薄灰色で示した領域12は液体−液晶の共存領域(I+N)、黒色で示した領域13は液晶領域(N)を示している。 FIG. 1 is a phase diagram of a polymer-liquid crystal mixed system optimized for various liquid-liquid crystal interfaces according to the present invention, and FIG. 1A is a phase diagram of a simple liquid-liquid crystal mixed system. FIG. 1B is a phase diagram of a polymer-liquid crystal mixed system, and FIG. 1C is a phase diagram of a polymer-liquid crystal mixed system optimized for a completely wet liquid-liquid crystal interface. In these figures, the horizontal axis indicates the concentration, and the vertical axis indicates the temperature. In the figure, 11 is a simple liquid region (I), and light gray region 12 is a liquid-liquid crystal coexistence region (I + N), which is black. A region 13 indicates a liquid crystal region (N).
まず、液晶材料に他の物質を混合し、液体或いは液晶状態にある別の相(液体相または液晶相)を相分離により生成する。液晶相とこの相が共存する共存領域12の温度幅は、混合する物質と液晶材料の相溶性で制御できる。一般に、単純液体を液晶に混合した場合は、図1(a)に示すような希釈型の相図となり、液晶相転移温度の低下とともに、薄灰色で示した液体−液晶の共存領域12が広がる。 First, another substance is mixed with the liquid crystal material, and another phase (liquid phase or liquid crystal phase) in a liquid or liquid crystal state is generated by phase separation. The temperature range of the coexistence region 12 where the liquid crystal phase and this phase coexist can be controlled by the compatibility of the substance to be mixed and the liquid crystal material. In general, when a simple liquid is mixed with liquid crystal, a dilution phase diagram as shown in FIG. 1 (a) is obtained, and the liquid-liquid crystal coexistence region 12 shown in light gray expands as the liquid crystal phase transition temperature decreases. .
しかしながら、図1(a)に示す相図の場合、完全ぬれ状態の液体−液晶界面が実現されるのは、むしろ相分離した両相の濃度差が小さい場合、すなわち混合物質の濃度が薄い領域に限られる。ところが、この領域では十分広い温度領域で相分離を実現することができない。つまり、完全ぬれ状態の実現領域と、広い温度領域での相分離の両方の条件を達成することは本質的に不可能である。 However, in the case of the phase diagram shown in FIG. 1 (a), the liquid-liquid crystal interface in the fully wet state is realized when the concentration difference between the two phases separated is rather small, that is, in the region where the concentration of the mixed substance is low. Limited to. However, in this region, phase separation cannot be realized in a sufficiently wide temperature region. In other words, it is essentially impossible to achieve both the realization state of the completely wet state and the phase separation conditions in a wide temperature range.
これに対して、一般的な高分子と液晶物質の混合系は、図1(b)に示すような、高分子溶液によく見られる上限相溶型の相分離曲線〔図1(b)下部の円錐型の共存領域12〕と、図1(a)に示す液体−液晶相転移の希釈型の相図が重なったような相図を示すことが一般的である。上限相溶型の共存領域の出現は、高分子と液晶の相溶性と、高分子の溶液中でのエントロピーの競合で起こる現象で、高分子溶液には極めて一般的なものである。溶媒が液晶の場合、この液晶領域に加えて液体−液晶転移が、高分子の混合により希釈されるために、強い一次転移となって共存領域が現れる。従って、高液晶濃度領域には図1(a)と同じタイプの相分離曲線が現れる。特に大事なことは、上限相溶型相分離曲線の臨界濃度附近(相図の頂上)では、両相間の自由エネルギー差が小さくなり、極めて広い温度・濃度で臨界ぬれ状態となり、相分離界面は自発的に完全にぬれた状態となることである。本発明では、高分子セグメント(モノマー)と液晶物質の相溶性、或いは高分子分子量を最適化することで、液体−液晶相転移の相分離曲線と、上限相溶型の相図が拮抗した形に調整した〔図1(c)参照〕、これにより、広い温度・濃度で完全ぬれ状態の液体−液晶界面を作ることができる。 On the other hand, a general mixed system of a polymer and a liquid crystal substance has an upper limit compatible type phase separation curve often seen in a polymer solution as shown in FIG. 1 (b) [lower part of FIG. 1 (b)]. In general, a conical coexistence region 12] and a diluted phase diagram of the liquid-liquid crystal phase transition shown in FIG. The appearance of the coexistence region of the upper limit compatible type is a phenomenon that occurs due to competition between the compatibility between the polymer and the liquid crystal and the entropy in the polymer solution, and is extremely common in polymer solutions. In the case where the solvent is a liquid crystal, the liquid-liquid crystal transition is diluted by mixing of the polymer in addition to the liquid crystal region, so that a coexistence region appears as a strong primary transition. Therefore, the same type of phase separation curve as that in FIG. 1A appears in the high liquid crystal concentration region. Of particular importance is that near the critical concentration (top of phase diagram) of the upper limit compatible phase separation curve, the free energy difference between the two phases becomes small, the critical wetting state occurs at a very wide temperature and concentration, and the phase separation interface is It is to be completely wet spontaneously. In the present invention, by optimizing the compatibility between the polymer segment (monomer) and the liquid crystal substance, or the polymer molecular weight, the phase separation curve of the liquid-liquid crystal phase transition and the phase diagram of the upper limit compatibility type are antagonized. Thus, a liquid-liquid crystal interface in a completely wet state can be formed at a wide temperature and concentration.
(2)次に、界面活性剤添加による完全ぬれ状態の液体−液晶界面の安定化について説明する。 (2) Next, stabilization of the completely wetted liquid-liquid crystal interface by addition of a surfactant will be described.
本発明では、さらに、混合する物質と元の液晶分子の両方の性質を1分子内に併せ持つ、一種の界面活性剤を合成し、目的の混合系に加えることで、完全ぬれ状態の液体−液晶界面を、広い温度範囲で安定させることを提案する。界面活性剤が液体−液晶界面を十分活性できれば、混合する物質の選択の幅や、温度・濃度の領域が格段に広くなり、実用上大きなメリットとなる。例えば、高分子−液晶混合系の場合は、高分子−液晶高分子ジブロック共重合体のようなものを用いることができる。 In the present invention, a liquid-liquid crystal in a completely wet state is further synthesized by synthesizing a kind of surfactant having both properties of the substance to be mixed and the original liquid crystal molecule in one molecule and adding it to the target mixed system. We propose to stabilize the interface over a wide temperature range. If the surfactant can sufficiently activate the liquid-liquid crystal interface, the range of selection of the substance to be mixed and the temperature / concentration region will be greatly widened, which is a great practical advantage. For example, in the case of a polymer-liquid crystal mixed system, a polymer-liquid crystal polymer diblock copolymer can be used.
ここで、以下のことに留意すべきである。 Here, it should be noted that:
液体−液晶の界面に加えて、ガラス−液体の界面についても制御する必要がある。これは、(1)固体基板表面を、液晶物質から相分離した液体相により強い親和性を持たせる。(2)逆に、セッケン分子などを塗布した垂直配向基板のように、液晶物質を嫌うような非親和性を与える。セッケン分子を塗布した表面は、液晶物質を嫌うため、強い表面張力を生み出し、液晶物質を遠ざけようとする。 In addition to the liquid-liquid crystal interface, it is also necessary to control the glass-liquid interface. This (1) gives the solid substrate surface a stronger affinity for the liquid phase phase-separated from the liquid crystal substance. (2) On the contrary, a non-affinity which dislikes a liquid crystal substance is given like a vertical alignment substrate coated with soap molecules. Since the surface on which soap molecules are applied dislikes the liquid crystal material, it creates a strong surface tension and tries to keep the liquid crystal material away.
(3)完全ぬれ状態の液体−液晶水平配向面を用いた液晶デバイスの製造方法
液体−液晶の界面での液晶分子の配向方向は、液晶と混合物および界面活性剤の組み合わせを選び、温度・濃度を決めると、水平・垂直・斜め配向を一意的に制御することができる。ここで、水平方向を実現する完全ぬれ状態の液体−液晶界面を、上下の2枚の基板に作製して、液晶相を相分離した液体相でサンドイッチするか、または反対側の基板を垂直配向としたディスプレイセルを作製する。2つ目の界面である固体基板−液体界面でも、平面状態の界面を実現させるため、次の2つのいずれかの方法で、基板を前もって処理する。(A)固体基板表面を混合物質により強い親和性を持たせる。(B)固体基板表面が、液晶物質を嫌うような非親和性を与える。
(3) Method of manufacturing a liquid crystal device using a liquid-liquid crystal horizontal alignment surface in a completely wet state For the alignment direction of liquid crystal molecules at the liquid-liquid crystal interface, a combination of liquid crystal, a mixture, and a surfactant is selected. , The horizontal / vertical / diagonal orientation can be uniquely controlled. Here, the liquid-liquid crystal interface in a completely wet state that realizes the horizontal direction is formed on two upper and lower substrates, and the liquid crystal phase is sandwiched between the liquid phases separated from each other, or the opposite substrate is vertically aligned. A display cell is produced. In order to realize a planar interface even at the second interface, ie, the solid substrate-liquid interface, the substrate is processed in advance by one of the following two methods. (A) The solid substrate surface has a stronger affinity for the mixed substance. (B) The solid substrate surface gives non-affinity that dislikes the liquid crystal substance.
図2は本発明の完全ぬれ状態の液体−液晶界面で構成された液晶デバイスの模式図である。 FIG. 2 is a schematic view of a liquid crystal device composed of a completely wetted liquid-liquid crystal interface according to the present invention.
この図において、21はセル基板、22は完全ぬれ状態の液体相領域、23は液晶ネマティック相領域であり、完全ぬれ状態の液体相領域22がセル基板21とネマティック相領域23の間に層状に形成され、ネマティック相領域23の水平配向を強制している。 In this figure, 21 is a cell substrate, 22 is a liquid phase region in a completely wet state, 23 is a liquid crystal nematic phase region, and the liquid phase region 22 in a completely wet state is layered between the cell substrate 21 and the nematic phase region 23. Formed and forces the horizontal orientation of the nematic phase region 23.
(4)完全ぬれ状態の液体−液晶水平配向面を用いた液晶光スイッチングデバイスの長所・特徴
実現された液晶表示デバイス内の液体−液晶水平配向界面では、液晶の配向に関するエネルギーは、界面面内方向には縮退しているので、異方軸はどの方向を向いても等価となる。これにより、電場・磁場等により360度自由に回転可能で、場を遮断しても配向方向にメモリ性を持ち、かつ駆動外場に閾値が原理的に存在しない、液晶ディスプレイの製造が可能となる。
(4) Advantages and features of liquid crystal optical switching devices using liquid-liquid crystal horizontal alignment surface in a completely wet state At the liquid-liquid crystal horizontal alignment interface in the realized liquid crystal display device, the energy related to liquid crystal alignment is Since the direction is degenerate, the anisotropic axis is equivalent in any direction. As a result, it is possible to manufacture a liquid crystal display that can freely rotate 360 degrees by an electric field, a magnetic field, etc., has memory characteristics in the orientation direction even when the field is cut off, and has no threshold in the driving external field in principle. Become.
本発明の液晶デバイスの特徴は、表示セル中の液晶相を保持する界面が、従来技術のような固体界面でなく、液体ないし液晶相の界面であるという点にある。本発明と同様に、回転自由な界面を作ろうとした、従来の配向技術の問題は、表示セルのガラス表面に事前に用意された固体表面を用いていた点にある。固体表面は、吸着等により液晶分子の運動を極めて制限するため、本発明の配向界面とは物理的に極めて異なる性質を持つ。液体−液晶界面では、液晶分子の界面間の拡散も極めて自由であり、ミクロな目で見た界面には、液晶状態と液体(別の液晶)状態の違いがあるだけである。この性質が、本発明の革新的な点である。 The feature of the liquid crystal device of the present invention is that the interface holding the liquid crystal phase in the display cell is not a solid interface as in the prior art, but an interface of liquid or liquid crystal phase. Similar to the present invention, the problem of the conventional alignment technique for creating a rotation-free interface is that a solid surface prepared in advance is used for the glass surface of the display cell. Since the solid surface extremely restricts the movement of liquid crystal molecules by adsorption or the like, it has properties that are physically very different from the alignment interface of the present invention. At the liquid-liquid crystal interface, diffusion between the liquid crystal molecule interfaces is extremely free, and the interface seen from the microscopic level has only a difference between a liquid crystal state and a liquid (another liquid crystal) state. This property is an innovative point of the present invention.
また、本発明のゼロ面アンカリング液晶配向法において、前記完全ぬれ状態の液体−液晶界面と、基板表面の幾何学的凹凸を組み合わせるようにしてもよい。 In the zero-plane anchoring liquid crystal alignment method of the present invention, the completely wet liquid-liquid crystal interface may be combined with the geometric irregularities on the substrate surface.
さらに、本発明のゼロ面アンカリング液晶配向法において、前記完全ぬれ状態の液体−液晶界面を配向膜作製プロセスに用いるようにしてもよい。 Furthermore, in the zero-plane anchoring liquid crystal alignment method of the present invention, the completely wet liquid-liquid crystal interface may be used in the alignment film manufacturing process.
完全ぬれ状態の液体−液晶界面を作製するためには、まず、液晶相と液体或いは別の液晶相との共存状態を作るために、別の物質を液晶材料に混合する。ここでは、ネマティック相を有する液晶分子PAA(パラアゾキシアニソール)に、分子量2000のポリスチレン分子を重量濃度2%加えた材料を用いた。液晶物質と混合物質の相溶性により、相図の形が決まる。また、高分子を混合物に用いる場合、分子量も相図を決める必要不可欠なパラメータとなると同時に、ガラス転移温度も混合系を最適化する上で重要な要因となる。ここで使用した例は、広い温度範囲で、完全ぬれ状態の液体−液体界面を安定に存在させる条件を満足する一つの例である。また、得られた界面での液晶の配向方向(水平、垂直、斜め)も両物質の性質と、温度・濃度に依存して変化する。ここで例に挙げた物質では、ほぼ全ての温度・濃度域で、液体−液晶界面において液晶配向は水平配向となる。 In order to produce a liquid-liquid crystal interface in a completely wet state, first, another substance is mixed with the liquid crystal material in order to create a coexistence state between the liquid crystal phase and the liquid or another liquid crystal phase. Here, a material obtained by adding a polystyrene molecule having a molecular weight of 2000 to a liquid crystal molecule PAA (paraazoxyanisole) having a nematic phase to a weight concentration of 2% was used. The shape of the phase diagram is determined by the compatibility of the liquid crystal material and the mixed material. When a polymer is used in a mixture, the molecular weight is an indispensable parameter for determining the phase diagram, and at the same time, the glass transition temperature is an important factor in optimizing the mixing system. The example used here is one example that satisfies the condition that a completely wet liquid-liquid interface exists stably over a wide temperature range. In addition, the alignment direction (horizontal, vertical, diagonal) of the liquid crystal at the obtained interface also varies depending on the properties of both substances, temperature and concentration. In the materials exemplified here, the liquid crystal alignment is horizontal alignment at the liquid-liquid crystal interface in almost all temperature and concentration ranges.
さらにこの実施例では、共存させた2相の界面をより安定化し、完全ぬれ状態を実現するための界面活性剤を少量(<0.5%)添加した。この界面活性剤には、水と油の界面をセッケン分子が活性化するように、ポリスチレン分子と液晶分子双方に親和性を有する部分を1分子中に併せ持つ、ポリスチレン鎖と側鎖型の高分子液晶を共重合したブロック共重合体を用いた。また、液晶相から相分離した液体相がガラス界面を完全にぬらすように、液晶分子と強く反発する界面として、液晶分子の垂直配向剤を塗布・焼結したガラス板を上下に用意して用いた。結果として、液体相の厚みは温度に依存するが、相転移点以下10℃以上の極めて広い温度領域で目的とする完全ぬれ状態の液体−液晶界面が得られた。この混合系の温度幅は、PAAの結晶化温度と、ポリスチレン−ジブロック液晶のガラス転移温度によって決められたものであり、単純液体の場合のような本質的に決められた温度幅ではなく、材料を最適化することにより、室温領域でさらに温度幅の広い系を見出すことができると十分期待できる。 Further, in this example, a small amount (<0.5%) of a surfactant was added to stabilize the coexisting two-phase interface and realize a completely wet state. This surfactant has a polystyrene chain and side chain type polymer that has a portion having affinity for both polystyrene molecules and liquid crystal molecules in one molecule so that soap molecules activate the interface between water and oil. A block copolymer obtained by copolymerizing liquid crystal was used. In addition, as the interface that strongly repels the liquid crystal molecules so that the liquid phase phase-separated from the liquid crystal phase completely wets the glass interface, a glass plate coated and sintered with a liquid crystal molecule vertical alignment agent is prepared up and down. It was. As a result, although the thickness of the liquid phase depends on the temperature, the intended completely wet liquid-liquid crystal interface was obtained in an extremely wide temperature range of 10 ° C. or more below the phase transition point. The temperature range of this mixed system is determined by the crystallization temperature of PAA and the glass transition temperature of polystyrene-diblock liquid crystal, and is not an essentially determined temperature range as in the case of a simple liquid, By optimizing the material, it can be expected that a system with a wider temperature range can be found in the room temperature region.
前述の垂直配向剤による処理を施した、厚み(基板距離)50μmの2枚のガラス基板間に試料を挟み、ネマティック相−液体相共存の温度にしたときの共存領域の偏光顕微鏡写真を図3に示す。この図3によれば、見かけ上、ネマティック相が試料全面に存在し、シュリーレン模様と呼ばれる、ネマティック相の水平配向を示す特有のテクスチャが確認される。等方相からの冷却過程で等方相液滴が界面に吸収されて消滅する様子が確認されること、また、液晶分子に本来垂直配向を強制する基板を用いているにも関わらず、水平配向が現れることは、いずれも目的どおり完全ぬれ状態の液体相が、ネマティック相とセル基板の間に層状に形成され、水平配向を強制していることを証明している。 Was subjected to treatment with prior mentioned vertical alignment agent, sandwiched sample between two glass substrates of a thickness (substrate distance) 50 [mu] m, nematic phase - FIG polarization microscope photograph of coexistence region when the temperature of the liquid phase coexisting 3 shows. According to FIG. 3, the nematic phase apparently exists on the entire surface of the sample, and a unique texture indicating the horizontal orientation of the nematic phase, called a schlieren pattern, is confirmed. In the cooling process from the isotropic phase, it is confirmed that the isotropic phase droplets are absorbed and disappeared by the interface, and the liquid crystal molecules are used in a horizontal direction despite the use of a substrate that originally enforces vertical alignment. The emergence of orientation proves that the liquid phase, which is completely wetted as intended, is formed in layers between the nematic phase and the cell substrate, forcing the horizontal orientation.
実現された完全ぬれ状態の液体−液晶の水平配向界面により構成された、液晶光スイッチングデバイスの特徴(1.外場により任意の方向に配向を回転可能、2.メモリ性、3.閾値ゼロ)を説明する。外場に電場を用いる場合は、90度毎に4つの電極を配置し、対向する2つの電極間に異なる電圧(一般には、位相の揃った低周波の交流)を印加する。直交した2つの電場の比を変えることにより、合成された電場の方向を、任意の角度に向けることができる。ここでは、磁場の方向と試料の方向を回転ステージにより変化させて磁場を印加させる方法を用いた。 Features of a liquid crystal optical switching device composed of a fully wetted liquid-liquid crystal alignment interface (1. Alignment can be rotated in any direction by an external field, 2. Memory property, 3. Threshold zero) Will be explained. When an electric field is used for the external field, four electrodes are arranged every 90 degrees, and different voltages (generally, low-frequency alternating current with a uniform phase) are applied between the two electrodes facing each other. By changing the ratio of two orthogonal electric fields, the direction of the combined electric field can be directed to an arbitrary angle. Here, a method of applying a magnetic field by changing the direction of the magnetic field and the direction of the sample with a rotating stage was used.
図4は典型的なスイッチング偏光顕微鏡写真であり、図4(a)は磁場(1.2kG)を印加した後の試料の偏光顕微鏡写真、図4(b)は磁場OFF後45度試料を回転させて撮影した偏光顕微鏡写真である。なお、ここでは、照明光の偏光は磁場の向きに揃えてあり(つまり、偏光顕微鏡の偏光方向は磁場の方向に一致させている)、アナライザーはクロスニコルにしているので、図4(a)では、磁場方向に液晶分子の異方軸が並んだために、光を通さず真っ黒となる。この図4(a)から、配向欠陥もなく、一様な配向状態であることがわかる。この状態で磁場を切り、試料のみを45度回転したものが図4(b)である。磁場を遮断しても、液晶の配向がメモリされているため、液晶の異方性により、光が透過して明るくなる。試料全体が光を一様に透過しており、一様な配向スイッチングが行われたことを確認できる。 4A and 4B are typical switching polarization micrographs. FIG. 4A is a polarization micrograph of a sample after applying a magnetic field (1.2 kG), and FIG. 4B is a 45 ° sample rotated after the magnetic field is turned off. It is the polarization micrograph which was taken and taken. Here, the polarization of the illumination light is aligned with the direction of the magnetic field (that is, the polarization direction of the polarization microscope is matched with the direction of the magnetic field), and the analyzer is in crossed Nicols, so FIG. Then, since the anisotropic axes of liquid crystal molecules are aligned in the magnetic field direction, the light does not pass through and becomes black. From FIG. 4A, it can be seen that there is no alignment defect and the alignment state is uniform. In this state, the magnetic field is turned off and only the sample is rotated 45 degrees as shown in FIG. Even when the magnetic field is cut off, the alignment of the liquid crystal is memorized, so that light is transmitted and brightened due to the anisotropy of the liquid crystal. The entire sample transmits light uniformly, and it can be confirmed that uniform orientation switching has been performed.
図5は任意の位置で初期磁場を印加して配向方向を揃えた後、45度回転して光の透過光強度が最高になるようにしておき、t=0で磁場を印加した後の透過光強度の時間変化を測定した結果を示す図である。 In FIG. 5, after applying an initial magnetic field at an arbitrary position and aligning the alignment direction, it is rotated 45 degrees so that the transmitted light intensity becomes maximum, and transmission after applying a magnetic field at t = 0. It is a figure which shows the result of having measured the time change of light intensity.
加える磁場の強さを変えると、緩和時間が400msec(磁場強度1.2kG)から10sec(磁場強度300G)と変化するが、十分長い時間磁場を加えれば、全ての磁場の強さで透過光強度は同程度の大きさまで減少し、液晶の配向方向が完全に回転していることがわかる。この結果から、この光スイッチングデバイスに閾値がないことが証明される。 When the strength of the applied magnetic field is changed, the relaxation time changes from 400 msec (magnetic field strength 1.2 kG) to 10 sec (magnetic field strength 300 G), but if a magnetic field is applied for a sufficiently long time, the transmitted light intensity is increased with all the magnetic field strengths. Decreases to the same size, and it can be seen that the alignment direction of the liquid crystal is completely rotated. This result proves that this optical switching device has no threshold.
同様に、磁場を切断した後の光強度の時間変化を測定した例を図中の黒線で示した。配向方向が磁場方向から外れると、光強度が増加することになる。磁場切断後40秒以内での透過光強度の上昇は数%以内であり、良好なメモリ性が確保されている。 Similarly, an example in which the temporal change of the light intensity after cutting the magnetic field is measured is indicated by a black line in the figure. When the orientation direction deviates from the magnetic field direction, the light intensity increases. The increase in transmitted light intensity within 40 seconds after cutting the magnetic field is within several percent, and good memory performance is ensured.
他方、完全ぬれ状態の液体−液晶界面の水平配向が、360度回転対称性を持つことを明らかにした測定を示す。 On the other hand, the measurement shows that the horizontal alignment of the liquid-liquid crystal interface in the completely wet state has 360-degree rotational symmetry.
図6の写真は、試料セルのある固定された方向θ=0度に対して、θ=0,15,30,45,60,75,90度の7つの方向でそれぞれ、1.2kGの磁場を印加した後、磁場を切断して、試料をθ=0度の方向へ回転し直して撮影した写真である。 The photograph in FIG. 6 shows a 1.2 kG magnetic field in each of seven directions θ = 0, 15, 30, 45, 60, 75, and 90 degrees with respect to a fixed direction θ = 0 degrees with the sample cell. Is a photograph taken by cutting the magnetic field and rotating the sample again in the direction of θ = 0 degrees.
透過光強度は0度と90度で最小、45度で最大となり、試料セルのどの方向に磁場をかけても、一様な水平配向が実現され、メモリされていることがよくわかる。 The transmitted light intensity is minimum at 0 ° and 90 °, and maximum at 45 °, and it can be clearly seen that uniform horizontal orientation is realized and stored in any direction of the sample cell.
さらに、同様に7つの方向で初期磁場をかけた後、θ=0度から90度まで回転して、透過光強度の変化をフォトダイオードで測定した結果を図7に示す。 Further, after applying the initial magnetic field similarly seven directions, rotated from theta = 0 degrees to 90 degrees, showing the results of measurement by the photodiode changes in transmitted light intensity in FIG.
試料の回転に従って異方軸が回転し、透過光強度は複屈折により、理想的に変化していることがわかる。測定時間内で配向の変化もほとんどなく、ここからもメモリ性は明らかである。また初期磁場の方向に対する透過光強度の角度依存性も、完全に一様であり、360度の配向が完全に対称に選択可能であることがわかる。 It can be seen that the anisotropic axis rotates as the sample rotates, and the transmitted light intensity changes ideally due to birefringence. There is almost no change in orientation within the measurement time, and the memory performance is clear from here. It can also be seen that the angle dependence of the transmitted light intensity with respect to the direction of the initial magnetic field is completely uniform, and an orientation of 360 degrees can be selected completely symmetrically.
なお、上記実施例では、外場としては、電場又は磁場を用いたが、光照射を用いるようにしてもよい。その場合、光照射による配向回転トルクを与えるには、例えば、アゾ基を持つ液晶分子を混合して行うことができる。アゾ基を持つ液晶分子に偏光紫外光を照射すると、アゾ基の遷移モーメントの光の偏光面内にある分子だけが、トランス−シス光異性化して励起される。液晶分子は励起されるのを好まないため、なるべく偏光面から遷移モーメントをはずすような配向分布を作ろうとする。つまり、液晶分子が光により見かけ上回転トルクを受けたことになる。 In the above embodiment, an electric field or a magnetic field is used as the external field, but light irradiation may be used. In that case, in order to give the alignment rotation torque by light irradiation, for example, liquid crystal molecules having an azo group can be mixed. When liquid crystal molecules having an azo group are irradiated with polarized ultraviolet light, only the molecules in the plane of polarization of the light having the transition moment of the azo group are excited by trans-cis photoisomerization. Since liquid crystal molecules do not like to be excited, an attempt is made to create an orientation distribution that removes the transition moment from the plane of polarization as much as possible. That is, the liquid crystal molecules are apparently subjected to rotational torque by light.
また、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 Further, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
本発明のゼロ面アンカリング液晶配向法及びその液晶デバイスは、外部電場、磁場により水平面内に360度配向回転可能で、メモリ性を持ちながらスイッチング閾値のない液晶光スイッチングデバイスとして好適である。 The zero-plane anchoring liquid crystal alignment method and the liquid crystal device of the present invention are suitable as a liquid crystal optical switching device that can rotate and rotate 360 degrees in a horizontal plane by an external electric field and magnetic field and has a memory property but no switching threshold.
11 単純液体領域(I)
12 液体−液晶の共存領域(I+N)
13 液晶領域(N)
21 セル基板
22 完全ぬれ状態の液体相領域
23 液晶ネマティック相領域
11 Simple liquid region (I)
12 Liquid-liquid crystal coexistence region (I + N)
13 Liquid crystal region (N)
21 Cell substrate 22 Fully wetted liquid phase region 23 Liquid crystal nematic phase region
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004266837A JP4053530B2 (en) | 2004-09-14 | 2004-09-14 | Zero-plane anchoring liquid crystal alignment method and liquid crystal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004266837A JP4053530B2 (en) | 2004-09-14 | 2004-09-14 | Zero-plane anchoring liquid crystal alignment method and liquid crystal device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006084536A JP2006084536A (en) | 2006-03-30 |
JP4053530B2 true JP4053530B2 (en) | 2008-02-27 |
Family
ID=36163130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004266837A Expired - Fee Related JP4053530B2 (en) | 2004-09-14 | 2004-09-14 | Zero-plane anchoring liquid crystal alignment method and liquid crystal device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4053530B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111512221A (en) * | 2017-12-27 | 2020-08-07 | 日产化学株式会社 | Method for manufacturing zero-plane anchoring film and liquid crystal display element |
KR20210020127A (en) | 2018-06-18 | 2021-02-23 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing zero plane anchoring film and liquid crystal display device |
KR20210020126A (en) | 2018-06-18 | 2021-02-23 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing zero plane anchoring film and liquid crystal display device |
KR20220039756A (en) | 2019-07-29 | 2022-03-29 | 닛산 가가쿠 가부시키가이샤 | Transverse electric field liquid crystal display element, and manufacturing method of transverse electric field liquid crystal cell |
KR20220116206A (en) | 2019-12-18 | 2022-08-22 | 닛산 가가쿠 가부시키가이샤 | Radical generating film-forming composition, radical generating film, and method for manufacturing a transverse electric field liquid crystal cell |
KR20220116205A (en) | 2019-12-18 | 2022-08-22 | 닛산 가가쿠 가부시키가이샤 | Liquid crystal aligning agent, radical generating film, and manufacturing method of a transverse electric field liquid crystal cell |
KR20220116219A (en) | 2019-12-18 | 2022-08-22 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing a patterned liquid crystal display device |
KR20230048356A (en) | 2020-08-06 | 2023-04-11 | 닛산 가가쿠 가부시키가이샤 | Liquid crystal composition, manufacturing method of liquid crystal display element, and liquid crystal display element |
KR20230095991A (en) | 2020-10-27 | 2023-06-29 | 닛산 가가쿠 가부시키가이샤 | Radical generating film forming composition, radical generating film, manufacturing method of liquid crystal display element and liquid crystal display element |
KR20230095990A (en) | 2020-10-27 | 2023-06-29 | 닛산 가가쿠 가부시키가이샤 | Radical generating film forming composition, radical generating film, manufacturing method of liquid crystal display element, and liquid crystal display element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6277800B2 (en) * | 2014-03-17 | 2018-02-14 | 株式会社リコー | Image writing apparatus, image forming apparatus, and image writing method |
KR102689870B1 (en) * | 2017-06-30 | 2024-07-31 | 닛산 가가쿠 가부시키가이샤 | Manufacturing method of zero plane anchoring film and liquid crystal display device |
-
2004
- 2004-09-14 JP JP2004266837A patent/JP4053530B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111512221A (en) * | 2017-12-27 | 2020-08-07 | 日产化学株式会社 | Method for manufacturing zero-plane anchoring film and liquid crystal display element |
KR20200103704A (en) | 2017-12-27 | 2020-09-02 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing zero plane anchoring film and liquid crystal display device |
CN111512221B (en) * | 2017-12-27 | 2024-04-09 | 日产化学株式会社 | Method for manufacturing zero-face anchor film and liquid crystal display element |
KR20210020127A (en) | 2018-06-18 | 2021-02-23 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing zero plane anchoring film and liquid crystal display device |
KR20210020126A (en) | 2018-06-18 | 2021-02-23 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing zero plane anchoring film and liquid crystal display device |
KR20220039756A (en) | 2019-07-29 | 2022-03-29 | 닛산 가가쿠 가부시키가이샤 | Transverse electric field liquid crystal display element, and manufacturing method of transverse electric field liquid crystal cell |
KR20220116206A (en) | 2019-12-18 | 2022-08-22 | 닛산 가가쿠 가부시키가이샤 | Radical generating film-forming composition, radical generating film, and method for manufacturing a transverse electric field liquid crystal cell |
KR20220116205A (en) | 2019-12-18 | 2022-08-22 | 닛산 가가쿠 가부시키가이샤 | Liquid crystal aligning agent, radical generating film, and manufacturing method of a transverse electric field liquid crystal cell |
KR20220116219A (en) | 2019-12-18 | 2022-08-22 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing a patterned liquid crystal display device |
KR20230048356A (en) | 2020-08-06 | 2023-04-11 | 닛산 가가쿠 가부시키가이샤 | Liquid crystal composition, manufacturing method of liquid crystal display element, and liquid crystal display element |
KR20230095991A (en) | 2020-10-27 | 2023-06-29 | 닛산 가가쿠 가부시키가이샤 | Radical generating film forming composition, radical generating film, manufacturing method of liquid crystal display element and liquid crystal display element |
KR20230095990A (en) | 2020-10-27 | 2023-06-29 | 닛산 가가쿠 가부시키가이샤 | Radical generating film forming composition, radical generating film, manufacturing method of liquid crystal display element, and liquid crystal display element |
Also Published As
Publication number | Publication date |
---|---|
JP2006084536A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4053530B2 (en) | Zero-plane anchoring liquid crystal alignment method and liquid crystal device | |
KR100326965B1 (en) | A liquid crystal display device and a method of manufacture thereof, and a substrate and a method of manufacture thereof | |
US6549255B2 (en) | Liquid crystal device and a method for producing it having directly controllable dynamic surface-director alignment layer | |
JPH0151818B2 (en) | ||
EP1488279A1 (en) | A liquid crystal device, a method for producing a liquid crystal device and a method for controlling a liquid crystal device | |
JP4532080B2 (en) | LCD device | |
Dhara et al. | Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces | |
US7430030B2 (en) | Bistable nematic liquid crystal display device | |
KR20070001961A (en) | Liquid crystal display device | |
US7612835B2 (en) | Bistable liquid crystal displays and the method for driving the same | |
KR101769011B1 (en) | Method of Preparing Coating Layer of Lyotropic Chromonic Liquid Crystal for Multi-Domain Liquid Crystal Alignment | |
Krishnamurthy et al. | Structure, stability, and electro-optic features of nematic drops in 1 ″, 7 ″-bis (4-cyanobiphenyl-4′-yl) heptane–surfactant binary systems | |
JP4817380B2 (en) | Bistable nematic liquid crystal display device | |
JP4700244B2 (en) | High contrast smectic liquid crystal control or display device | |
Chen et al. | Bistable SmA liquid‐crystal display driven by a two‐direction electric field | |
Bonvent et al. | Alignment and phase transition induced by surface action in lyotropic nematic liquid crystals | |
Bloisi et al. | Liquid crystal polymer composite materials for LCDs | |
Kim et al. | Surface-induced orientation of liquid crystal phases | |
EP1385040A1 (en) | Photoinductive switching liquid crystal device | |
Hikmet | Anisotropic gels obtained by photopolymerization in the liquid crystal state | |
JP2001264822A (en) | Liquid crystal display device and method of manufacturing the same | |
US20240077778A1 (en) | Device including ferroelectric nematic liquid crystal-forming molecules and methods of forming and using same | |
Kang et al. | Contrast ratio and switching of zigzag defect-free surface stabilized FLCD by photoinduced alignment | |
JP2001316667A (en) | Liquid crystal display element | |
Murashige et al. | Liquid crystal alignment control using polymer filament and polymer layers coated on substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070801 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4053530 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121214 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121214 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |