JP4050725B2 - Electronic devices - Google Patents
Electronic devices Download PDFInfo
- Publication number
- JP4050725B2 JP4050725B2 JP2004175050A JP2004175050A JP4050725B2 JP 4050725 B2 JP4050725 B2 JP 4050725B2 JP 2004175050 A JP2004175050 A JP 2004175050A JP 2004175050 A JP2004175050 A JP 2004175050A JP 4050725 B2 JP4050725 B2 JP 4050725B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric constant
- sio
- mol
- range
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Glass Compositions (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は電子デバイスに係り、特にAgもしくはCu、または、AgやCuを主成分とする合金を内部導体として使用し、低誘電率材料と高誘電率材料とを同時に焼成して得られる電子デバイスに関する。 The present invention relates to an electronic device, and more particularly, an electronic device obtained by simultaneously firing a low dielectric constant material and a high dielectric constant material using Ag or Cu, or an alloy containing Ag or Cu as a main component as an internal conductor. About.
近年、印刷法やシート工法といった厚膜形成法を用いてチップコンデンサーやチップインダクター、チップフィルター等のチップ部品が製造されている。また、材料特性の異なる複数種の磁器組成物を同時に焼成して形成された電子デバイスとしては、磁性体と誘電体との組み合わせからなるLCフィルター、高誘電率材料と低誘電率材料との組み合わせからなるコンデンサーを内蔵した回路基板(素子)等が挙げられる。 In recent years, chip components such as a chip capacitor, a chip inductor, and a chip filter have been manufactured using a thick film forming method such as a printing method or a sheet method. In addition, electronic devices formed by simultaneously firing multiple types of porcelain compositions with different material properties include LC filters composed of combinations of magnetic and dielectric materials, and combinations of high and low dielectric constant materials. And a circuit board (element) having a built-in capacitor.
例えば、上記の高誘電率材料と低誘電率材料とを同時焼成して形成されたコンデンサーは、高誘電率材料のみからなるコンデンサーに比べて分布容量の低減等が可能である。また、低誘電率材料のみからなるコンデンサーに比べて大容量化が可能である。 For example, a capacitor formed by simultaneously firing the above-described high dielectric constant material and low dielectric constant material can reduce the distributed capacity compared to a capacitor made of only the high dielectric constant material. Further, the capacity can be increased as compared with a capacitor made of only a low dielectric constant material.
上記の電子デバイスでは、損失特性を向上させるために、導体電極として低抵抗であるAgあるいはCu、または、AgやCuを主成分とする合金を用いることが望ましい。しかし、これらの導体金属は融点が低いため、電子デバイスに使用する磁器組成物は、上記導体金属の融点以下の温度で焼成可能である(低温燒結性を有する)ことが要求される。 In the above electronic device, in order to improve loss characteristics, it is desirable to use Ag or Cu having a low resistance as a conductor electrode, or an alloy mainly composed of Ag or Cu. However, since these conductor metals have a low melting point, the porcelain composition used in the electronic device is required to be baked (having low-temperature sintering properties) at a temperature lower than the melting point of the conductor metal.
また、複数種の磁器組成物を同時焼成するためには、各磁器組成物の線膨張係数がある程度一致しなければならず、この線膨張係数の差が大きいと、焼成後の製品にクラックが生じてしまう。例えば、酸化チタン、チタン酸バリウム、チタン酸カルシウムといったペロブスカイト構造、バリウム−レアアース−チタンの酸化物といったタングステンブロンズ構造、NiCuZn系フェライトといったスピネル構造等をもつ一般的な磁器組成物は、その線膨張係数が約80〜130×10-7/℃程度である。これらにガラス等を添加して上記の低温燒結性を付与した磁器組成物であっても、その線膨張係数は元の線膨張係数(約80〜130×10-7/℃程度)ほとんど変わらない。しかし、従来のガラスを主体とする低誘電率の磁器組成物は、その線膨張係数が約40〜80×10-7/℃程度のものが多く、上記のガラス添加等により低温燒結性を付与した誘電材料や磁性材料に比べて線膨張率が低く、これらを同時焼成した場合、製品にクラックが生じるという問題があった。 Also, in order to fire multiple types of porcelain compositions at the same time, the linear expansion coefficients of the porcelain compositions must match to some extent. If the difference in the linear expansion coefficients is large, cracks will occur in the fired product. It will occur. For example, a general porcelain composition having a perovskite structure such as titanium oxide, barium titanate or calcium titanate, a tungsten bronze structure such as barium-rare earth-titanium oxide, or a spinel structure such as NiCuZn ferrite has a linear expansion coefficient. Is about 80 to 130 × 10 −7 / ° C. Even if it is a porcelain composition to which the above-mentioned low-temperature sintering property is imparted by adding glass or the like to these, the linear expansion coefficient is almost the same (about 80 to 130 × 10 −7 / ° C.). . However, many of the conventional low dielectric constant ceramic compositions mainly composed of glass have a linear expansion coefficient of about 40 to 80 × 10 −7 / ° C., and impart low temperature sintering properties by adding the above glass. The coefficient of linear expansion is lower than that of the dielectric material and the magnetic material, and when these are fired at the same time, there is a problem that a crack occurs in the product.
本発明は、このような事情に鑑みてなされたものであり、低温焼結性をもち単独での内部導体との焼成が可能であり、かつ、高い線膨張係数をもち他の磁器組成物との同時焼成も可能な低誘電率の磁器組成物を用いた電子デバイスを提供することを目的とする。 The present invention has been made in view of such circumstances, and can be sintered with an internal conductor alone with low-temperature sinterability, and has a high linear expansion coefficient and other porcelain compositions. An object of the present invention is to provide an electronic device using a low dielectric constant porcelain composition that can be fired simultaneously.
このような目的を解決するために、本発明はBa系ガラスとα石英とを主成分とする低誘電率磁器組成物である低誘電率材料と、バリウム−レアアース−チタン酸化物を主成分とする高誘電率材料との同時焼成で得られ、AgもしくはCu、または、AgやCuを主成分とする合金を内部導体として備え、前記低誘電率磁器組成物は、前記Ba系ガラスの含有量が61.1〜66.5重量%、前記α石英の含有量が21.0〜26.0重量%の範囲内にあり、Al2O3を9.0〜12.9重量%以下の範囲で含有し、前記Ba系ガラスの成分は、酸化物換算で、BaOを21〜25mol%、SiO2を64〜70mol%、Al2O3を7〜11mol%の範囲で含有し、さらに、BaO、SiO2およびAl2O3の合計100mol当たりB2O3を4〜6molの範囲で含有し、α石英と、4種の結晶相[BaAl 2 SiO 8 +BaSi 2 O 5 ]、[BaAl 2 SiO 8 +BaSi 2 O 5 +Al 2 O 3 ]、[BaAl 2 SiO 8 +Al 2 O 3 ]、[BaSi 2 O 5 +Al 2 O 3 ]の中の1種とを含み、線膨張係数が80×10 -7 /℃〜150×10 -7 /℃の範囲内にあり、比誘電率が7.0以下であるような構成とした。 In order to solve such an object, the present invention has a low dielectric constant material which is a low dielectric constant ceramic composition mainly composed of Ba-based glass and α-quartz, and barium-rare earth-titanium oxide as a main component. Obtained by co-firing with a high dielectric constant material, comprising Ag or Cu, or an alloy containing Ag or Cu as a main component as an internal conductor, wherein the low dielectric constant ceramic composition contains the content of the Ba glass There 61.1 to 66.5 wt%, the α content of silica is in the range of 21.0 to 26.0 wt%, range Al 2 O 3 less 9.0 to 12.9 wt% in containing the components of the Ba-based glass, in terms of oxide, BaO and 21 to 25 mol%, a SiO 2 64 to 70 mol%, and contained within a range of the Al 2 O 3 7~11 mol%, further, BaO, the sum of SiO 2 and Al 2 O 3 100 mol equivalents Ri contains B 2 O 3 in the range of 4 to 6 mol, and α quartz, four crystal phases [BaAl 2 SiO 8 + BaSi 2 O 5], [BaAl 2 SiO 8 + BaSi 2 O 5 + Al 2 O 3] , [BaAl 2 SiO 8 + Al 2 O 3 ], [BaSi 2 O 5 + Al 2 O 3 ], and a linear expansion coefficient of 80 × 10 −7 / ° C. to 150 × 10 −7 / ° C. And having a relative dielectric constant of 7.0 or less .
本発明の好ましい態様として、焼成温度が850〜960℃の範囲内であるような構成とした。 In a preferred embodiment of the present invention, the firing temperature is in the range of 850 to 960 ° C.
本発明によれば、AgもしくはCu、または、AgやCuを主成分とする合金の融点以下での焼成が可能であり、低誘電率でありながら線膨張係数が高く、低温焼成可能な高誘電率材料や磁性材料等の異種の磁器組成物との同時焼成が可能な低誘電率磁器組成物を用いて、高誘電率材料と同時に焼成して得られる電子デバイスであるため、AgもしくはCu、または、AgやCuを主成分とする合金を内部導体として備え、クラックの発生がない小型のフィルターや共振器、回路基板等の電子デバイスが可能となる。 According to the present invention, it is possible to calcinate below the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component, a high dielectric constant with a high coefficient of linear expansion and a low dielectric constant, and a low dielectric constant. Since it is an electronic device obtained by firing simultaneously with a high dielectric constant material using a low dielectric constant ceramic composition that can be fired simultaneously with different kinds of ceramic compositions such as a dielectric material and a magnetic material, Ag or Cu, Alternatively, an electronic device such as a small filter, a resonator, or a circuit board that includes an alloy mainly composed of Ag or Cu as an internal conductor and does not generate cracks is possible.
次に、本発明の実施形態について説明する。 Next, an embodiment of the present invention will be described.
本発明の電子デバイスに用いる低誘電率磁器組成物は、Ba系ガラスとα石英とを主成分とするものである。このような低誘電率磁器組成物において、Ba系ガラスの含有量は55.0〜69.4重量%、好ましくは57.3〜66.5重量%、更に好ましくは61.1〜66.5重量%、α石英の含有量は12.1〜40.2重量%、好ましくは20.7〜30.3重量%、更に好ましくは21.0〜26.0重量%の範囲内であり、また、Al2O3を24.5重量%以下、好ましくは6.4〜18.6重量%、更に好ましくは9.0〜12.9重量%の範囲で含有してもよい。 The low dielectric constant porcelain composition used for the electronic device of the present invention is mainly composed of Ba glass and α-quartz. In such a low dielectric constant ceramic composition, the content of the Ba glass is 55.0 to 69.4% by weight, preferably 57.3 to 66.5% by weight, and more preferably 61.1 to 66.5%. The content of α-quartz is in the range of 12.1 to 40.2% by weight, preferably 20.7 to 30.3% by weight, more preferably 21.0 to 26.0% by weight, Al 2 O 3 may be contained in an amount of 24.5% by weight or less, preferably 6.4 to 18.6% by weight, more preferably 9.0 to 12.9% by weight.
Ba系ガラスの含有量が55.0重量%未満であると、低誘電率磁器組成物の低温焼結性が低下し、緻密な焼結体(900℃での焼成後において相対密度が92%以上)が得られない。また、69.4重量% を超える場合も、緻密な焼結体が得られない。一方、Ba系ガラスの含有量が、その最も好ましい範囲である61.1〜66.5重量%の範囲であると、低誘電率磁器組成物は低温焼結性をもち緻密な焼結体が得られることに加えて、900℃以下での低温焼結可能なバリウム−レアアース−チタン酸化物の高誘電率材料と一体化焼成したときの境界の接合面に連続的な空間またはポアが発生することなく境界反応性がより良好となる。 When the content of the Ba-based glass is less than 55.0% by weight, the low-temperature sinterability of the low dielectric constant ceramic composition is reduced, and a dense sintered body (with a relative density of 92% after firing at 900 ° C. Above) is not obtained. Further, when the content exceeds 69.4% by weight, a dense sintered body cannot be obtained. On the other hand, when the content of the Ba-based glass is in the most preferable range of 61.1 to 66.5% by weight, the low dielectric constant ceramic composition has a low-temperature sinterability and a dense sintered body. In addition to being obtained, a continuous space or pore is generated at the joint surface of the boundary when integrally fired with a high dielectric constant material of barium-rare earth-titanium oxide that can be sintered at a low temperature of 900 ° C. or lower. Boundary reactivity is better without.
また、α石英の含有量が12.1重量%未満であると、低誘電率磁器組成物の低温焼結性が低下し、緻密な焼結体が得られず、40.2重量%を超える場合も、緻密な焼結体が得られない。これに対して、α石英の含有量が、その最も好ましい範囲である21.0〜26.0重量%の範囲であると、低誘電率磁器組成物は低温焼結性をもち緻密な焼結体が得られることに加えて、低温焼結可能なバリウム−レアアース−チタン酸化物の高誘電率材料と一体化焼成したときの境界の接合面に連続的な空間またはポアが発生することなく境界反応性がより良好となる。 Further, if the content of α-quartz is less than 12.1% by weight, the low-temperature sinterability of the low dielectric constant ceramic composition is lowered, and a dense sintered body cannot be obtained and exceeds 40.2% by weight. Even in this case, a dense sintered body cannot be obtained. On the other hand, when the content of α quartz is in the most preferable range of 21.0 to 26.0% by weight, the low dielectric constant ceramic composition has a low temperature sintering property and is densely sintered. In addition to obtaining a body, it is possible to form a boundary without generating continuous spaces or pores at the interface of the boundary when fired integrally with a high dielectric constant material of barium-rare earth-titanium oxide that can be sintered at low temperature. The reactivity becomes better.
Ba系ガラスとα石英とからなる主成分に添加するAl2O3は、低誘電率磁器組成物の保形性を向上させる効果をもつが、添加量が24.5重量%を超えると低温焼結性が低下し、緻密な焼結体が得られない。一方、Al2O3の添加量が、その最も好ましい範囲である9.0〜12.9重量%の範囲であると、低誘電率磁器組成物は低温焼結性をもち緻密な焼結体が得られることに加えて、低温焼結可能なバリウム−レアアース−チタン酸化物等の高誘電率材料と一体化焼成したときの境界の接合面に連続的な空間またはポアが発生することなく境界反応性がより良好となる。 Al 2 O 3 added to the main component consisting of Ba-based glass and α-quartz has the effect of improving the shape retention of the low dielectric constant ceramic composition, but if the added amount exceeds 24.5% by weight, the low temperature Sinterability deteriorates and a dense sintered body cannot be obtained. On the other hand, when the addition amount of Al 2 O 3 is in the most preferable range of 9.0 to 12.9% by weight, the low dielectric constant ceramic composition has a low temperature sinterability and is a dense sintered body. In addition to obtaining a low-temperature-sinterable barium-rare earth-titanium oxide and other high-dielectric constant materials, it is possible to create a boundary without generating continuous spaces or pores at the boundary joint surface when fired integrally. The reactivity becomes better.
本発明の電子デバイスを構成する低誘電率磁器組成物におけるBa系ガラスは、その成分が、酸化物換算で以下の範囲となるものである。
・BaO : 19〜29mol%、好ましくは21〜25mol%
・SiO2 : 62〜72mol%、好ましくは64〜70mol%
・Al2O3 : 6〜11mol%、好ましくは7〜11mol%
・BaO、SiO2およびAl2O3の : 3〜7mol、好ましくは
合計100mol当たりのB2O3量 4〜6mol
The Ba glass in the low dielectric constant porcelain composition constituting the electronic device of the present invention has components in the following ranges in terms of oxides.
BaO: 19 to 29 mol%, preferably 21 to 25 mol%
· SiO 2: 62~72mol%, preferably 64~70mol%
Al 2 O 3 : 6 to 11 mol%, preferably 7 to 11 mol%
BaO, SiO 2 and Al 2 O 3 : 3 to 7 mol, preferably 4 to 6 mol of B 2 O 3 per 100 mol in total
Ba系ガラスにおいて、BaO成分が19mol%未満であると、ガラス化が困難であり、29mol%を超えると緻密な焼結体が得られない。 In the Ba glass, if the BaO component is less than 19 mol%, vitrification is difficult, and if it exceeds 29 mol%, a dense sintered body cannot be obtained.
また、SiO2成分が62mol%未満であると、緻密な焼結体が得られず、72mol%を超えるとガラス化が困難であり好ましくない。 Further, if the SiO 2 component is less than 62 mol%, a dense sintered body cannot be obtained, and if it exceeds 72 mol%, vitrification is difficult, which is not preferable.
さらに、Al2O3成分が6mol%未満、あるいは、11mol%を超えると、いずれも緻密な焼結体が得られない。 Furthermore, if the Al 2 O 3 component is less than 6 mol% or exceeds 11 mol%, a dense sintered body cannot be obtained in any case.
また、BaO、SiO2およびAl2O3の合計100molに対するB2O3成分が3mol未満であると、ガラス化が困難であり、7molを超えると、緻密な焼結体が得られない。 Further, if the B 2 O 3 component is less than 3 mol with respect to 100 mol in total of BaO, SiO 2 and Al 2 O 3 , vitrification is difficult, and if it exceeds 7 mol, a dense sintered body cannot be obtained.
本発明の電子デバイスに用いる低誘電率磁器組成物は、各構成成分を上記の範囲内で適宜設定することにより、低温燒結性を有し、かつ、線膨張係数が80×10-7/℃〜150×10-7/℃の範囲内にあるものとすることができる。したがって、低抵抗であるAgあるいはCu、または、AgやCuを主成分とする合金の融点以下での焼成が可能な従来の高誘電率材料や磁性材料等の異種の磁器組成物の線膨張係数に合わせることが容易である。このため、異種の材料との同時焼成を行なっても、得られた焼成物にクラックを生じることはない。尚、本発明の電子デバイスに用いる低誘電率磁器組成物では、線膨張係数が150×10-7/℃を超えるものを得ることは困難である。 The low dielectric constant porcelain composition used in the electronic device of the present invention has low-temperature sintering properties and a linear expansion coefficient of 80 × 10 −7 / ° C. by appropriately setting each component within the above range. It can be in the range of ˜150 × 10 −7 / ° C. Therefore, the linear expansion coefficient of different porcelain compositions such as conventional high dielectric constant materials and magnetic materials that can be fired at a temperature lower than the melting point of Ag or Cu having a low resistance, or an alloy mainly composed of Ag or Cu. It is easy to adapt to. For this reason, even if co-firing with different materials is performed, cracks do not occur in the obtained fired product. Note that it is difficult to obtain a low dielectric constant ceramic composition used for the electronic device of the present invention having a linear expansion coefficient exceeding 150 × 10 −7 / ° C.
さらに、本発明の電子デバイスに用いる低誘電率磁器組成物は、上記のような組成による線膨張係数の制御に加え、焼成温度、焼成時間によっても線膨張係数を80×10-7/℃〜150×10-7/℃の範囲内で制御することができる。Ba系ガラスとα石英との焼成、あるいは、これらにAl2O3を添加したものの焼成において、ガラスの結晶化が起こり、新たな結晶相[BaAl2SiO8]や[BaSi2O5]が生成する。これらの結晶相はそれぞれ固有の線膨張係数をもつので、焼成条件により結晶相の種類と量を変化させることにより、線膨張係数を制御することができる。 Furthermore, the low dielectric constant porcelain composition used for the electronic device of the present invention has a linear expansion coefficient of 80 × 10 −7 / ° C. depending on the firing temperature and firing time in addition to the control of the linear expansion coefficient by the composition as described above. It can be controlled within a range of 150 × 10 −7 / ° C. In firing Ba-based glass and α-quartz, or in those in which Al 2 O 3 is added, crystallization of the glass occurs, and new crystal phases [BaAl 2 SiO 8 ] and [BaSi 2 O 5 ] are formed. Generate. Since each of these crystal phases has a specific linear expansion coefficient, the linear expansion coefficient can be controlled by changing the type and amount of the crystal phase according to the firing conditions.
このような本発明の電子デバイスに用いる低誘電率磁器組成物は、α石英と、4種の結晶相[BaAl2SiO8+BaSi2O5]、[BaAl2SiO8+BaSi2O5+Al2O3]、[BaAl2SiO8+Al2O3]、[BaSi2O5+Al2O3]の中の1種とを含み、誘電率が低いにもかかわらず、高い線膨張係数をもち、かつ、低温焼結性を有するものである。 Such a low dielectric constant porcelain composition used in the electronic device of the present invention includes α-quartz, four crystal phases [BaAl 2 SiO 8 + BaSi 2 O 5 ], [BaAl 2 SiO 8 + BaSi 2 O 5 + Al 2 O. 3 ], [BaAl 2 SiO 8 + Al 2 O 3 ], [BaSi 2 O 5 + Al 2 O 3 ], and has a high coefficient of linear expansion despite its low dielectric constant, and It has low-temperature sinterability.
次に、本発明の電子デバイスに用いる低誘電率磁器組成物の製造方法について説明する。
まず、Ba系ガラス成分であるBaO、SiO2、Al2O3、B2O3を用意し、所定量を秤量して混合し、るつぼで溶融した後、溶融物を急冷し、これを粉砕することによりガラス粉末とする。尚、ガラス原料としては、酸化物である必要はなく、例えば、炭酸塩、水酸化物、硫酸塩等のように熱処理により酸化物となるものを使用しても、酸化物を使用した場合と同等のガラス粉末を得ることができる。
Next, the manufacturing method of the low dielectric constant ceramic composition used for the electronic device of the present invention will be described.
First, BaO, SiO 2 , Al 2 O 3 , and B 2 O 3 which are Ba-based glass components are prepared, and a predetermined amount is weighed and mixed, melted in a crucible, rapidly melted, and crushed. To make glass powder. The glass raw material does not need to be an oxide. For example, even if a material that becomes an oxide by heat treatment such as carbonate, hydroxide, sulfate, etc. is used, Equivalent glass powder can be obtained.
上記のガラス原料の混合は、例えば、乾式混合により行うことができ、溶融は1500〜1600℃で0.5〜5時間程度とすることができる。溶融物の粉砕は、ボールミル等を用いた湿式粉砕が望ましい。
次に、主成分であるα石英粉末と、上記のBa系ガラス粉末、さらに、必要に応じてAl2O3粉末を準備し、これらの所定量を秤量して混合する。得られた粉末に対してポリビニルアルコール系、アクリル系、エチルセルロース系のような有機バインダーと、必要に応じて溶剤、可塑剤等を混合してスラリーを調製する。
The glass raw materials can be mixed by, for example, dry mixing, and melting can be performed at 1500 to 1600 ° C. for about 0.5 to 5 hours. The pulverization of the melt is preferably wet pulverization using a ball mill or the like.
Next, α-quartz powder as the main component, the Ba-based glass powder, and, if necessary, Al 2 O 3 powder are prepared, and a predetermined amount thereof is weighed and mixed. A slurry is prepared by mixing the obtained powder with an organic binder such as polyvinyl alcohol, acrylic or ethyl cellulose and, if necessary, a solvent, a plasticizer or the like.
次いで、このスラリーを所望の形状に成型し、この成型物を焼成する。成型はシート法や印刷法等の湿式成型の他、プレス成型等の乾式成型でもよく、所望の形状に応じて成型方法を適宜選択することが可能である。焼成温度は850〜960℃の範囲で設定することができ、焼成時間は0.1〜24時間程度が好ましい。したがって、AgもしくはCu、または、AgやCuを主成分とする合金の融点以下での低温焼成が可能となる。このため、低抵抗であるAgやCuのような融点の低い金属を内部導体として電子部品を構成することが可能となる。尚、同時焼成を行う内部導体に合わせて焼成雰囲気を選択することが望ましく、例えば、Agとの同時焼成の場合は空気中のような酸素雰囲気とし、Cuとの同時焼成の場合は還元雰囲気とする。 Next, the slurry is molded into a desired shape, and the molded product is fired. The molding may be a wet molding such as a sheet method or a printing method, or a dry molding such as a press molding, and a molding method can be appropriately selected according to a desired shape. The firing temperature can be set in the range of 850 to 960 ° C., and the firing time is preferably about 0.1 to 24 hours. Therefore, it becomes possible to perform low-temperature firing below the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component. For this reason, it becomes possible to constitute an electronic component using a low resistance metal such as Ag or Cu having a low resistance as an inner conductor. In addition, it is desirable to select a firing atmosphere according to the inner conductor to be co-fired. For example, in the case of co-firing with Ag, an oxygen atmosphere such as in the air is used. In the case of co-firing with Cu, a reducing atmosphere is used. To do.
次に、実施例を示して本発明を更に詳細に説明する。 Next, an Example is shown and this invention is demonstrated further in detail.
(実施例1)
まず、Ba系ガラス成分として、BaCO3、SiO2、Al2O3、B2O3を下記表1乃至表3のガラス組成の欄に示す組成となるように秤量し、シェイカーで乾式混合した後、この混合物をるつぼに入れて1550℃で1時間溶融した。その後、溶融物を純水で急冷し、これをらいかい機で粗粉砕した後、ボールミルで湿式粉砕してBa系ガラス粉末を得た。
Example 1
First, BaCO 3 , SiO 2 , Al 2 O 3 , and B 2 O 3 as Ba-based glass components were weighed so as to have the compositions shown in the glass composition columns of Tables 1 to 3 below, and dry-mixed with a shaker. The mixture was then placed in a crucible and melted at 1550 ° C. for 1 hour. Thereafter, the melt was quenched with pure water, coarsely pulverized with a rake machine, and wet pulverized with a ball mill to obtain a Ba-based glass powder.
次に、上記のようにして得たBa系ガラス粉末と、α石英粉末、Al2O3粉末をそれぞれ下記の表1乃至表3中の材料組成の欄に示す割合となるように秤量して混合し、この混合粉末100重量部に対して、有機バインダーとしてアクリル系樹脂を15重量部、溶剤としてトルエンを60重量部、可塑剤としてn−ブチルフタリルn−ブチルグリコラート(BPBG)を5重量部加え、ボールミルで分散し、57種の有機スラリーを作製した。 Next, Ba-based glass powder, α-quartz powder, and Al 2 O 3 powder obtained as described above were weighed so as to have the ratios shown in the column of material composition in Tables 1 to 3 below. 15 parts by weight of an acrylic resin as an organic binder, 60 parts by weight of toluene as a solvent, and 5 parts by weight of n-butylphthalyl n-butyl glycolate (BPBG) as a plasticizer with respect to 100 parts by weight of the mixed powder In addition, 57 kinds of organic slurries were prepared by dispersing with a ball mill.
次いで、上記の有機スラリーを用いてドクターブレード法により57種のグリーンシート(試料2〜10、12〜59)を作製した。その後、このグリーンシートを下記の各測定条件に合わせた所定の大きさに形成し、900℃、2時間の焼成を行った。 Subsequently, 57 types of green sheets (samples 2 to 10 and 12 to 59) were prepared by the doctor blade method using the organic slurry. Thereafter, the green sheet was formed in a predetermined size according to the following measurement conditions, and baked at 900 ° C. for 2 hours.
次に、上記の各試料について、低温焼結性(900℃での焼成後において相対密度が92%以上)を評価し、比誘電率と線膨張係数を下記の測定方法により測定し、含有する結晶相を下記方法にて測定して、結果を下記の表1〜表3に示した。 Next, the low temperature sinterability (relative density is 92% or more after firing at 900 ° C.) is evaluated for each of the above samples, and the relative dielectric constant and the linear expansion coefficient are measured by the following measuring method and contained. The crystal phase was measured by the following method, and the results are shown in Tables 1 to 3 below.
また、上記の試料8、23、41について、低温焼結可能なバリウム−レアアース−チタン酸化物の高誘電率材料と一体化焼成し、その破断した境界面を走査電子顕微鏡装置(日本電子データム(株)製 JED−2001)により観察し、一体化焼成後の境界面のcompo像(2000倍)を撮影して図1に示した。 Samples 8, 23, and 41 were fired integrally with a high dielectric constant material of barium-rare earth-titanium oxide that can be sintered at low temperature, and the fractured interface was scanned with a scanning electron microscope (JEOL datum ( JED-2001), and a compo image (2000 times) of the interface after integrated firing was taken and shown in FIG.
比誘電率の測定方法
約1mm角の棒状試料を作成し、比誘電率(2GHz)を空洞共振器摂動法によ
り測定(ヒューレットパッカード(株)製 83620A,8757Cを使用)
した。
Measuring method of relative dielectric constant A rod-shaped sample of about 1 mm square is prepared, and the relative dielectric constant (2 GHz) is measured by the cavity resonator perturbation method (using 83620A, 8757C manufactured by Hewlett-Packard Co., Ltd.)
did.
線膨張係数の測定方法
約4×4×28mmの試料を作成し、線膨張係数(100〜700℃)を横型線
膨張装置(真空理工(株)製 DL−7000Y−RH)により測定した。
Method of measuring linear expansion coefficient A sample of about 4 × 4 × 28 mm was prepared, and the linear expansion coefficient (100 to 700 ° C.) was measured with a horizontal linear expansion apparatus (DL-7000Y-RH manufactured by Vacuum Riko Co., Ltd.).
結晶相の測定方法
燒結体を乳鉢にて粉砕し、粉末X線回折法により測定(マック・サイエンス(株)
製 MXP3システムを使用をした。測定条件はターゲットをCuとし、45kV、
40mA、1deg/分、2θ=10〜60とした。
ただし、下記の表1〜表3において、α、A、B、C、Dの表示は、それぞれ以
下の結晶相を表す。
α : α石英
A : BaAl2SiO8+BaSi2O5
B : BaAl2SiO8+BaSi2O5+Al2O3
C : BaAl2SiO8+Al2O3
D : BaSi2O5+Al2O3 Method for measuring crystal phase Sintered sintered body in mortar and measured by powder X-ray diffraction method (Mac Science Co., Ltd.)
Made using MXP 3 system. The measurement condition is that the target is Cu, 45 kV,
40 mA, 1 deg / min, and 2θ = 10-60.
In Tables 1 to 3 below, α, A, B, C, and D represent the following crystal phases, respectively.
α: α quartz A: BaAl 2 SiO 8 + BaSi 2 O 5
B: BaAl 2 SiO 8 + BaSi 2 O 5 + Al 2 O 3
C: BaAl 2 SiO 8 + Al 2 O 3
D: BaSi 2 O 5 + Al 2 O 3
表1〜表3に示されるように、Ba系ガラスとα石英とを主成分とし、各構成成分が本発明の範囲内にある試料(2〜9、12、13、17〜21、23〜34、39〜47、50〜54)は、いずれも低温焼結性に優れ、AgもしくはCu、または、AgやCuを主成分とする合金の融点以下での焼成が可能であるとともに、誘電率が低く(7以下(2GHz))、かつ、線膨張係数が80×10-7/℃〜130×10-7/℃の範囲内となるものであった。 As shown in Tables 1 to 3, samples (2 to 9, 12, 13, 17 to 21, 23, 23) having Ba-based glass and α-quartz as main components and each component within the scope of the present invention. 34, 39-47, 50-54) all have excellent low-temperature sinterability, and can be fired below the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component, and also have a dielectric constant. And the linear expansion coefficient was in the range of 80 × 10 −7 / ° C. to 130 × 10 −7 / ° C. (7 or less (2 GHz)).
さらに、上記の試料8、23、41のうち、Ba系ガラスの含有量が61.1〜66.5重量%、α石英の含有量が21.0〜26.0重量%の範囲内であり、Al2O3を9.0〜12.9重量%の範囲で含有している試料8と試料23(図1および図2参照)は、低温焼結可能なバリウム−レアアース−チタン酸化物の高誘電率材料との一体化焼成時の境界反応性が、試料41(図3参照)に比べて特に良好であった。 Furthermore, among the above samples 8, 23, and 41, the content of Ba glass is in the range of 61.1 to 66.5% by weight, and the content of α-quartz is in the range of 21.0 to 26.0% by weight. Sample 8 and Sample 23 (see FIGS. 1 and 2) containing Al 2 O 3 in the range of 9.0 to 12.9% by weight are barium-rare earth-titanium oxides that can be sintered at low temperature. The boundary reactivity at the time of integrated firing with a high dielectric constant material was particularly good as compared with the sample 41 (see FIG. 3).
これに対して、ガラス組成においてBaO成分が19mol%未満である試料1、BaO、SiO2およびAl2O3の合計100mol当たりのB2O3成分が3mol未満である試料11、SiO2成分が72mol%を超える試料14では、ガラス化が困難であり、磁器組成物が得られなかった。
また、構成成分の含有量が本発明の範囲から外れる他の試料は、いずれも900℃における焼成で緻密化せず、相対密度は92%未満であった。
On the other hand, the sample 1 whose BaO component is less than 19 mol% in the glass composition, the sample 11 whose B 2 O 3 component is less than 3 mol per 100 mol in total of BaO, SiO 2 and Al 2 O 3 , and the SiO 2 component In sample 14 exceeding 72 mol%, vitrification was difficult, and a porcelain composition could not be obtained.
Further, none of the other samples in which the content of the constituent component deviated from the scope of the present invention was densified by firing at 900 ° C., and the relative density was less than 92%.
(実施例2)
まず、実施例1における試料39〜43と同じ組成の有機スラリーを実施例1と同様にして作製した。
(Example 2)
First, an organic slurry having the same composition as Samples 39 to 43 in Example 1 was prepared in the same manner as in Example 1.
次いで、上記の有機スラリーを用いて実施例1と同様にして5種のグリーンシート(試料A〜E)を作製し、その後、このグリーンシートを実施例1と同じ所定の大きさに形成し、880℃、2時間と、920℃、2時間の2種の条件で焼成した。 Next, using the organic slurry, five types of green sheets (samples A to E) were prepared in the same manner as in Example 1, and then the green sheets were formed to the same predetermined size as in Example 1. Firing was performed under two conditions of 880 ° C. for 2 hours and 920 ° C. for 2 hours.
次に、上記の各試料について、線膨張係数を実施例1と同様に測定して、結果を下記の表4に示した。尚、表4には実施例1における試料39〜43(900℃、2時間の焼成)の測定結果も示した。 Next, for each of the above samples, the linear expansion coefficient was measured in the same manner as in Example 1, and the results are shown in Table 4 below. Table 4 also shows the measurement results of Samples 39 to 43 (fired at 900 ° C. for 2 hours) in Example 1.
表4に示される測定結果では、本発明の電子デバイスに用いる低誘電率磁器組成物は、同一組成において焼成条件を変えることにより線膨張係数を80×10-7/℃〜130×10-7/℃の範囲内で制御可能であることが明らかとなった。 According to the measurement results shown in Table 4, the low dielectric constant ceramic composition used in the electronic device of the present invention has a linear expansion coefficient of 80 × 10 −7 / ° C. to 130 × 10 −7 by changing the firing conditions in the same composition. It became clear that control was possible within the range of / ° C.
低誘電率材料と高誘電率材料との同時焼成で製造され、内部導体を備える電子デバイスに利用できる。 It is manufactured by simultaneous firing of a low dielectric constant material and a high dielectric constant material, and can be used for an electronic device including an internal conductor.
Claims (2)
α石英と、4種の結晶相[BaAl 2 SiO 8 +BaSi 2 O 5 ]、[BaAl 2 SiO 8 +BaSi 2 O 5 +Al 2 O 3 ]、[BaAl 2 SiO 8 +Al 2 O 3 ]、[BaSi 2 O 5 +Al 2 O 3 ]の中の1種とを含み、
線膨張係数が80×10 -7 /℃〜150×10 -7 /℃の範囲内にあり、
比誘電率が7.0以下であることを特徴とする電子デバイス。 Obtained by co-firing a low dielectric constant material, which is a low dielectric constant ceramic composition mainly composed of Ba-based glass and α-quartz, and a high dielectric constant material mainly composed of barium-rare earth-titanium oxide , Ag or Cu, or an alloy containing Ag or Cu as a main component is provided as an inner conductor, and the low dielectric constant porcelain composition has a Ba-based glass content of 61.1 to 66.5 % by weight, α the content of the silica is in the range of 21.0 to 26.0 wt%, the Al 2 O 3 contained in the range of 9.0 to 12.9 wt%, the component of the Ba-based glass, oxide in object terms, BaO and 21 to 25 mol%, a SiO 2 64 to 70 mol%, and contained within a range of the Al 2 O 3 7~11 mol%, further, BaO, the sum of SiO 2 and Al 2 O 3 the 100mol per B 2 O 3 contained in the range of 4 to 6 mol
α quartz and four crystal phases [BaAl 2 SiO 8 + BaSi 2 O 5 ], [BaAl 2 SiO 8 + BaSi 2 O 5 + Al 2 O 3 ], [BaAl 2 SiO 8 + Al 2 O 3 ], [BaSi 2 O 5 + Al 2 O 3 ],
The linear expansion coefficient is in the range of 80 × 10 −7 / ° C. to 150 × 10 −7 / ° C .;
An electronic device having a relative dielectric constant of 7.0 or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004175050A JP4050725B2 (en) | 1999-03-31 | 2004-06-14 | Electronic devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9194199 | 1999-03-31 | ||
JP2004175050A JP4050725B2 (en) | 1999-03-31 | 2004-06-14 | Electronic devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000036368A Division JP3587753B2 (en) | 1999-03-31 | 2000-02-15 | Porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004345950A JP2004345950A (en) | 2004-12-09 |
JP4050725B2 true JP4050725B2 (en) | 2008-02-20 |
Family
ID=33542759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004175050A Expired - Lifetime JP4050725B2 (en) | 1999-03-31 | 2004-06-14 | Electronic devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4050725B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021199631A1 (en) * | 2020-03-30 | 2021-10-07 | Agc株式会社 | Crystallized glass, high-frequency substrate, and method for manufacturing crystallized glass |
-
2004
- 2004-06-14 JP JP2004175050A patent/JP4050725B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004345950A (en) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868663B2 (en) | Low temperature fired porcelain composition | |
JP3737773B2 (en) | Dielectric ceramic composition | |
JP2002193662A (en) | Dielectric ceramic and its manufacturing method | |
JP2005289789A (en) | Dielectric ceramic composition and multilayer ceramic part using the same | |
JP3737774B2 (en) | Dielectric ceramic composition | |
US7241712B2 (en) | Low-temperature sintered barium titanate microwave dielectric ceramic material | |
JP2006124201A (en) | Nonlead glass, glass ceramic composition and dielectric | |
JP5454833B2 (en) | Ceramic substrate and manufacturing method thereof | |
JP4613952B2 (en) | Dielectric ceramic composition and high frequency device using the same | |
JP3587753B2 (en) | Porcelain composition | |
JP3793485B2 (en) | Microwave dielectric porcelain composition and method for producing the porcelain | |
JP2005008468A (en) | Dielectric ceramic composition and laminated ceramic component using the same | |
JP4050725B2 (en) | Electronic devices | |
JP5481781B2 (en) | Dielectric porcelain | |
EP1041051B1 (en) | Ceramics composition | |
JP2006008430A (en) | Dielectric ceramic composition, method of manufacturing the same and laminated ceramic component | |
JP4337818B2 (en) | Porcelain composition | |
JP2006045046A (en) | Dielectric ceramic composition and multilayer ceramic part | |
JP2004026543A (en) | Dielectric porcelain composition and laminated ceramic component using the same | |
JP2531548B2 (en) | Porcelain composition for temperature compensation | |
CN1159257C (en) | Middle-temp sintered ceramic material | |
JP2531547B2 (en) | Porcelain composition for temperature compensation | |
JP4362938B2 (en) | Dielectric porcelain composition | |
JP3631589B2 (en) | Dielectric porcelain composition and laminate | |
JP2005089297A (en) | High frequency dielectric ceramic and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4050725 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |