[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4046744B2 - Switching element failure detection circuit - Google Patents

Switching element failure detection circuit Download PDF

Info

Publication number
JP4046744B2
JP4046744B2 JP2005276836A JP2005276836A JP4046744B2 JP 4046744 B2 JP4046744 B2 JP 4046744B2 JP 2005276836 A JP2005276836 A JP 2005276836A JP 2005276836 A JP2005276836 A JP 2005276836A JP 4046744 B2 JP4046744 B2 JP 4046744B2
Authority
JP
Japan
Prior art keywords
current
switching element
failure
verification
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005276836A
Other languages
Japanese (ja)
Other versions
JP2007083932A (en
Inventor
友章 前
Original Assignee
大同信号株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同信号株式会社 filed Critical 大同信号株式会社
Priority to JP2005276836A priority Critical patent/JP4046744B2/en
Publication of JP2007083932A publication Critical patent/JP2007083932A/en
Application granted granted Critical
Publication of JP4046744B2 publication Critical patent/JP4046744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

この発明は、鉄道の時分割送受信形軌道回路装置の送信部などに組み込まれて送信回線の切替素子の故障を検出するのに好適な故障検出回路に関し、詳しくは、ダイオードが並設された状態の切替素子の対について故障検出を行う切替素子故障検出回路に関する。   The present invention relates to a failure detection circuit that is incorporated in a transmission unit of a time-division transmission / reception track circuit device of a railway and is suitable for detecting a failure of a switching element of a transmission line, and more specifically, a state in which diodes are arranged in parallel. The present invention relates to a switching element failure detection circuit that performs failure detection for a pair of switching elements.

図8は、鉄道の時分割送受信形軌道回路装置の概要構成図であり、このような装置は、軌道回路を用いた列車検知装置などに組み込まれている(例えば非特許文献1や特許文献1を参照)。
この時分割送受信形軌道回路装置20は、鉄道の軌道10を走行する列車11が軌道10の各区間T1,T2,T3,…のうち何れの区間に進入しているのかを検知するために、軌道10の各区間にケーブル等で接続された送信部21及び受信部と、それらの動作制御を行う制御部とを備えている。
FIG. 8 is a schematic configuration diagram of a railway time-division transmission / reception track circuit device. Such a device is incorporated in a train detection device using a track circuit (for example, Non-Patent Document 1 and Patent Document 1). See).
This time division transmission / reception type track circuit device 20 detects in which section of the sections T1, T2, T3,... A transmission unit 21 and a reception unit connected to each section of the track 10 with a cable or the like, and a control unit that performs operation control thereof are provided.

そのうち送信部21には、交流信号源31を有する増幅部22と、トランス32と切替素子対33とトランス34とを有する切替部23とが設けられている。
交流信号源31は、交流送信信号I1を継続的に出力するものであり、交流送信信号I1の典型例は、波形が正弦波状で、周波数が120Hzで、電圧が100V〜200Vの何れかで、電流が200mA〜400mAの何れかになっている。
トランス32は、一次側に交流信号源31が接続されて交流送信信号I1が流れるようになっており、一次側と二次側とは絶縁されていて、その典型的な巻数比は一対一であり、その場合、二次側の回線電流I2の典型例は上述の交流送信信号I1と同じになる。トランス32の典型的な特性は、インダクタンスが数Hで、純抵抗が数十Ωである。
Among them, the transmission unit 21 is provided with an amplification unit 22 having an AC signal source 31 and a switching unit 23 having a transformer 32, a switching element pair 33, and a transformer 34.
The AC signal source 31 continuously outputs the AC transmission signal I1, and a typical example of the AC transmission signal I1 has a sine wave waveform, a frequency of 120 Hz, and a voltage of 100V to 200V. The current is 200 mA to 400 mA.
The transformer 32 is connected to an AC signal source 31 on the primary side so that an AC transmission signal I1 flows. The primary side and the secondary side are insulated from each other, and a typical turns ratio is 1: 1. In this case, a typical example of the line current I2 on the secondary side is the same as the AC transmission signal I1 described above. Typical characteristics of the transformer 32 are an inductance of several H and a pure resistance of several tens of Ω.

トランス32の二次側には一対のライン(回線)を介して負荷側トランス34の一次側が接続され、このトランス34の二次側には負荷35となる軌道10の例えば区間T1がケーブルを介して接続され、回線電流I2に対応する負荷電流I3が負荷35に流されるようになっている。トランス34と負荷35とを纏めた等価回路の典型的な特性は、インピーダンスが100〜300Ω∠70゜〜80゜(@120Hz)であるが、抵抗値は列車進入の有無によって大きく変化する。
上記のライン対には切替素子対33が介挿接続されており、切替素子対33がオンして導通状態になったときにはトランス32と切替素子対33とトランス34とを一巡して回線電流I2が流れると共に負荷35に負荷電流I3が流れ、切替素子対33がオフして遮断状態になったときには切替素子対33によってトランス34がトランス32から切り離されてトランス32に回線電流I2が流れず負荷35にも負荷電流I3が流れないようになっている。
The primary side of the load-side transformer 34 is connected to the secondary side of the transformer 32 via a pair of lines (lines). For example, the section T1 of the track 10 serving as the load 35 is connected to the secondary side of the transformer 34 via a cable. The load current I3 corresponding to the line current I2 is supplied to the load 35. The typical characteristic of the equivalent circuit that combines the transformer 34 and the load 35 is that the impedance is 100 to 300Ω∠70 ° to 80 ° (@ 120 Hz), but the resistance value varies greatly depending on whether or not the train enters.
A switching element pair 33 is inserted and connected to the above line pair, and when the switching element pair 33 is turned on and becomes conductive, the circuit 32 makes a circuit of the transformer 32, the switching element pair 33, and the transformer 34 to make a line current I2. And the load current I3 flows to the load 35. When the switching element pair 33 is turned off and the circuit is cut off, the transformer 34 is disconnected from the transformer 32 by the switching element pair 33 and the line current I2 does not flow to the transformer 32. The load current I3 does not flow through 35 as well.

トランス32の二次側に接続されている切替素子対33とトランス34と負荷35は、複数組が設けられ、軌道10の各区間T1,T2,T3,…に振り分けられ、制御部からの制御信号S1,S2,S3,…に従って時分割で作動するようになっている。例えば(図8の短波線を参照)、区間T1を負荷35とする組の切替素子対33は制御信号S1の指令値がオンであるかオフであるかに対応してオン(導通)かオフ(遮断)するようになっており、区間T2を負荷35とする組の切替素子対33は制御信号S2の指令値のオンオフに対応してオンオフするようになっており、区間T3を負荷35とする組の切替素子対33は制御信号S3の指令値のオンオフに対応してオンオフするようになっており、さらに制御信号S1,S2,S3,…は隣接区間や近接区間のもの同士が同時にオンしないようオンのものが順に切り替わるようになっている。   A plurality of pairs of switching element pairs 33, transformers 34, and loads 35 connected to the secondary side of the transformer 32 are provided and distributed to the sections T1, T2, T3,. It operates in a time division manner according to the signals S1, S2, S3,. For example (see the short wave line in FIG. 8), the pair of switching elements 33 having the section T1 as the load 35 is turned on (conductive) or turned off according to whether the command value of the control signal S1 is on or off. The pair of switching elements 33 having the section T2 as the load 35 is turned on / off in response to the on / off of the command value of the control signal S2, and the section T3 is connected to the load 35. The pair of switching elements 33 to be turned on / off in response to the on / off of the command value of the control signal S3, and the control signals S1, S2, S3,. The ones that are turned on are switched in order.

そして、区間T1に負荷電流I3が流れているとき、区間T1に列車11が進入していなければ十分大きな負荷電流I3が受信部に到達するのに対し(図8の長波線を参照)、区間T1に列車11が進入していると、区間T1内で左右のレールが列車11の車軸等で短絡されるため、受信部に到達する負荷電流I3が減衰するので、区間T1における列車の有無を検知することができる。他の軌道区間についても同様にして列車の有無が検知されるが、時分割により、区間を混同することなく列車を検知することができる。   When the load current I3 flows in the section T1, the sufficiently large load current I3 reaches the receiving unit unless the train 11 enters the section T1 (see the long wave line in FIG. 8). When the train 11 enters T1, since the left and right rails are short-circuited by the axle of the train 11 and the like in the section T1, the load current I3 reaching the receiving unit is attenuated. Can be detected. The presence or absence of a train is similarly detected for other track sections, but the train can be detected without confusing the sections by time division.

図9は、このような時分割送受信形軌道回路装置20に組み込んで用いられている従来の切替素子故障検出回路30に関するものであり、(a)が基本回路図、(b)が判別表である。   FIGS. 9A and 9B relate to a conventional switching element failure detection circuit 30 incorporated in such a time division transmission / reception type track circuit device 20, wherein FIG. 9A is a basic circuit diagram and FIG. 9B is a discrimination table. is there.

切替素子故障検出回路30は(図9(a)参照)、上述した交流信号源31とトランス32と切替素子対33とトランス34と負荷35に加えて、電流検出回路36と故障判別部37も具えている。電流検出回路36は、切替素子対33の介挿ラインに付設されたカレントトランスに接続されており、そのカレントトランスで回線電流I2を検出し、その検出電流に全波整流や平滑化等のフィルタリングを施して平均電流を求め、さらに、この電流値と閾値との大小比較を行って二値の検出値J2を得るようになっている。   The switching element failure detection circuit 30 (see FIG. 9A) includes a current detection circuit 36 and a failure determination unit 37 in addition to the AC signal source 31, the transformer 32, the switching element pair 33, the transformer 34, and the load 35 described above. It has. The current detection circuit 36 is connected to a current transformer attached to the insertion line of the switching element pair 33, detects the line current I2 with the current transformer, and performs filtering such as full-wave rectification and smoothing on the detected current. To obtain an average current, and further compare the current value with a threshold value to obtain a binary detection value J2.

故障判別部37は、上述した回線電流I2の検出値J2と制御信号S1の指令値とを入力し、これらの入力値に基づいて切替素子対33が正常か故障かの故障判別を行うものであり、例えば、制御信号S1の指令値がOFFなのかONなのか及び検出値J2が電流無しなのか電流有りなのかで場合分けし、予めそれぞれの場合について正常か故障かを定めておいた判別表を参照することにより、故障の有無を判別するようになっている(図9(b)参照)。   The failure determination unit 37 receives the detection value J2 of the line current I2 and the command value of the control signal S1, and determines whether the switching element pair 33 is normal or failure based on these input values. Yes, for example, it is classified according to whether the command value of the control signal S1 is OFF or ON and whether the detection value J2 is no current or there is a current, and it is determined in advance whether each case is normal or failure By referring to the table, it is determined whether or not there is a failure (see FIG. 9B).

そして、このような故障判別は、トランス32の二次側に分けて設けられ何れもトランス32の二次側に一端が接続され他端が負荷側に接続されオンオフの制御信号S1が共通している一対の切替素子33a,33bがリレー等の開閉部材からなり、しかも切替素子33a,33bを切り分けることなく両者を纏めて切替素子対33に係る故障検出を行うのであれば、的確になされていた。   Such failure determination is provided separately on the secondary side of the transformer 32, and both have one end connected to the secondary side of the transformer 32 and the other end connected to the load side, and the on / off control signal S1 is common. The pair of switching elements 33a and 33b is made up of an open / close member such as a relay, and if the failure detection related to the switching element pair 33 is performed together without separating the switching elements 33a and 33b, it has been made accurately. .

特開平2−234875号公報JP-A-2-234875 吉村寛著「信号17版」株式会社交友社発行、p.732〜p.733Published by Hiroshi Yoshimura "Signal 17th Edition", published by Koyusha Co., Ltd., p.732-p.733

ところで、鉄道分野でも回路素子にリレーでなく半導体素子を採用することが多くなっており、上述した従来の切替素子故障検出回路30の切替素子33a,33bにもMOS−FET等の半導体素子を採用することが考えられる。ところが、このような半導体素子にはボディダイオードD1が寄生・随伴しており、切替素子33a,33bは何れも並列ダイオードを有するものとなる(図10(a)の要部回路図を参照)。
ボディダイオードD1(並列ダイオード)の存在は、オン故障(ショート故障、オン状態・閉状態・導通状態を採り続ける故障)のときには導通状態の切替素子に隠されて回線電流I2の流れ方に影響しないが、オフ故障(オープン故障、オフ状態・開状態・遮断状態を採り続ける故障)のときには顕在化して回線電流I2の流れ方に影響を及ぼす。
By the way, in the railway field, semiconductor elements are often used instead of relays as circuit elements, and semiconductor elements such as MOS-FETs are also used in the switching elements 33a and 33b of the conventional switching element failure detection circuit 30 described above. It is possible to do. However, the body diode D1 is parasitic and associated with such a semiconductor element, and the switching elements 33a and 33b both have a parallel diode (see the circuit diagram of the main part in FIG. 10A).
The presence of the body diode D1 (parallel diode) is hidden by the switching element in the conducting state and does not affect the flow of the line current I2 in the case of an on-failure (short-circuit failure, failure that continues to take on state / closed state / conducting state). However, in the case of an off-failure (open failure, failure that continues to take off state / open state / cut-off state), it becomes obvious and affects the flow of the line current I2.

例えば、制御信号S1の指令値がオンのときに切替素子33aは正常にオンするが切替素子33bがオフ故障(遮断継続)でオンしない場合(図10(a)参照)、切替素子33bのボディダイオードD1を介して半波の回線電流I2が流れる(図10(b)参照)。このため、ボディダイオードD1が無ければ回線電流I2の流れ方が「全波」か「無」の何れかで電流の有無判別が容易であったのに、ボディダイオードD1の存在により、回線電流I2の流れ方が半波のときも含めて電流の有無を判別しなければならないので、判別し辛く、判別が可能であっても判別の信頼性が低下する。   For example, when the switching element 33a is normally turned on when the command value of the control signal S1 is on but the switching element 33b is not turned on due to an off failure (continuation of shutoff) (see FIG. 10A), the body of the switching element 33b A half-wave line current I2 flows through the diode D1 (see FIG. 10B). For this reason, if there is no body diode D1, it is easy to determine whether or not the line current I2 flows “full wave” or “none”, but the presence of the body diode D1 causes the line current I2 to flow. Since it is necessary to determine the presence / absence of current even when the flow of current is half-wave, it is difficult to discriminate and even if discrimination is possible, the reliability of discrimination is reduced.

詳述すると、回線電流I2が「半波」のとき検出値J2が「無」になるよう電流検出回路36の閾値設定等を行っておけば、従来の判別表(図9(b)参照)でも、一通りの故障を検知できる。すなわち(図10(c)参照)、交流送信信号I1が「有」るものとして、切替素子33a,33bが何れも正常で制御信号S1の指令値がオン(ON)のとき(状態1)、回線電流I2は「全波」になり、検出値J2が「有」なので、切替素子対33は「正常」と判別される。切替素子33a,33bが何れも正常で制御信号S1の指令値がオフ(OFF)のとき(状態2)、回線電流I2は「無」になり、検出値J2が「無」なので、切替素子対33は「正常」と判別される。   More specifically, when the threshold value of the current detection circuit 36 is set so that the detection value J2 becomes “none” when the line current I2 is “half wave”, a conventional discrimination table (see FIG. 9B). But it can detect all kinds of failures. That is, (see FIG. 10C), assuming that the AC transmission signal I1 is “present” and the switching elements 33a and 33b are both normal and the command value of the control signal S1 is ON (state 1), Since the line current I2 is “full wave” and the detection value J2 is “present”, the switching element pair 33 is determined to be “normal”. When the switching elements 33a and 33b are both normal and the command value of the control signal S1 is OFF (OFF) (state 2), the line current I2 is “none” and the detection value J2 is “none”. 33 is determined to be “normal”.

切替素子33aがオン故障(導通継続)で切替素子33bが正常で制御信号S1の指令値がオン(ON)のとき(状態3)、回線電流I2は「全波」になり、検出値J2が「有」なので、切替素子対33は故障でなく「正常」と判別されてしまうが、この場合(注記1)、指令値がオンなので切替素子対33がオンしたままでも回路の機能上は問題が無く、後述するように制御信号S1の指令値がオフになったときに(状態6)故障が検出される。
切替素子33aがオフ故障(遮断継続)で切替素子33bが正常で制御信号S1の指令値がオン(ON)のとき(状態4)、回線電流I2は「半波」になり、検出値J2が「無」なので、切替素子対33は「故障」と判別される。
When the switching element 33a is ON failure (continuation of conduction), the switching element 33b is normal and the command value of the control signal S1 is ON (state 3), the line current I2 becomes “full wave”, and the detection value J2 is Since it is “present”, the switching element pair 33 is determined to be “normal” instead of a failure. In this case (Note 1), the command value is on, so the problem of the circuit function is caused even if the switching element pair 33 remains on. As described later, when the command value of the control signal S1 is turned off (state 6), a failure is detected.
When the switching element 33a is off-failure (continuation of interruption), the switching element 33b is normal and the command value of the control signal S1 is ON (state 4), the line current I2 becomes “half wave” and the detection value J2 is Since it is “none”, the switching element pair 33 is determined to be “failure”.

切替素子33aがオフ故障(遮断継続)で切替素子33bが正常で制御信号S1の指令値がオフ(OFF)のとき(状態5)、回線電流I2は「無」になり、検出値J2が「無」なので、切替素子対33は故障でなく「正常」と判別されてしまうが、この場合(注記2)、指令値がオフなので切替素子対33がオフしたままでも回路の機能上は問題が無く、制御信号S1の指令値がオンになったときに(状態4)故障が検出される。
切替素子33aがオン故障(導通継続)で切替素子33bが正常で制御信号S1の指令値がオフ(OFF)のとき(状態6)、回線電流I2は「半波」になり、検出値J2が「無」なので、切替素子対33は「故障」と判別される。
When the switching element 33a is off failure (continuous interruption), the switching element 33b is normal, and the command value of the control signal S1 is OFF (state 5) (state 5), the line current I2 becomes “none” and the detection value J2 is “ “No”, the switching element pair 33 is determined to be “normal” rather than a failure. In this case (note 2), there is a problem in the function of the circuit even if the switching element pair 33 remains off because the command value is off. If the command value of the control signal S1 is turned on (state 4), a failure is detected.
When the switching element 33a is ON failure (continuation of conduction), the switching element 33b is normal and the command value of the control signal S1 is OFF (state 6) (state 6), the line current I2 becomes “half wave” and the detection value J2 is Since it is “none”, the switching element pair 33 is determined to be “failure”.

このように回線電流I2が本当に「無」のときだけでなく「半波」のときにも検出値J2が「無」になるようにしておけば、一通りの故障を検知することはできるが、電流検出回路36の閾値設定等に際して、中途半端な電流の流れる半波の状態も「有」でなく「無」になるよう全波の状態と半波の状態とを区別しなければならないので、全波の状態と無の状態とを区別すれば良かった従来と比べて設定値の許容範囲が狭くなり、負荷変動や経年変化など種々の変動要因をも考慮すると、期待に適う設定が確実にできるとは言えず、そのため判別の信頼性が低下する。   In this way, if the detection value J2 is set to “None” not only when the line current I2 is really “None” but also “Half wave”, it is possible to detect one type of failure. When setting the threshold value of the current detection circuit 36, etc., it is necessary to distinguish between the full-wave state and the half-wave state so that the half-wave state where the halfway current flows is not “present” but “absent”. Compared to the conventional case where it was only necessary to distinguish between the state of full wave and the state of no wave, the allowable range of the setting value is narrow, and taking into account various fluctuation factors such as load fluctuation and secular change, the setting that meets expectations can be ensured Therefore, the reliability of discrimination is reduced.

このように切替素子対33の片側がオフ故障(遮断継続)したような場合にボディダイオードD1を介して「半波」の回線電流I2が流れるため故障状態が把握し難くなるということが、従来の切替素子故障検出回路30の切替素子33a,33bに半導体素子を採用したときの問題点である。そこで、切替素子33a,33bに並列ダイオードD1が付いていて、回線電流I2の流れ方が「半波」状態になることがあっても、故障検出を確実に行えるように改良することが、第1課題となる。   In this way, when one side of the switching element pair 33 is off-failed (continuous interruption), a “half-wave” line current I2 flows through the body diode D1, which makes it difficult to grasp the failure state. This is a problem when semiconductor elements are employed as the switching elements 33a and 33b of the switching element failure detection circuit 30. Therefore, even if the switching elements 33a and 33b have a parallel diode D1 and the line current I2 flows in a “half-wave” state, it is improved so that failure detection can be performed reliably. One challenge.

また、従来の切替素子故障検出回路30には、交流の信号を整流やフィルタリングの処理によって検出していたため、回路規模が大きくなるうえ、故障検出の応答が遅くなる、といった不満な点もある。そこで、回路規模を削減するとともに故障検出の応答を速くすることが、第2課題となる。
さらに、軌道10の該当区間における列車11の進入状況によって負荷35が変動し、これに伴って負荷電流I3さらには回線電流I2が変動するため、精度の高い故障検出が難しい、という問題もある。そこで、負荷変動の影響を排除・緩和して故障検出の精度を向上させることが、第3課題となる。
In addition, the conventional switching element failure detection circuit 30 detects the AC signal by rectification or filtering processing, and thus has a dissatisfaction such that the circuit scale is increased and the response of failure detection is delayed. Therefore, it is a second problem to reduce the circuit scale and speed up the response of failure detection.
Further, there is a problem that it is difficult to detect a failure with high accuracy because the load 35 varies depending on the approach condition of the train 11 in the corresponding section of the track 10, and the load current I3 and further the line current I2 vary accordingly. Therefore, the third problem is to improve the accuracy of failure detection by eliminating / releasing the influence of load fluctuations.

本発明の切替素子故障検出回路は(解決手段1)、このような課題を解決するために創案されたものであり、交流送信信号を出力する交流信号源が一次側に接続されたトランスと、このトランスの二次側に分けて設けられ何れも前記トランスの二次側に一端が接続され他端が負荷側に接続されオンオフ(オン状態/オフ状態、閉状態/開状態、導通状態/遮断状態)の制御信号が共通している(即ち制御信号が同じか等価な)一対の切替素子と、この切替素子対に係る故障の有無を判別する故障判別部とを備えた切替素子故障検出回路において、前記切替素子が何れも並列ダイオードを有するものであり、前記切替素子を通り前記トランス及び前記負荷を外して一巡する経路に直流の照査電流を前記並列ダイオードの逆方向へ流そうとする(即ち少なくとも前記切替素子がオン状態のときには前記照査電流が前記の逆向に流れて前記経路を一巡するようになっている)照査回路が前記切替素子それぞれに対して設けられ、前記故障判別部が前記照査電流の検出値と前記制御信号の指令値とに基づいて故障判別を行うようになっている、というものである。   The switching element failure detection circuit of the present invention (Solution 1) was created to solve such a problem, and a transformer in which an AC signal source that outputs an AC transmission signal is connected to the primary side, Provided separately on the secondary side of this transformer, each one is connected to the secondary side of the transformer and the other end is connected to the load side to turn on / off (on state / off state, closed state / open state, conduction state / shut off) Switching element failure detection circuit comprising a pair of switching elements that share a common control signal (that is, the control signals are the same or equivalent) and a failure determination unit that determines the presence or absence of a failure associated with the switching element pair The switching elements each include a parallel diode, and a direct current check current is caused to flow in the reverse direction of the parallel diode through a path that passes through the switching element and removes the transformer and the load. And at least when the switching element is in the ON state, the verification current flows in the reverse direction and makes a round of the path). The failure determination is performed based on the detected value of the verification current and the command value of the control signal.

また、本発明の切替素子故障検出回路は(解決手段2)、上記解決手段1の切替素子故障検出回路であって、前記照査回路それぞれに減流抵抗が設けられており、その減流抵抗と前記故障判別部が以下のようになっている、というものである。
すなわち、前記故障判別部は、前記照査電流について前記閾値以上の電流の継続する一定状態と前記閾値を上下して電流の流れる交番状態と電流のほとんど流れないゼロ状態とを検出するのに加えて、前記制御信号がオフからオンに遷移したときに前記照査電流が前記閾値を超えるまでの時間が前記交流送信信号の周期よりも長いという遅延状態をも検出し、これらの状態に応じて故障判別を行うようになっている。
The switching element failure detection circuit according to the present invention is (the solution means 2), the switching element failure detection circuit of the solution means 1, wherein each of the check circuits is provided with a current reducing resistor, The failure determination unit is as follows.
That is, in addition to detecting a constant state in which the current equal to or higher than the threshold continues for the verification current, an alternating state in which the current flows up and down, and a zero state in which the current hardly flows, Detecting a delay state in which the time until the verification current exceeds the threshold when the control signal transitions from OFF to ON is longer than the period of the AC transmission signal, and determining a failure according to these states Is supposed to do.

また、前記減流抵抗は、その抵抗値が次の二条件を満たすように定められている。その二条件のうち一つは、前記照査電流が前記トランスの二次側へ回り込んで流れたら、そのときの前記照査電流については前記トランスの励磁インダクタンスによる過渡電流の電流変化率が時間の経過に連れて大きくなるように、前記減流抵抗の抵抗値が定められているということである。さらに、上記二条件のうち残りは、前記照査電流が前記トランスの二次側へ回り込んで流れたら、そのときの前記照査電流が前記交流送信信号の周期よりも長い時間に亘って前記閾値を下回っているように、前記減流抵抗の抵抗値が定められているということである。   The current reducing resistance is determined so that the resistance value satisfies the following two conditions. One of the two conditions is that when the verification current flows around the secondary side of the transformer, the current change rate of the transient current due to the magnetizing inductance of the transformer is the time elapsed for the verification current at that time. That is, the resistance value of the current reducing resistor is determined so as to increase with time. Further, the remaining of the above two conditions is that when the verification current flows around the secondary side of the transformer, the threshold current is set to the threshold over a period longer than the period of the AC transmission signal. That is, the resistance value of the current reducing resistor is determined so as to be lower.

その他、本発明の切替素子故障検出回路にあっては、前記故障判別部が故障判別に際して前記切替素子のうち何れが故障したかの切り分けを行うようにしても良く、そうすることにより従来よりも木目細かな種々の判別結果が得られる。   In addition, in the switching element failure detection circuit according to the present invention, the failure determination unit may determine which of the switching elements has failed when determining the failure, thereby making it more conventional than the conventional one. Various detailed discrimination results can be obtained.

このような本発明の切替素子故障検出回路にあっては(解決手段1)、従来の切替素子故障検出回路の切替素子それぞれに並列ダイオードを有するものを採用する際、さらに従来の交流信号検出用電流検出回路に代えて並列ダイオードと逆方向の直流印加方式の照査回路を切替素子毎に設け、故障検出対象の切替素子の部分の重複は別として基本的には切替対象回線の一巡経路とは別の照査用一巡経路を流れる照査電流の検出値を故障判別に用いるようにしたことにより、上述した第2課題,第3課題を解決している。   In such a switching element failure detection circuit of the present invention (Solution 1), when a switching element of the conventional switching element failure detection circuit having a parallel diode is employed, a conventional AC signal detection circuit is further used. In place of the current detection circuit, a direct current application check circuit in the reverse direction to the parallel diode is provided for each switching element. The second and third problems described above are solved by using the detected value of the verification current flowing through another verification path for failure determination.

すなわち、交流送信信号や回線電流から独立した直流電源を照査に使用していることから、負荷や回線電流が変動しても、照査電流の変化は少ないので、安定した照査が可能であり、負荷変動の影響を排除・緩和して故障検出の精度を向上させるという第3課題を解決することができる。また、照査回路では検出対象電流が交流でなく直流になっていることから、整流もフィルタリングも必要がないので、回路規模が小さくなり、応答も速くなり、回路規模を削減するとともに故障検出の応答を速くするという第2課題を解決することができる。さらに、独立の経路を持った照査回路を切替素子毎に設けるとともに各々に直流電流を独立して流すようにしたことにより、故障判別に際して切替素子対のうち何れの切替素子が故障したかを切り分けることもできる。   In other words, since a direct current power supply independent of the AC transmission signal and line current is used for checking, even if the load and line current fluctuate, there is little change in the checking current, so stable checking is possible. The third problem of improving the accuracy of fault detection by eliminating and mitigating the influence of fluctuations can be solved. In addition, since the current to be detected in the verification circuit is not direct current but direct current, there is no need for rectification or filtering, so the circuit scale is reduced, the response is faster, the circuit scale is reduced, and the fault detection response The second problem of speeding up can be solved. Furthermore, by providing a check circuit with an independent path for each switching element and allowing a direct current to flow independently for each switching element, it is possible to determine which switching element of the pair of switching elements has failed in failure determination. You can also.

また、本発明の切替素子故障検出回路にあっては(解決手段2)、故障判別に際して電流状態を「一定」と「ゼロ」に加えて「交番」でも場合分けするようになっているため、並列ダイオードの存在に起因する半波状態の回線電流が故障時に流れ、その影響で本来は直流の照査電流が交番電流状態になったとしても、その状態が峻別して検出される。そのため、並列ダイオードに回線電流が流れても的確に故障を検出するという第1課題を解決することができる。   In the switching element failure detection circuit according to the present invention (solution 2), the current state is classified into “alternate” in addition to “constant” and “zero” when determining the failure. Even if a line current in a half-wave state caused by the presence of the parallel diode flows at the time of failure and the direct current check current becomes an alternating current state due to the influence, the state is distinguished and detected. Therefore, it is possible to solve the first problem that a failure is accurately detected even when a line current flows through the parallel diode.

さらに、トランスの存在と直流の照査電流との組み合わせに起因して生じる照査電流の回り込み(後述の実施例1で詳述)が発現したときにも、故障を検出することができる。すなわち、回り込んだときの照査電流については過渡電流の電流変化率が時間の経過に連れて大きくなるように且つ長時間に亘って閾値を下回っているようにしたことにより、照査電流の立ち上がり時の遅延状態が検出可能となり、そのうえ、故障判別に際して電流状態を「一定」と「ゼロ」と「交番」に加えて「遅延」でも場合分けされるようにもしたことにより、照査電流が照査回路から出てトランスの二次側を経て流れた場合にも、その現象の発現を的確に捉えることができる。また、交流送信信号や回線電流から独立した直流電源を照査に使用していることと相俟って、交流送信信号が有るときも無いときも故障を検出することができる。   Furthermore, a failure can also be detected when a sneak current of the verification current caused by the combination of the presence of the transformer and the direct current verification current (detailed in Example 1 described later) appears. In other words, for the check current when it wraps around, the current change rate of the transient current increases as time passes and falls below the threshold for a long time, so that the check current rises. In addition to being able to detect the delay state of the current, the current state is divided into “delay” in addition to “constant”, “zero”, and “alternating” when determining the failure, so that the verification current can be detected by the verification circuit. Even if it flows out through the secondary side of the transformer, it is possible to accurately grasp the manifestation of the phenomenon. Further, in combination with the use of a DC power supply independent of the AC transmission signal and the line current for checking, it is possible to detect a failure when there is an AC transmission signal and when there is no AC transmission signal.

このような本発明の切替素子故障検出回路について、これを実施するための具体的な形態を、以下の実施例1〜4により説明する。
図1〜図4に示した実施例1は、上述した解決手段を総て具現化したものであり、図5に示した実施例2や、図6に示した実施例3、図7に示した実施例4は、その変形例である。
なお、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
With regard to such a switching element failure detection circuit of the present invention, specific modes for carrying out this will be described with reference to Examples 1 to 4 below.
The embodiment 1 shown in FIGS. 1 to 4 embodies all the above-mentioned solving means, and is shown in the embodiment 2 shown in FIG. 5, the embodiment 3 shown in FIG. Example 4 is a modification thereof.
In addition, since the same code | symbol was attached | subjected and shown to the component similar to the past at the time of those illustrations, the overlapping description is abbreviate | omitted and it demonstrates below centering on difference with the past.

本発明の切替素子故障検出回路の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、切替素子故障検出回路50の構造を示し、(a)が基本回路図、(b)が判別表である。また、図2は、(a)が照査回路54〜56の詳細回路図であって正常時の照査電流Ia,Ibそれぞれの一巡経路(照査用一巡経路)を二点鎖線で示し、(b)が切替素子33aオフ故障時の照査電流Iaの回り込み経路を二点鎖線で示し、(c)が切替素子33aオフ故障時の照査電流Ia及び検出値J3の波形例である。   A specific configuration of the switching element failure detection circuit according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of the switching element failure detection circuit 50, where (a) is a basic circuit diagram and (b) is a discrimination table. FIG. 2A is a detailed circuit diagram of the verification circuits 54 to 56, and shows one-round paths (round-path for verification) of the verification currents Ia and Ib in a normal state by two-dot chain lines. Shows the wraparound path of the verification current Ia when the switching element 33a is off and is indicated by a two-dot chain line, and (c) is a waveform example of the verification current Ia and the detection value J3 when the switching element 33a is off.

この切替素子故障検出回路50が既述した従来例の切替素子故障検出回路30と相違するのは、切替素子対33の切替素子33a,33bが何れもボディダイオードD1(並列ダイオード)を有する半導体素子になっている点と、切替素子33aに対して新たに照査回路51〜53が設けられた点と、切替素子33bに対し電流検出回路36に代えて照査回路54〜56が設けられた点と、故障判別部37が拡張されて故障判別部57になった点である。なお、既述した交流信号源31とトランス32と切替素子対33とトランス34と負荷35とを具えており制御信号S1に従って選択的に交流送信信号を伝送するようになっている点は、切替素子故障検出回路30と同じである。   The switching element failure detection circuit 50 is different from the conventional switching element failure detection circuit 30 described above in that the switching elements 33a and 33b of the switching element pair 33 both have body diodes D1 (parallel diodes). A point in which verification circuits 51 to 53 are newly provided for the switching element 33a, and a point in which verification circuits 54 to 56 are provided in place of the current detection circuit 36 for the switching element 33b. The failure discriminating unit 37 is expanded to become the fault discriminating unit 57. The AC signal source 31, the transformer 32, the switching element pair 33, the transformer 34, and the load 35 described above are provided so that an AC transmission signal is selectively transmitted according to the control signal S 1. This is the same as the element failure detection circuit 30.

照査回路51〜53は(図1(a)参照)、絶縁型直流電源51と電流検出回路52と減流抵抗53を具えたものであり、切替素子33aに対して設けられ、絶縁型直流電源51と切替素子33aと減流抵抗53と電流検出回路52とをその順に通って一巡する電流経路も具えている。その照査用一巡経路から、トランス32と負荷35と負荷側トランス34は、外れている。また、絶縁型直流電源51の電圧印加方向が切替素子33aのボディダイオードD1の順方向とは逆になっており、そのため、切替素子33aがオンして導通状態になれば、直流の照査電流Iaが上記経路を一巡して流れる(二点鎖線参照)。電流検出回路52はその照査電流Iaを検出して二値化することで検出値J3を生成するようになっている。   The check circuits 51 to 53 (see FIG. 1A) are provided with an insulation type DC power source 51, a current detection circuit 52, and a current reducing resistor 53, and are provided for the switching element 33a. 51, the switching element 33a, the current reducing resistor 53, and the current detection circuit 52 are provided in the order of a current path. The transformer 32, the load 35, and the load-side transformer 34 are out of the round circuit for verification. In addition, the voltage application direction of the isolated DC power supply 51 is opposite to the forward direction of the body diode D1 of the switching element 33a. Therefore, if the switching element 33a is turned on and becomes conductive, the direct current check current Ia Flows around the above path (see two-dot chain line). The current detection circuit 52 detects the verification current Ia and binarizes it to generate a detection value J3.

照査回路54〜56は(図1(a)参照)、絶縁型直流電源54と電流検出回路55と減流抵抗56を具えたものであり、切替素子33bに対して設けられ、絶縁型直流電源54と切替素子33bと減流抵抗56と電流検出回路55とをその順に通って一巡する電流経路を具えている。その照査用一巡経路からも、トランス32と負荷35と負荷側トランス34は、外れている。やはり絶縁型直流電源54の電圧印加方向が切替素子33bのボディダイオードD1の順方向とは逆なので、切替素子33bがオンして導通状態になっていれば直流の照査電流Ibが上記経路を一巡して流れる(二点鎖線参照)。電流検出回路55はその照査電流Ibを検出して二値化することで検出値J4を生成するようになっている。   The check circuits 54 to 56 (see FIG. 1A) include an isolated DC power supply 54, a current detection circuit 55, and a current reducing resistor 56, and are provided for the switching element 33b. 54, the switching element 33b, the current reducing resistor 56, and the current detection circuit 55 are provided in the order of a current path. The transformer 32, the load 35, and the load-side transformer 34 are also removed from the verification round path. Since the voltage application direction of the isolated DC power supply 54 is also opposite to the forward direction of the body diode D1 of the switching element 33b, the DC check current Ib makes a round of the above path if the switching element 33b is turned on and becomes conductive. (See the two-dot chain line). The current detection circuit 55 detects the verification current Ib and binarizes it to generate a detection value J4.

このように照査回路51〜53と照査回路54〜56は付設先こそ異なれ同一構造の回路なので、照査回路54〜56について更に詳述すると(図2(a)参照)、トランス32,34間を流れる回線電流I2が照査電流Ibの経路に流入するのを防止するために、照査電流Ibの経路が回線電流I2の経路から分岐したところに、逆流防止ダイオードD2,D3が設けられる。また、電流検出回路55は、例えば、分圧や絶縁等のため分流抵抗55aとフォトカプラ55bとの直列回路を減流抵抗56に並列接続し、その電流出力をフォトカプラ負荷抵抗55cで電圧信号にして取り出し、それをコンパレータ55eで故障検出閾値電流Ie対応の故障検出閾値電圧Vrと比較して二値化することで、照査電流Ibの検出値J4を生成するようになっている。また、フォトカプラ55bのCTR(電流伝達率)の温度変化や経年変化が懸念される場合は抵抗55cとコンパレータ55eとの間に適宜なCTR追従回路55dが設けられる。   As described above, the verification circuits 51 to 53 and the verification circuits 54 to 56 are different in their attachment destinations and have the same structure. Therefore, the verification circuits 54 to 56 will be described in more detail (see FIG. 2A). In order to prevent the flowing line current I2 from flowing into the path of the verification current Ib, backflow prevention diodes D2 and D3 are provided where the path of the verification current Ib branches from the path of the line current I2. In addition, the current detection circuit 55 connects, for example, a series circuit of a shunt resistor 55a and a photocoupler 55b in parallel to the current reducing resistor 56 for voltage division, insulation, and the like, and the current output is a voltage signal by the photocoupler load resistor 55c. The detected value J4 of the verification current Ib is generated by comparing with the failure detection threshold voltage Vr corresponding to the failure detection threshold current Ie and binarizing it with the comparator 55e. Further, when there is a concern about temperature change or aging change of CTR (current transmission rate) of the photocoupler 55b, an appropriate CTR follower circuit 55d is provided between the resistor 55c and the comparator 55e.

ところで、これらの照査回路が流す照査電流Ia,Ibについては、切替素子対33が正常であれば(図2(a)参照)照査電流Iaは照査回路51〜53の一巡経路を流れ(二点鎖線参照)照査電流Ibは照査回路54〜56の一巡経路を流れ(二点鎖線参照)それぞれの照査回路にとどまるが、故障状態によっては各照査回路から出てトランス32,34を流れることもある(照査電流の回り込み現象)。この現象を具体例で説明するため、切替素子33bは正常であるが切替素子33aがオフ故障(遮断継続)したとすると(図2(b)参照)、制御信号S1の指令値がオンになると切替素子33bはオン(ON)して導通状態になるが切替素子33aは遮断状態のままなので、照査電流Iaが絶縁型直流電源51からトランス32の二次側へ回り込んで流れ更に切替素子33bやトランス34の一次側を経て減流抵抗53を流れる。このような照査電流の回り込みを検出可能とするために、切替素子故障検出回路50では、照査回路51〜53の照査電流Ia及び照査回路54〜56の照査電流Ibの遷移状態を次のように規制している。   By the way, with respect to the verification currents Ia and Ib flowing through these verification circuits, if the switching element pair 33 is normal (see FIG. 2A), the verification current Ia flows through one circuit of the verification circuits 51 to 53 (two points). (Refer to chain line) The verification current Ib flows in one circuit of the verification circuits 54 to 56 (refer to the two-dot chain line). However, depending on the failure state, the verification current Ib may flow out of each verification circuit and flow through the transformers 32 and 34. (Checking current wraparound phenomenon). In order to explain this phenomenon with a specific example, assuming that the switching element 33b is normal but the switching element 33a is in an off-failure state (continuation of interruption) (see FIG. 2B), the command value of the control signal S1 is turned on. Since the switching element 33b is turned on (ON) and becomes conductive, the switching element 33a remains in the cut-off state, so that the verification current Ia flows from the insulated DC power supply 51 to the secondary side of the transformer 32 and further switches the switching element 33b. The current flows through the current reducing resistor 53 through the primary side of the transformer 34. In order to be able to detect such a sneak current of the check current, the switching element failure detection circuit 50 changes the transition states of the check current Ia of the check circuits 51 to 53 and the check current Ib of the check circuits 54 to 56 as follows. It is regulated.

先ず、照査電流Iaについては、切替素子33aがオフ故障した状況下で制御信号S1の指令値に応じて切替素子33bが導通したときに照査電流Iaが絶縁型直流電源51からトランス32の二次側へ回り込んで流れ更に切替素子33bやトランス34の一次側を経て戻り減流抵抗53を流れたら(図2(b)参照)、そのとき(図2(c)参照)、トランス32の励磁インダクタンスによる過渡電流(過渡状態の照査電流Ia)の電流変化率が時間の経過に連れて大きくなるように(時刻t1〜t3参照)、減流抵抗53の抵抗値が定められている。更に、その過渡状態ではそのときの照査電流Iaが交流送信信号I1の周期よりも(望ましくは数周期よりも)長い時間に亘って故障検出閾値電流Ieを下回っているように(時刻t1〜t2参照)、減流抵抗53の抵抗値が定められている。   First, regarding the verification current Ia, when the switching element 33b is turned on in accordance with the command value of the control signal S1 in a situation where the switching element 33a is in an off-failure state, the verification current Ia is changed from the insulated DC power supply 51 to the secondary of the transformer 32. When the current flows back through the switching element 33b and the primary side of the transformer 34 and flows back through the current reducing resistor 53 (see FIG. 2B), then (see FIG. 2C), the transformer 32 is excited. The resistance value of the current reducing resistor 53 is determined so that the current change rate of the transient current due to the inductance (transient verification current Ia) increases with time (see times t1 to t3). Further, in the transient state, the verification current Ia at that time is lower than the failure detection threshold current Ie over a longer time (preferably more than several cycles) than the cycle of the AC transmission signal I1 (time t1 to t2). The resistance value of the current reducing resistor 53 is determined.

回り込み時の照査電流Iaについて更に詳述すると(図2(c)参照)、この電流は、トランス32,34の並列抵抗分による初期電流と(時刻t1近傍)、トランス32,34の励磁インダクタンスをLとし減流抵抗53の抵抗値をRとしたとき時定数τ=L/Rで増加する過渡応答電流と(時刻t1〜t2近傍)、トランス32,34の飽和による急激な上昇電流と(時刻t2〜t3近傍)に大別されるが、故障検出閾値電流Ieと標準電流Isとの差を十分に確保するために初期電流はなるべく小さく抑えたいので、並列抵抗分は大きくし減流抵抗53の抵抗値Rは小さくするのが望ましい。また、時定数τを大きくすることが求められるので、励磁インダクタンスLは大きくし減流抵抗53の抵抗値Rは小さくするのが望ましい。さらに、照査電流Iaが故障検出閾値電流Ieを下回っている時間を十分に確保するため、上昇電流に至るまでの時間を長くするには、トランス32,34に磁束飽和密度の高いものを採用したり、減流抵抗53の抵抗値Rを大きくして照査電流Iaを小さくのが望ましい。これらの条件を勘案して減流抵抗53の抵抗値が定められている。   The verification current Ia at the time of wraparound will be described in further detail (see FIG. 2 (c)). This current represents the initial current due to the parallel resistance of the transformers 32 and 34 (in the vicinity of time t1) and the exciting inductance of the transformers 32 and 34. When L is L and the resistance value of the current reducing resistor 53 is R, a transient response current that increases with a time constant τ = L / R (near times t1 to t2), and a sudden rise current due to saturation of the transformers 32 and 34 (time) In order to ensure a sufficient difference between the failure detection threshold current Ie and the standard current Is, the initial current is desired to be as small as possible. Therefore, the parallel resistance is increased and the current reducing resistance 53 It is desirable to reduce the resistance value R. Further, since it is required to increase the time constant τ, it is desirable to increase the exciting inductance L and decrease the resistance value R of the current reducing resistor 53. Furthermore, in order to sufficiently secure the time during which the verification current Ia is lower than the failure detection threshold current Ie, in order to lengthen the time until the rising current is reached, transformers 32 and 34 having high magnetic flux saturation density are employed. Alternatively, it is desirable to increase the resistance value R of the current reducing resistor 53 to reduce the verification current Ia. Considering these conditions, the resistance value of the current reducing resistor 53 is determined.

また、照査電流Ibについては、切替素子33bがオフ故障した状況下で制御信号S1の指令値に応じて切替素子33aが導通したときに照査電流Ibが絶縁型直流電源54からトランス32の二次側へ回り込んで流れ更に切替素子33aやトランス34の一次側を経て戻り減流抵抗56を流れたら、そのとき、トランス32の励磁インダクタンスによる過渡電流(過渡状態の照査電流Ib)の電流変化率が時間の経過に連れて大きくなるように、減流抵抗56の抵抗値が定められている。さらに、その過渡状態ではそのときの照査電流Ibが交流送信信号I1の周期よりも(望ましくは数周期よりも)長い時間に亘って故障検出閾値電流Ieを下回っているように、減流抵抗56の抵抗値が定められている。照査電流Ibに関するこれらの条件は照査電流Iaのと同様なので、減流抵抗53,56の抵抗値は同じに定められる。   As for the verification current Ib, when the switching element 33a is turned on in accordance with the command value of the control signal S1 in a situation where the switching element 33b is in an off-failure state, the verification current Ib is changed from the insulation type DC power supply 54 to the secondary of the transformer 32. When the current flows back through the switching element 33a and the primary side of the transformer 34 and then flows through the current reducing resistor 56, the current change rate of the transient current (transient check current Ib) due to the excitation inductance of the transformer 32 is obtained. The resistance value of the current reducing resistor 56 is determined so that becomes larger as time elapses. Further, in the transient state, the current reducing resistance 56 is such that the checking current Ib at that time is lower than the failure detection threshold current Ie over a period longer than the period of the AC transmission signal I1 (preferably more than several periods). The resistance value is determined. Since these conditions regarding the verification current Ib are the same as those of the verification current Ia, the resistance values of the current reducing resistors 53 and 56 are determined to be the same.

要するに、次に述べる故障判別部61での遅延状態検出を有効にするような照査電流Ia,Ibを流せるよう、照査回路51〜53,54〜56における絶縁型直流電源51,54の電圧や減流抵抗53,56の抵抗値さらには故障検出閾値電流Ieの値が設定されている。
このような照査電流Ia,Ibの典型例は、トランス32,34が従来のままとした場合、電圧が6V〜12Vの何れかで、電流が50mA〜100mAの何れかとなる。また、そのとき、減流抵抗53,56の典型的な抵抗値は、50Ω〜100Ωとなる。
In short, the voltage of the isolated DC power sources 51 and 54 in the verification circuits 51 to 53 and 54 to 56 is reduced so that the verification currents Ia and Ib that enable the detection of the delay state in the failure determination unit 61 described below can be made to flow. The resistance values of the flow resistors 53 and 56 and the value of the failure detection threshold current Ie are set.
As a typical example of such checking currents Ia and Ib, when the transformers 32 and 34 are left as they are, the voltage is 6 V to 12 V and the current is 50 mA to 100 mA. At that time, typical resistance values of the current reducing resistors 53 and 56 are 50Ω to 100Ω.

故障判別部57は、上述の検出値J3,J4と制御信号S1の指令値とを入力し、これらの入力値に基づいて切替素子対33が正常か故障かの故障判別を行うものであるが(図1(a)参照)、その故障判別に際して切替素子33a,33bのうち何れが故障したか等の切り分けを行うために、照査電流Iaの検出値J3や照査電流Ibの検出値J4の状態を「一定」状態と「交番」状態と「ゼロ」状態と「遅延」状態との何れかに分類するとともに、切替素子33a,33bそれぞれについて「正常」(判別表では○)か,「故障」(判別表では×)か,「他の異常」(判別表では−)かといった判別結果を出すようになっている(図1(b)の判別表を参照)。   The failure discriminating unit 57 receives the detection values J3 and J4 and the command value of the control signal S1, and determines whether the switching element pair 33 is normal or fault based on these input values. (See FIG. 1 (a)), the state of the detection value J3 of the verification current Ia and the detection value J4 of the verification current Ib in order to determine which one of the switching elements 33a and 33b has failed in determining the failure. Are classified into one of “constant” state, “alternating” state, “zero” state, and “delayed” state, and “normal” (◯ in the discrimination table) or “failure” for each of the switching elements 33a and 33b. A discrimination result such as (X in the discrimination table) or “other abnormality” (− in the discrimination table) is output (see the discrimination table in FIG. 1B).

検出値J3,J4の「一定」状態は、照査電流Ia,Ibについて故障検出閾値電流Ie以上の電流が継続する状態に該当し、検出値J3,J4の「ゼロ」状態は、照査電流Ia,Ibがほとんど流れない状態に該当し、検出値J3,J4の「交番」状態は、照査電流Ia,Ibが故障検出閾値電流Ieを上下しながら流れる状態に該当し、検出値J3,J4の「遅延」状態は、制御信号S1の指令値がオフからオンに遷移したときに照査電流Ia,Ibが故障検出閾値電流Ieを超えるまでの時間が交流送信信号I1の周期よりも長いという状態に該当している(図2(c)の波形J3参照)。   The “constant” state of the detection values J3 and J4 corresponds to a state in which the current exceeding the failure detection threshold current Ie continues for the verification currents Ia and Ib, and the “zero” state of the detection values J3 and J4 indicates the verification current Ia, This corresponds to a state in which Ib hardly flows, and the “alternate” state of the detection values J3 and J4 corresponds to a state in which the check currents Ia and Ib flow while moving up and down the failure detection threshold current Ie. The “delayed” state corresponds to a state in which the time until the check currents Ia and Ib exceed the failure detection threshold current Ie when the command value of the control signal S1 changes from OFF to ON is longer than the cycle of the AC transmission signal I1. (See waveform J3 in FIG. 2C).

故障判別部57の判別表では(図1(b)参照)、制御信号S1の指令値がオン(ON)で検出値J3も検出値J4も「一定」のとき切替素子33aも切替素子33bも「○正常」と判定され、制御信号S1の指令値がオン(ON)で検出値J3が「一定」で検出値J4が「交番」のとき切替素子33aは「○正常」だが切替素子33bは「×故障」と判定され、制御信号S1の指令値がオン(ON)で検出値J3が「交番」で検出値J4が「一定」のとき切替素子33aは「×故障」と判定され切替素子33bは「○正常」と判定され、制御信号S1の指令値がオン(ON)で検出値J3も検出値J4も「交番」のとき切替素子33aも切替素子33bも「×故障」と判定され、制御信号S1の指令値がオン(ON)で検出値J3も検出値J4も「ゼロ」のとき切替素子33aも切替素子33bも「×故障」と判定され、制御信号S1の指令値がオン(ON)で検出値J3が「遅延」で検出値J4が「一定」のとき切替素子33aは「×故障」と判定され切替素子33bは「○正常」と判定されるようになっている。   In the determination table of the failure determination unit 57 (see FIG. 1B), when the command value of the control signal S1 is on (ON) and the detection value J3 and the detection value J4 are “constant”, both the switching element 33a and the switching element 33b When it is determined that “○ is normal”, the command value of the control signal S1 is ON, the detected value J3 is “constant”, and the detected value J4 is “alternating”, the switching element 33a is “normal” but the switching element 33b is When it is determined as “× failure”, the command value of the control signal S1 is ON, the detection value J3 is “alternate”, and the detection value J4 is “constant”, the switching element 33a is determined as “× failure” and the switching element 33b is determined to be “normal”, and when the command value of the control signal S1 is ON (ON) and the detection value J3 and the detection value J4 are “alternate”, both the switching element 33a and the switching element 33b are determined to be “× failure”. When the command value of the control signal S1 is ON (ON), the detected value J3 is also detected value J. Is also “zero”, both the switching element 33a and the switching element 33b are determined to be “× failure”, the command value of the control signal S1 is on (ON), the detection value J3 is “delayed”, and the detection value J4 is “constant”. The switching element 33a is determined to be “× failure”, and the switching element 33b is determined to be “normal”.

また、制御信号S1の指令値がオフ(OFF)で検出値J3も検出値J4も「一定」のとき切替素子33aも切替素子33bも「×故障」と判定され、制御信号S1の指令値がオフ(OFF)で検出値J3が「一定」で検出値J4が「交番」のとき切替素子33aは「×故障」と判定され切替素子33bは「○正常」と判定され、制御信号S1の指令値がオフ(OFF)で検出値J3が「交番」で検出値J4が「一定」のとき切替素子33aは「○正常」だが切替素子33bは「×故障」と判定され、制御信号S1の指令値がオフ(OFF)で検出値J3も検出値J4も「交番」のとき切替素子33aも切替素子33bも「×故障」と判定され、制御信号S1の指令値がオフ(OFF)で検出値J3も検出値J4も「ゼロ」のとき切替素子33aも切替素子33bも「○正常」と判定されるようになっている。その他の場合には、「−他の異常」と判定されるようになっている。   Further, when the command value of the control signal S1 is OFF and the detection value J3 and the detection value J4 are “constant”, both the switching element 33a and the switching element 33b are determined as “× failure”, and the command value of the control signal S1 is When the detection value J3 is OFF and the detection value J3 is “constant” and the detection value J4 is “alternating”, the switching element 33a is determined as “× Fault”, the switching element 33b is determined as “normal”, and the control signal S1 command When the value is OFF, the detected value J3 is “alternating”, and the detected value J4 is “constant”, the switching element 33a is determined to be “normal” but the switching element 33b is determined to be “× failure”, and the control signal S1 command When the detection value J3 and the detection value J4 are “alternating” when the value is off (OFF), both the switching element 33a and the switching element 33b are determined as “× failure”, and the command value of the control signal S1 is off (OFF). Switching element 33 when both J3 and detected value J4 are "zero" It is adapted to be also determined switching element 33b as "○ normal" as well. In other cases, it is determined as “−another abnormality”.

この実施例1の切替素子故障検出回路50について、その使用態様及び動作を、図面を引用して説明する。   The use mode and operation of the switching element failure detection circuit 50 according to the first embodiment will be described with reference to the drawings.

図3は、交流送信信号I1が有るときの動作を示し、(a)が切替素子OFF時の照査電流Iaとデジタル検出値J3の波形例、(b)が切替素子ON時の照査電流Iaとデジタル検出値J3の波形例、(c)が片側の切替素子33aオフ故障時の回路図、(d)が片側の切替素子33aオフ故障時の照査電流Iaとデジタル検出値J3の波形例、(e)が判別状況を典型例について纏めた表である。また、図4は、交流送信信号I1が無いときの動作等を示し、(a)が切替素子OFF時の照査電流Iaと検出値J3の波形例、(b)が切替素子ON時の照査電流Iaと検出値J3の波形例、(c)が片側の切替素子33aオフ故障時の照査電流Iaと検出値J3の波形例、(d)が判別状況を典型例について纏めた表である。   FIG. 3 shows the operation when the AC transmission signal I1 is present. (A) is a waveform example of the verification current Ia and the digital detection value J3 when the switching element is OFF, and (b) is the verification current Ia when the switching element is ON. Waveform example of digital detection value J3, (c) is a circuit diagram when one side switching element 33a is off, (d) is a waveform example of verification current Ia and digital detection value J3 when one side switching element 33a is off, ( e) is a table summarizing the discrimination status for typical examples. 4 shows the operation when there is no AC transmission signal I1, etc. (a) is a waveform example of the verification current Ia and the detected value J3 when the switching element is OFF, and (b) is the verification current when the switching element is ON. A waveform example of Ia and the detected value J3, (c) is a table summarizing the verification current Ia and the detected value J3 at the time of one-side switching element 33a off failure, and (d) is a table summarizing the discrimination status for a typical example.

先ず、図3を参照しながら交流送信信号I1が有るときの動作等を説明する。
切替素子33a,33bが何れも正常で制御信号S1の指令値がオフ(OFF)のとき、回線電流I2は流れない。照査電流Ia,Ibも流れないので検出値J3,J4が「ゼロ」になり(図3(a)参照)、切替素子33a,33bは何れも「正常」と判別される(図3(e)の状態2)。
切替素子33a,33bが何れも正常で制御信号S1の指令値がオン(ON)のとき、回線電流I2は正常に流れる。照査電流Ia,Ibも流れ、これらは何れも故障検出閾値電流Ieを超える標準電流Isを維持するので検出値J3,J4が「一定」になり(図3(b)参照)、切替素子33a,33bは共に「正常」と判別される(図3(e)の状態1)。
First, an operation when the AC transmission signal I1 is present will be described with reference to FIG.
When the switching elements 33a and 33b are both normal and the command value of the control signal S1 is off (OFF), the line current I2 does not flow. Since the check currents Ia and Ib do not flow, the detection values J3 and J4 become “zero” (see FIG. 3A), and the switching elements 33a and 33b are both determined to be “normal” (FIG. 3E). State 2).
When the switching elements 33a and 33b are both normal and the command value of the control signal S1 is ON, the line current I2 flows normally. The checking currents Ia and Ib also flow, and since both maintain the standard current Is exceeding the failure detection threshold current Ie, the detection values J3 and J4 become “constant” (see FIG. 3B), and the switching elements 33a, Both 33b are determined to be “normal” (state 1 in FIG. 3E).

切替素子33aがオフ故障(遮断継続、オープン故障、オフ状態・開状態・遮断状態を採り続ける故障)で切替素子33bが正常で制御信号S1の指令値がオン(ON)のとき、回線電流I2は、オフ(OFF)している切替素子33a側のボディダイオードD1を介して流れるので(図3(c)参照)半波状態になる。その影響を受けて照査電流Iaは回線電流I2と同じ周期で故障検出閾値電流Ieを上下するので検出値J3が「交番」になる(図3(d)参照)。これに対し、オン(ON)している切替素子33b側の照査電流Ibは、標準電流Isを維持するので検出値J4が「一定」になる。そして、このような制御信号S1の指令値,検出値J3,J4から判別表に基づいて切替素子33a,33bがそれぞれ「故障」,「正常」と切り分けて判別される(図3(e)の状態4)。切替素子33aが正常で切替素子33bがオフ故障で制御信号S1の指令値がオン(ON)のときも同様にして的確に切り分け判別される。   When the switching element 33a is OFF failure (continuation of interruption, open failure, failure that continues to take off state / open state / interruption state) and the switching element 33b is normal and the command value of the control signal S1 is ON (ON), the line current I2 Flows through the body diode D1 on the side of the switching element 33a that is turned off (see FIG. 3C), so that a half-wave state is reached. As a result, the verification current Ia increases and decreases the failure detection threshold current Ie in the same cycle as the line current I2, so that the detection value J3 becomes “alternate” (see FIG. 3D). On the other hand, the verification current Ib on the side of the switching element 33b that is on (ON) maintains the standard current Is, and thus the detection value J4 becomes “constant”. Then, the switching elements 33a and 33b are discriminated as “failure” and “normal” from the command value and detection values J3 and J4 of the control signal S1 based on the discrimination table (see FIG. 3E). State 4). Similarly, when the switching element 33a is normal, the switching element 33b is off-failure, and the command value of the control signal S1 is on (ON), it is accurately and similarly determined.

切替素子33aがオン故障(導通継続、ショート故障、オン状態・閉状態・導通状態を採り続ける故障)で切替素子33bが正常で制御信号S1の指令値がオフ(OFF)のとき(図3(e)の状態6)、回線電流I2は「半波」になり、照査電流Ia及び検出値J3が「一定」になり、照査電流Ib及び検出値J4が「交番」になるので、この場合も判別表に基づき切替素子33a,33bがそれぞれ「故障」,「正常」と切り分けて判別される。切替素子33aが正常で切替素子33bがオン故障で制御信号S1の指令値がオフ(OFF)のときも同様にして的確に切り分け判別される。   When the switching element 33a is normal due to an on-failure (continuation continuity, short-circuit failure, failure in which the on-state / closed state / continuity state is maintained) and the command value of the control signal S1 is off (OFF) (FIG. 3 ( e) State 6), the line current I2 becomes “half wave”, the verification current Ia and the detection value J3 become “constant”, and the verification current Ib and the detection value J4 become “alternate”. Based on the discrimination table, the switching elements 33a and 33b are discriminated as “failure” and “normal”, respectively. Similarly, when the switching element 33a is normal, the switching element 33b is on-failure, and the command value of the control signal S1 is off (OFF), the determination is accurately performed in the same manner.

切替素子33aがオン故障(導通継続)で切替素子33bが正常で制御信号S1の指令値がオン(ON)のとき(図3(e)の状態3)、回線電流I2は全波状態で流れ、照査電流Ia,Ibが何れも標準電流Isレベルで流れるので検出値J3,J4が「一定」になり、切替素子33a,33bは何れも故障でなく「正常」と判別されてしまうが、この場合(注記1)、指令値がオンなので切替素子33a,33bがオンしたままでも回路の機能上は問題が無く、上述したような制御信号S1の指令値がオフになったときに(図3(e)の状態6)故障が検出される。   When the switching element 33a is ON failure (continuation of conduction), the switching element 33b is normal, and the command value of the control signal S1 is ON (state 3 in FIG. 3E), the line current I2 flows in the full wave state. Since the verification currents Ia and Ib both flow at the standard current Is level, the detection values J3 and J4 become “constant”, and the switching elements 33a and 33b are determined to be “normal” and not faulty. In the case (note 1), since the command value is on, there is no problem in the function of the circuit even when the switching elements 33a and 33b are kept on, and the command value of the control signal S1 as described above is turned off (FIG. 3). (E) State 6) A failure is detected.

切替素子33aがオフ故障(遮断継続)で切替素子33bが正常で制御信号S1の指令値がオフ(OFF)のとき(図3(e)の状態5)、回線電流I2は流れず、照査電流Ia,Ibも流れないので検出値J3,J4が「ゼロ」になり、切替素子33a,33bは何れも「正常」と判別されてしまうが、この場合(注記2)、指令値がオフなので切替素子33a,33bがオフしたままでも回路の機能上は問題が無く、上述したような制御信号S1の指令値がオンになったときに(図3(e)の状態4)故障が検出される。
その他の故障状態である両素子同時故障や切替素子33b単独故障については繰り返しとなる説明を割愛するが、切替素子対33の故障判別が的確に行われ、その際、切替素子33a,33bのうち何れが故障したかの切り分けもなされる。
When the switching element 33a is off-failure (continuation of interruption), the switching element 33b is normal, and the command value of the control signal S1 is OFF (state 5 in FIG. 3E), the line current I2 does not flow and the verification current Since Ia and Ib do not flow, the detection values J3 and J4 become “zero”, and the switching elements 33a and 33b are both determined to be “normal”. Even if the elements 33a and 33b remain off, there is no problem in the function of the circuit, and a failure is detected when the command value of the control signal S1 as described above is turned on (state 4 in FIG. 3 (e)). .
Other simultaneous failure of both elements and single failure of the switching element 33b will be omitted, but the failure determination of the switching element pair 33 is performed accurately. At that time, of the switching elements 33a and 33b, It is also determined which one has failed.

次に、図4を参照しながら交流送信信号I1が無いときの動作等を説明する。この場合、何れの状態でも回線電流I2は流れないが、照査電流Ia,Ibは状況に応じて流れるので、切替素子対33の故障検出が可能である。
切替素子33a,33bが何れも正常で制御信号S1の指令値がオフ(OFF)のとき(図4(d)の状態2)、照査電流Ia,Ibが流れないので検出値J3,J4が「ゼロ」になり(図4(a)参照)、切替素子33a,33bは何れも「正常」と判別される。
切替素子33a,33bが何れも正常で制御信号S1の指令値がオン(ON)のとき(図4(d)の状態1)、照査電流Ia,Ibが何れも標準電流Isレベルを維持して流れるので検出値J3,J4が「一定」になり(図4(b)参照)、切替素子33a,33bは共に「正常」と判別される。
Next, the operation when there is no AC transmission signal I1 will be described with reference to FIG. In this case, the line current I2 does not flow in any state, but the verification currents Ia and Ib flow depending on the situation, so that the failure of the switching element pair 33 can be detected.
When the switching elements 33a and 33b are both normal and the command value of the control signal S1 is OFF (state 2 in FIG. 4 (d)), since the verification currents Ia and Ib do not flow, the detection values J3 and J4 are “ It becomes “zero” (see FIG. 4A), and both the switching elements 33a and 33b are determined to be “normal”.
When the switching elements 33a and 33b are both normal and the command value of the control signal S1 is ON (state 1 in FIG. 4D), the verification currents Ia and Ib both maintain the standard current Is level. As a result, the detection values J3 and J4 become “constant” (see FIG. 4B), and both the switching elements 33a and 33b are determined to be “normal”.

切替素子33aがオフ故障(遮断継続)で切替素子33bが正常で制御信号S1の指令値がオン(ON)のとき(図4(d)の状態4)、オンしている切替素子33b側の照査電流Ibは、標準電流Isを維持するので検出値J4が「一定」になる。
これに対し、故障でオフしている切替素子33a側の照査電流Iaは、本来の経路上の切替素子33aを通ることができず、迂回経路に回り込む。すなわち(図3(c)参照)、交流信号源側トランス32と切替素子33bと負荷側トランス34を通る不所望な迂回経路を通って照査電流Iaが流れる。このとき、トランス32等のインダクタンスによって照査電流Iaの立ち上がりが大きく鈍らされる。
When the switching element 33a is OFF failure (continuous interruption), the switching element 33b is normal, and the command value of the control signal S1 is ON (state 4 in FIG. 4 (d)), Since the verification current Ib maintains the standard current Is, the detection value J4 becomes “constant”.
On the other hand, the verification current Ia on the side of the switching element 33a which is turned off due to a failure cannot pass through the switching element 33a on the original path, and goes around the detour path. In other words (see FIG. 3C), the verification current Ia flows through an undesired detour path passing through the AC signal source transformer 32, the switching element 33b, and the load transformer 34. At this time, the rise of the verification current Ia is greatly blunted by the inductance of the transformer 32 and the like.

そのため(図4(c)左側部分を参照)、制御信号S1の指令値がオフからオンになったとき、照査電流Iaの立ち上がり波形では、負荷側の並列抵抗成分などによって開始時t1に発現する僅かな急速立上りは別として(もとよりそれが故障検出閾値電流Ieを超えることがないよう絶縁型直流電源51,54の電圧や減流抵抗53,56の抵抗値が設定されているので)、ゆっくり上昇し、故障検出閾値電流Ieに達するのは、交流送信信号I1の一周期以上が過ぎた頃t2になる。その後は故障検出閾値電流Ieを下回ることなく標準電流Isまで上昇する(t3)。   Therefore (see the left part of FIG. 4 (c)), when the command value of the control signal S1 is switched from OFF to ON, the rising waveform of the verification current Ia appears at the start time t1 due to the parallel resistance component on the load side and the like. Apart from a slight rapid rise (because the voltage of the insulation type DC power supplies 51 and 54 and the resistance value of the current reducing resistors 53 and 56 are set so as not to exceed the failure detection threshold current Ie), slowly It rises and reaches the failure detection threshold current Ie at t2 when one cycle or more of the AC transmission signal I1 has passed. After that, it rises to the standard current Is without falling below the failure detection threshold current Ie (t3).

そして、制御信号S1の指令値のオフからオンへの遷移タイミングと検出値J4の対応遷移タイミングとの遅延時間が交流送信信号I1の周期よりも長くなって、検出値J3が「遅延」になる(図4(c)右側部分を参照)。
このため、故障判別部57の入力状態は、制御信号S1の指令値がオン(ON)で検出値J3が「遅延」で検出値J4が「一定」となるが、そのとき、故障判別部57の判別表に基づいて、切替素子33aは「故障」で切替素子33aは「正常」と切り分けて判別される。
Then, the delay time between the OFF-ON transition timing of the command value of the control signal S1 and the corresponding transition timing of the detection value J4 becomes longer than the cycle of the AC transmission signal I1, and the detection value J3 becomes “delayed”. (See the right part of FIG. 4 (c)).
For this reason, the input state of the failure determination unit 57 is such that the command value of the control signal S1 is ON (ON), the detection value J3 is “delayed”, and the detection value J4 is “constant”. Based on the determination table, the switching element 33a is determined to be “failed” and the switching element 33a is determined to be “normal”.

切替素子33aがオン故障(導通継続)で切替素子33bが正常で制御信号S1の指令値がオフ(OFF)のとき(図4(d)の状態6)、故障でオンしたままの切替素子33a側の照査電流Iaが標準電流Isを維持するので検出値J3が「一定」になる。切替素子33bは正常にオフするので、照査電流Ibが流れないので、検出値J4は「ゼロ」になる。そして、故障判別部57の判別表に基づき切替素子33a,33bがそれぞれ「故障」,「正常」と切り分けて判別される。   When the switching element 33a is ON failure (continuation of conduction), the switching element 33b is normal, and the command value of the control signal S1 is OFF (state 6 in FIG. 4D), the switching element 33a that remains ON due to the failure. Since the side verification current Ia maintains the standard current Is, the detection value J3 becomes “constant”. Since the switching element 33b is normally turned off, the verification current Ib does not flow, and thus the detection value J4 becomes “zero”. Then, based on the determination table of the failure determination unit 57, the switching elements 33a and 33b are separately determined as “failure” and “normal”.

切替素子33aがオン故障(導通継続)で切替素子33bが正常で制御信号S1の指令値がオン(ON)のとき(図4(d)の状態3)、照査電流Ia,Ibが何れも標準電流Isレベルで流れるので検出値J3,J4が「一定」になり、切替素子33a,33bは何れも故障でなく「正常」と判別されてしまうが、この場合(注記1)、指令値がオンなので切替素子33a,33bがオンしたままでも回路の機能上は問題が無く、上述したような制御信号S1の指令値がオフになったときに(図3(e)の状態6)故障が検出される。   When the switching element 33a is ON failure (continuation of conduction), the switching element 33b is normal and the command value of the control signal S1 is ON (state 3 in FIG. 4D), the verification currents Ia and Ib are both standard. Since it flows at the current Is level, the detection values J3 and J4 become “constant”, and the switching elements 33a and 33b are both determined to be “normal” and not faulty. In this case (Note 1), the command value is on. Therefore, there is no problem in the function of the circuit even when the switching elements 33a and 33b are kept on, and a failure is detected when the command value of the control signal S1 as described above is turned off (state 6 in FIG. 3 (e)). Is done.

切替素子33aがオフ故障(遮断継続)で切替素子33bが正常で制御信号S1の指令値がオフ(OFF)のとき(図4(d)の状態5)、照査電流Ia,Ibが何れも流れないので検出値J3,J4が「ゼロ」になり、切替素子33a,33bは何れも「正常」と判別されてしまうが、この場合(注記2)、指令値がオフなので切替素子33a,33bがオフしたままでも回路の機能上は問題が無く、上述したような制御信号S1の指令値がオンになったときに(図4(d)の状態4)故障が検出される。   When the switching element 33a is off-failure (continuous interruption), the switching element 33b is normal and the command value of the control signal S1 is OFF (state 5 in FIG. 4 (d)), both the verification currents Ia and Ib flow. Therefore, the detection values J3 and J4 become “zero” and the switching elements 33a and 33b are both determined to be “normal”. However, in this case (note 2), the command value is off, so that the switching elements 33a and 33b There is no problem in the function of the circuit even when it is turned off, and a failure is detected when the command value of the control signal S1 as described above is turned on (state 4 in FIG. 4D).

このように、この切替素子故障検出回路50にあっては、交流送信信号I1の有無に左右されることなく総ての状態について切替素子対33の故障判別が的確に行われ、その際、切替素子33a,33bのうち何れが故障したかの切り分けもなされる。また、切替素子対33の故障としては想定されないような制御信号S1の指令値,検出値J3,J4の組み合わせについては、「−他の異常」と判定されるので、照査回路や故障判別部の方に問題のあることが分かる。   As described above, in the switching element failure detection circuit 50, the failure determination of the switching element pair 33 is accurately performed for all states regardless of the presence / absence of the AC transmission signal I1, and the switching is performed at that time. It is also determined which of the elements 33a and 33b has failed. Further, since the combination of the command value of the control signal S1 and the detected values J3 and J4 that is not supposed to be a failure of the switching element pair 33 is determined as “-another abnormality”, the check circuit and the failure determination unit It turns out that there is a problem.

本発明の切替素子故障検出回路の実施例2について、その具体的な構成等を、図面を引用して説明する。図5は、切替素子故障検出回路の構造や動作を示し、(a)が故障判別部57の判別表、(b)が制御信号S1の指令値オフ時に交流送信信号I1の無い状態で過電圧を印加されたときの照査電流Ibと検出値J4の波形例、(c)は制御信号S1の指令値オン時に交流送信信号I1が過大に流れたときの照査電流Ibと検出値J4の波形例である。   A specific configuration of the switching element failure detection circuit according to the second embodiment of the present invention will be described with reference to the drawings. 5A and 5B show the structure and operation of the switching element failure detection circuit, where FIG. 5A shows a determination table of the failure determination unit 57, and FIG. 5B shows an overvoltage with no AC transmission signal I1 when the command value of the control signal S1 is off. (C) is a waveform example of the verification current Ib and the detection value J4 when the AC transmission signal I1 flows excessively when the command value of the control signal S1 is turned on. is there.

この切替素子故障検出回路が上述した実施例1の切替素子故障検出回路50と相違するのは、故障判別部57の判別表が一部変更された点であり、その他は上述したのと同じである。この新たな判別表では(図5(a)参照)、制御信号S1の指令値がオンの場合、検出値J3が「一定」で検出値J4が「交番」のとき切替素子33bについて「△故障か過電流」の判別結果を出し、検出値J3が「交番」で検出値J4が「一定」のとき切替素子33aについて「△故障か過電流」の判別結果を出し、検出値J3が「交番」で検出値J4が「交番」のとき切替素子33a,33bについて「△故障か過電流」の判別結果を出すようになっている。   This switching element failure detection circuit is different from the switching element failure detection circuit 50 of the first embodiment described above in that the determination table of the failure determination unit 57 is partially changed, and the other is the same as described above. is there. In this new discrimination table (see FIG. 5 (a)), when the command value of the control signal S1 is ON, when the detection value J3 is “constant” and the detection value J4 is “alternating”, “ Or “overcurrent”, and when the detection value J3 is “alternating” and the detection value J4 is “constant”, a determination result of “△ failure or overcurrent” is issued for the switching element 33a, and the detection value J3 is “alternating”. When the detected value J4 is “alternating”, a determination result of “Δ failure or overcurrent” is output for the switching elements 33a and 33b.

また、制御信号S1の指令値がオフの場合、検出値J3が「一定」で検出値J4が「交番」のとき切替素子33aについて「▲故障か過電圧」の判別結果を出し、検出値J3が「交番」で検出値J4が「一定」のとき切替素子33bについて「▲故障か過電圧」の判別結果を出し、検出値J3が「交番」で検出値J4が「交番」のとき切替素子33a,33bについて「▲故障か過電圧」の判別結果を出すようになっている。その他の場合については上述したのと同じである(図1(b)参照)。   Further, when the command value of the control signal S1 is OFF, when the detection value J3 is “constant” and the detection value J4 is “alternating”, a determination result of “▲ failure or overvoltage” is given to the switching element 33a, and the detection value J3 is When the detected value J4 is “constant” in “alternating”, the determination result of “▲ failure or overvoltage” is issued for the switching element 33b. When the detected value J3 is “alternating” and the detected value J4 is “alternating”, the switching element 33a, A determination result of “▲ failure or overvoltage” is output for 33b. The other cases are the same as described above (see FIG. 1B).

上述したような構成の切替素子故障検出回路50では、交流送信信号I1が無く制御信号S1の指令値がオフのとき、切替素子対33は正常であっても、それ以外の何らかの不具合によって、切替素子対33の逆耐圧をこえる電圧が回線電流I2の経路に印加されると、切替素子対33にブレークダウンが生じる。切替素子対33はボディダイオードD1の向きの異なる2個の切替素子33a,33bからなるので、それらで交互にブレークダウンが生じる。照査電流Ibは、切替素子33aのブレークダウン時に流れ、切替素子33bのブレークダウン時には流れない。そして、検出値J4が「交番」になる(図5(b)参照)。照査電流Iaは、切替素子33aのブレークダウン時には流れず、切替素子33bのブレークダウン時に流れる。そして、検出値J3が「交番」になる。   In the switching element failure detection circuit 50 configured as described above, when there is no AC transmission signal I1 and the command value of the control signal S1 is OFF, even if the switching element pair 33 is normal, the switching element pair 33 is switched due to some other problem. When a voltage exceeding the reverse breakdown voltage of the element pair 33 is applied to the path of the line current I2, breakdown occurs in the switching element pair 33. Since the switching element pair 33 is composed of two switching elements 33a and 33b having different directions of the body diode D1, breakdown occurs alternately. The verification current Ib flows when the switching element 33a is broken down, and does not flow when the switching element 33b is broken down. Then, the detected value J4 becomes “alternate” (see FIG. 5B). The verification current Ia does not flow when the switching element 33a is broken down, but flows when the switching element 33b is broken down. The detected value J3 becomes “alternate”.

このような無信号時の「交番」検出状態は、過電圧印加時だけでなく、上述したような切替素子33a,33bのオン故障時にも発現するが、新たな判別表に基づいて「故障か過電圧」状態と判別される。そのため、そのような自動判別がなされたとき、エンジニア等の作業者は、故障と速断して修理や交換等を行う前に、回路が過電圧印加状態になっていないか確認し、過電圧印加状態になっていたときにはその原因を除去することにより、不要な修理や交換等を回避することができる。   Such an “alternate” detection state at the time of no signal appears not only when an overvoltage is applied but also when the switching elements 33a and 33b are turned on as described above. ”State. Therefore, when such automatic determination is made, an engineer or other operator checks whether the circuit is in an overvoltage application state before performing repairs or replacements due to a failure. By removing the cause of the trouble, unnecessary repair or replacement can be avoided.

また、切替素子故障検出回路50では、交流送信信号I1が有り制御信号S1の指令値がオンのとき、切替素子対33は正常であっても、それ以外の何らかの不具合によって例えば交流送信信号I1が異常に大きくなったり或いは負荷35側から回線電流I2の経路に大きなノイズ電流が紛れ込んだりして、回線電流I2の定常電流たとえば既述の200mA〜400mAを大きく上回る異常電流が回線電流I2の経路に流れ、その影響で照査電流Ibに重畳するリップル電流が過大となって、照査電流Ibが故障検出閾値電流Ieを下回るようになると、検出値J4が「交番」になる(図5(c)参照)。   Further, in the switching element failure detection circuit 50, when the AC transmission signal I1 is present and the command value of the control signal S1 is ON, even if the switching element pair 33 is normal, for example, the AC transmission signal I1 is generated due to some other problem. Abnormally large or a large noise current flows into the path of the line current I2 from the load 35 side, and the steady current of the line current I2, for example, an abnormal current greatly exceeding 200 mA to 400 mA as described above, enters the path of the line current I2. When the ripple current superimposed on the verification current Ib becomes excessive due to the flow and the verification current Ib falls below the failure detection threshold current Ie, the detection value J4 becomes “alternate” (see FIG. 5C). ).

このような信号印加時の「交番」検出状態は、過電流が流れた時だけでなく、上述したような切替素子33a,33bのオン故障時にも発現するが、新たな判別表に基づいて「故障か過電流」状態と判別される。そのため、そのような自動判別がなされたとき、エンジニア等の作業者は、故障と速断して修理や交換等を行う前に、回路が過電流状態になっていないか確認し、過電流状態になっていたときにはその原因を除去することにより、不要な修理や交換等を回避することができる。   Such an “alternate” detection state at the time of applying a signal is manifested not only when an overcurrent flows, but also when the switching elements 33a and 33b are in an on-failure state as described above. It is determined as a “failure or overcurrent” state. For this reason, when such automatic determination is made, an engineer or other operator checks whether the circuit is in an overcurrent state before repairing or replacing it due to a failure. By removing the cause of the trouble, unnecessary repair or replacement can be avoided.

本発明の実施例3としての切替素子故障検出回路80について、その具体的な構成等を、図面を引用して説明する。図6は、鉄道の時分割送受信形軌道回路装置の送信部への適用例を示す回路図である。
既述した時分割送受信形軌道回路装置20では一組の交流信号源31とトランス32が複数組・多数組の切替素子対33とトランス34と負荷35とで共用されているが、このような回路に本発明を適用する場合、照査回路のうち絶縁型直流電源51,54は共用可能なためトランス32の二次側にそれぞれ一つだけ設けられ、照査回路の残り52+53,55+56や故障判別部57は切替素子対33に対応して複数・多数が設けられる。
このように絶縁型直流電源の共用化を図ることで回路規模や原価の増加が抑制される。
A specific configuration of the switching element failure detection circuit 80 according to the third embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a circuit diagram showing an application example of a time-division transmission / reception track circuit device for a railway to a transmission unit.
In the time-division transmission / reception track circuit device 20 described above, a set of AC signal sources 31 and transformers 32 are shared by a plurality of / multiple switching element pairs 33, transformers 34 and loads 35. When the present invention is applied to the circuit, the insulation type DC power supplies 51 and 54 of the verification circuit can be shared, so only one is provided on the secondary side of the transformer 32, and the remaining 52 + 53 and 55 + 56 of the verification circuit and the failure determination unit A plurality 57 is provided corresponding to the switching element pair 33.
In this way, an increase in circuit scale and cost can be suppressed by sharing the insulated DC power supply.

図7に基本回路を示した本発明の切替素子故障検出回路90が上述した各実施例のものと相違するのは、負荷側のトランス34が省かれて回線電流I2の経路に対して直に負荷35が介挿されている点である。
繰り返しとなる詳細な説明は割愛するが、この場合も、上述したのと同じ判別結果が得られる。
The switching element failure detection circuit 90 of the present invention whose basic circuit is shown in FIG. 7 is different from the above-described embodiments in that the load-side transformer 34 is omitted and the switching circuit failure detection circuit 90 is directly connected to the path of the line current I2. This is a point where a load 35 is inserted.
A detailed description that will be repeated is omitted, but in this case as well, the same determination result as described above can be obtained.

[その他]
上記実施例では、電流検出回路52,55にフォトカップラ55bを用いたが、直流電流の検出は、ホール素子を用いた電流センサや、減流抵抗と絶縁アンプを組み合わせた電流検出回路などで、行うようにしても良い。
[Others]
In the above embodiment, the photocoupler 55b is used for the current detection circuits 52 and 55. However, the detection of the direct current is performed by a current sensor using a Hall element or a current detection circuit combining a current reducing resistor and an insulation amplifier. You may make it do.

本発明の切替素子故障検出回路は、上述した鉄道の時分割送受信形軌道回路装置の他、数10Hz〜数100Hzを用いた交流回線において数10ms以上の中速の切替をするという条件を満たすものであれば適用が可能であり、例えば高い信頼性を要求する電源切替装置や各種制御機器にも適用できる。そのような制御機器としては、昇降機や,ドアの開閉装置,プラント機器などが挙げられる。   The switching element failure detection circuit according to the present invention satisfies the condition of switching a medium speed of several tens of ms or more in an AC line using several tens Hz to several hundreds Hz in addition to the above-described railway time division transmission / reception type track circuit device. If applicable, it can be applied. For example, it can also be applied to a power supply switching device and various control devices that require high reliability. Examples of such control devices include elevators, door opening / closing devices, and plant equipment.

本発明の実施例1について、切替素子故障検出回路の構造を示し、(a)が基本回路図、(b)が判別表である。In the first embodiment of the present invention, the structure of the switching element failure detection circuit is shown, (a) is a basic circuit diagram, and (b) is a discrimination table. (a)が照査回路の詳細回路図、(b)が切替素子片側故障時の照査電流の回り込み経路、(c)が切替素子片側故障時の照査電流および検出値の波形例である。(A) is a detailed circuit diagram of the verification circuit, (b) is a wraparound path of the verification current when the switching element one side fails, and (c) is a waveform example of the verification current and detection value when the switching element one side fails. 交流送信信号が有るときの動作を示し、(a)が切替素子OFF時の照査電流と検出値の波形例、(b)が切替素子ON時の照査電流と検出値の波形例、(c)が切替素子の片側故障時の回路図、(d)が故障時の照査電流と検出値の波形例、(e)が判別状況を典型例について纏めた表である。The operation when there is an AC transmission signal is shown, (a) is a waveform example of the verification current and the detection value when the switching element is OFF, (b) is a waveform example of the verification current and the detection value when the switching element is ON, (c) Is a circuit diagram when one side of the switching element is broken, (d) is a waveform example of the verification current and the detected value at the time of failure, and (e) is a table summarizing the discrimination status for typical examples. 交流送信信号が無いときの動作等を示し、(a)が切替素子OFF時の照査電流と検出値の波形例、(b)が切替素子ON時の照査電流と検出値の波形例、(c)が切替素子の片側故障時の照査電流と検出値の波形例、(d)が判別状況を典型例について纏めた表である。The operation when there is no AC transmission signal is shown. (A) is a waveform example of the verification current and detection value when the switching element is OFF, (b) is a waveform example of the verification current and detection value when the switching element is ON, (c ) Is an example of a waveform of a verification current and a detected value when one side of the switching element is broken down, and (d) is a table summarizing the discrimination status for typical examples. 本発明の実施例2について、切替素子故障検出回路の構造や動作を示し、(a)が判別表、(b)が交流送信信号の無い状態で過電圧を印加されたときの照査電流と検出値の波形例、(c)は交流送信信号が過大に流れたときの照査電流と検出値の波形例である。Example 2 of the present invention shows the structure and operation of a switching element failure detection circuit, (a) is a discrimination table, (b) is a verification current and detection value when an overvoltage is applied in the absence of an AC transmission signal. (C) is a waveform example of a verification current and a detected value when an AC transmission signal flows excessively. 本発明の切替素子故障検出回路の実施例3について、鉄道の時分割送受信形軌道回路装置の送信部への適用例を示す回路図である。It is a circuit diagram which shows the example applied to the transmission part of the time-division transmission / reception type track circuit apparatus of a railroad about Example 3 of the switching element failure detection circuit of this invention. 本発明の実施例4について、切替素子故障検出回路の回路図である。It is a circuit diagram of a switching element failure detection circuit about Example 4 of the present invention. 鉄道の時分割送受信形軌道回路装置について、概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram about the time division transmission / reception type track circuit apparatus of a railway. 従来の切替素子故障検出回路について、(a)が基本回路図、(b)が判別表である。(A) is a basic circuit diagram and (b) is a discrimination table for a conventional switching element failure detection circuit. 従来の切替素子故障検出回路に並列ダイオード付き切替素子を採用したものについて、(a)が切替素子の片側故障時の回路図、(c)が故障時の信号電流の波形例、(d)が交流送信信号の有るときの判別状況を典型例について纏めた表である。For a conventional switching element failure detection circuit employing a switching element with a parallel diode, (a) is a circuit diagram when one side of the switching element fails, (c) is a waveform example of a signal current at the time of failure, (d) is It is the table | surface which summarized the discrimination | determination condition when there exists an alternating current transmission signal about a typical example.

符号の説明Explanation of symbols

10…軌道、11…列車、
20…時分割送受信形軌道回路装置、21…送信部、22…増幅部、23…切替部、
30…切替素子故障検出回路、31…交流信号源、
32…トランス、33…切替素子対、33a,33b…切替素子、
34…トランス、35…負荷、36…電流検出回路、37…故障判別部、
50…切替素子故障検出回路、
51…絶縁型直流電源、52…電流検出回路、53…減流抵抗、
54…絶縁型直流電源、55…電流検出回路、56…減流抵抗、57…故障判別部、
80…切替素子故障検出回路、90…切替素子故障検出回路、
D1…ボディダイオード(並列ダイオード)、D2,D3…逆流防止ダイオード
10 ... track, 11 ... train,
20 ... time-division transmission / reception track circuit device, 21 ... transmission unit, 22 ... amplification unit, 23 ... switching unit
30 ... Switching element failure detection circuit, 31 ... AC signal source,
32 ... Transformer, 33 ... Switching element pair, 33a, 33b ... Switching element,
34 ... Transformer, 35 ... Load, 36 ... Current detection circuit, 37 ... Failure determination unit,
50. Switching element failure detection circuit,
51 ... Insulation type DC power supply, 52 ... Current detection circuit, 53 ... Current reduction resistor,
54 ... Insulation type DC power supply, 55 ... Current detection circuit, 56 ... Current reducing resistor, 57 ... Failure determination unit,
80: switching element failure detection circuit, 90: switching element failure detection circuit,
D1 ... Body diode (parallel diode), D2, D3 ... Backflow prevention diode

Claims (3)

交流送信信号を出力する交流信号源が一次側に接続されたトランスと、このトランスの二次側に分けて設けられ何れも前記トランスの二次側に一端が接続され他端が負荷側に接続されオンオフの制御信号が共通している一対の切替素子と、この切替素子対に係る故障の有無を判別する故障判別部とを備えた切替素子故障検出回路において、前記切替素子が何れも並列ダイオードを有するものであり、前記切替素子を通り前記トランス及び前記負荷を外して一巡する経路に直流の照査電流を前記並列ダイオードの逆方向へ流そうとする照査回路が前記切替素子それぞれに対して設けられ、前記故障判別部が前記照査電流の検出値と前記制御信号の指令値とに基づいて故障判別を行うものであることを特徴とする切替素子故障検出回路。   An AC signal source that outputs an AC transmission signal is provided on the primary side of the transformer, and is provided separately on the secondary side of this transformer. Both are connected to the secondary side of the transformer and the other end is connected to the load side. In the switching element failure detection circuit comprising a pair of switching elements having a common on / off control signal and a failure determination unit for determining the presence or absence of a failure related to the switching element pair, each of the switching elements is a parallel diode. Each of the switching elements is provided with a checking circuit for passing a DC checking current in a reverse direction of the parallel diode through a path that passes through the switching element and removes the transformer and the load. The switching element failure detection circuit, wherein the failure determination unit performs failure determination based on a detection value of the verification current and a command value of the control signal. 前記照査電流が前記トランスの二次側へ回り込んで流れたらそのときの前記照査電流については前記トランスの励磁インダクタンスによる過渡電流の電流変化率が時間の経過に連れて大きくなるように且つ前記照査電流が前記交流送信信号の周期よりも長い時間に亘って前記閾値を下回っているように抵抗値が定められている減流抵抗が、前記照査回路それぞれに設けられており、前記故障判別部が、前記照査電流について前記閾値以上の電流の継続する一定状態と前記閾値を上下して電流の流れる交番状態と電流のほとんど流れないゼロ状態とを検出するのに加えて、前記制御信号がオフからオンに遷移したときに前記照査電流が前記閾値を超えるまでの時間が前記交流送信信号の周期よりも長いという遅延状態をも検出し、これらの状態に応じて故障判別を行うものであることを特徴とする請求項1記載の切替素子故障検出回路。   When the verification current flows around the secondary side of the transformer, the verification current at that time is such that the rate of change of the transient current due to the magnetizing inductance of the transformer increases with time and the verification current is increased. A current reducing resistor whose resistance value is determined so that the current is below the threshold for a time longer than the period of the AC transmission signal is provided in each of the verification circuits, and the failure determination unit includes In addition to detecting a constant state in which the current equal to or higher than the threshold is continued with respect to the verification current, an alternating state in which current flows up and down, and a zero state in which current hardly flows, the control signal is turned off. It also detects a delay state in which the time until the verification current exceeds the threshold when it is turned on is longer than the period of the AC transmission signal, and these states Switching element fault detection circuit according to claim 1, characterized in that performing the failure determination according. 前記故障判別部が、故障判別に際して前記切替素子のうち何れが故障したかの切り分けを行うものであることを特徴とする請求項2記載の切替素子故障検出回路。   3. The switching element failure detection circuit according to claim 2, wherein the failure determination unit is configured to determine which of the switching elements has failed in determining the failure.
JP2005276836A 2005-09-22 2005-09-22 Switching element failure detection circuit Active JP4046744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276836A JP4046744B2 (en) 2005-09-22 2005-09-22 Switching element failure detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276836A JP4046744B2 (en) 2005-09-22 2005-09-22 Switching element failure detection circuit

Publications (2)

Publication Number Publication Date
JP2007083932A JP2007083932A (en) 2007-04-05
JP4046744B2 true JP4046744B2 (en) 2008-02-13

Family

ID=37971368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276836A Active JP4046744B2 (en) 2005-09-22 2005-09-22 Switching element failure detection circuit

Country Status (1)

Country Link
JP (1) JP4046744B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513940B1 (en) * 2013-01-22 2015-01-15 Siemens Ag Oesterreich Monitoring an electrical component
CN108657233B (en) * 2018-06-21 2020-05-12 中国铁道科学研究院集团有限公司通信信号研究所 Time sequence-based intelligent diagnosis method for turnout operation and maintenance of computer interlocking system
JP7089673B2 (en) * 2018-11-29 2022-06-23 トヨタ自動車株式会社 Power system
CN112098887B (en) * 2020-08-17 2024-01-26 交控科技股份有限公司 Rail transit dry contact state judging system and method

Also Published As

Publication number Publication date
JP2007083932A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
CN110463040B (en) Method for controlling a DC switch, DC switch and DC voltage system
US7656633B2 (en) Asymmetric fault detection and protection with AC solid state power controllers
JP2019075851A (en) Motor driving device with failure detection function
JP2007259533A (en) Protective circuit for semiconductor element
US8427173B2 (en) Open fuse detection by neutral point shift
EP3305703A1 (en) Elevator brake controller
JP5198062B2 (en) System and method for detecting power failure conditions
JP4046744B2 (en) Switching element failure detection circuit
US6600238B1 (en) Redundancy and component failure detection within a switching power system
US11456140B2 (en) Earth leakage breaker and method for controlling earth leakage breaker
JP5255747B2 (en) Phase loss detection circuit and electrical equipment
US10937611B2 (en) Safety switch
JP5017179B2 (en) Digital output circuit with failure detection function
JP4063494B2 (en) Circuit to monitor AC power switch
JP7072982B2 (en) Discharge accident detection structure
JP2005117788A (en) Three-phase open phase detecting circuit and air conditioner using the same
US11742163B2 (en) Welding detection device and welding detection method
JP4101267B2 (en) Power converter
JP2012042316A (en) Inverter device
JP7054601B2 (en) DC cutoff device
JP2005010066A (en) Three-phase open-phase detecting circuit, and air-conditioner using the same
JP2000180491A (en) Open-phase detection circuit
JP2011135685A (en) Vehicle power converter
JP3746295B2 (en) Power control system
US8569915B1 (en) High speed contact capable of detecting, indicating and preventing maloperation due to internal failure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4046744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250