[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4046227B2 - Optical communication system supervisory control network - Google Patents

Optical communication system supervisory control network Download PDF

Info

Publication number
JP4046227B2
JP4046227B2 JP2003159934A JP2003159934A JP4046227B2 JP 4046227 B2 JP4046227 B2 JP 4046227B2 JP 2003159934 A JP2003159934 A JP 2003159934A JP 2003159934 A JP2003159934 A JP 2003159934A JP 4046227 B2 JP4046227 B2 JP 4046227B2
Authority
JP
Japan
Prior art keywords
optical communication
optical
signal
ethernet
supervisory control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003159934A
Other languages
Japanese (ja)
Other versions
JP2004363944A (en
Inventor
勝弘 島野
亙 今宿
篤 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003159934A priority Critical patent/JP4046227B2/en
Publication of JP2004363944A publication Critical patent/JP2004363944A/en
Application granted granted Critical
Publication of JP4046227B2 publication Critical patent/JP4046227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Maintenance And Management Of Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信システムにおける監視制御信号の伝送技術に関し、詳しくは監視制御信号伝送手段にEthernetを用いる光通信システム監視制御網に関する。
【0002】
【従来の技術】
従来の光通信システムの監視制御網構成は、主信号(ユーザ信号)を伝送する光通信装置にほぼ1対1の割合で監視制御網用のルータを配置し、ルータ間は専用線等で接続するのが一般的であった(例えば、非特許文献1参照)。
【0003】
図4に従来の構成例を示す。図4において、401〜405は光通信装置(OTN装置)、411〜415は監視制御網用のルータである。光通信装置401〜405は光ファイバケーブルで接続され、主信号(ユーザ信号)を伝送する。一方、ルータ411〜414は専用線等で接続され、光通信装置411〜415のための監視制御信号を時分割多重等で送受信する。
【0004】
【非特許文献1】
渡辺ほか、“Photonic transport network testbed of NTT”,ECOC’2000,September,2000
【0005】
【発明の解決しようとする課題】
従来の光通信システムの監視制御網構成では、光通信装置にほぼ1対1の割合で監視制御網用のルータを配置して光通信装置を管理するため、多数のルータが必要であり、なおかつそれらを正しく設定する必要があった。
【0006】
本発明は、このような従来の光通信システムの監視制御網構成における問題に鑑みなされたもので、光通信装置の監視制御網ルータの設置を必要最小限にして、監視制御網構築のための稼動を低減することで、光通信システムの保守運用の効率化を実現することを目的とする。
【0007】
【課題を解決するための手投】
本発明は、複数の光通信装置が互いに光ファイバケーブルを介して結合された光通信システムにおいて、光通信装置の監視制御信号の伝達手段にEthernetを採用する。
すなわち、本発明では、主信号を伝送する光通信装置の監視制御信号をEthernetにより透過的に伝送し、監視制御網用ルータは必要最小限にして、該ルータの代りにEthernetスイッチ、Ethernet−OSC変換手段を用いる。これにより、Ethernetセグメント(ネットワーク単位)を広げることができ、一つのEthernetセグメントによって複数の光通信装置を管理することが可能となる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態について図面を用いて説明する。
図1に本発明の一実施例のネットワークの全体構成を示す。図1において、101〜105は光通信装置(OTN装置)、111は監視制御網用ルータ、112〜115は監視制御網用Ethernetスイッチ(SW)、121〜125は伝送路用ファイバケーブル、131〜140はEthernet−OSC変換部(CV)、141〜145はインタフェース線である。なお、太線は主信号経路、中太線は監視制御チャネルを表わしている。
【0009】
光通信装置101〜105は光ファイバケーブル121〜125を介し、互いに主信号(ユーザ信号)を伝達する。また、光通信装置101〜105とルータ111もしくはEthernetスイッチ112〜115とは、それぞれインタフェース141〜145を介し、Ethernet信号(Ethernetフレーム)の監視制御信号を送受信する。
【0010】
監視制御網用ルータ111もしくはEthernetスイッチ112〜115はEthernet−OSC変換部131〜140と結合され、ルータ111もしくはEthernetスイッチ112〜115からのEthernet信号の監視制御信号は、Ethernet−OSC変換部によってEthernet信号から光監視制御信号(OSC:Optical Supervisory Channel)に変換され、当該ノードの光通信装置101〜105に入力され、光ファイバケーブル121〜125を用いて隣接の光通信装置に伝達される。受信側ノードでは、光監視制御信号がEthernet−OSC変換部によってEthernet信号の監視制御信号に逆変換され、ルータ111もしくはEthernetスイッチ112〜115に入力される。なお、光監視制御信号(OSC)についてはITU−T勧告G.872に記述されており、これに準拠する。
【0011】
図1は一つのEthernetセグメントの監視ネットワークを示すものであり、この例では、監視制御網用ルータは1個に限定し、代りにEthernetスイッチ112〜115、Ethernet−OSC変換部131〜140を用い、Ethernet信号を透過的に伝送することで、一つのEthernetセグメントによって5台の光通信装置101〜105を管理している。勿論、管理する光通信装置の数は5台である必要はない。
【0012】
図2に本発明の一実施例の光通信ノード装置の構成例を示す。図2において、200は光通信装置、210は監視制御網用ルータもしくはEthernetスイッチ、220−1〜220−nはEthernet−OSC変換部である。光通信装置200は、主信号を処理する主信号部201、該主信号部201を含めた光通信装置全体の監視制御を行う監視制御部202から構成される。監視制御部202は、インターフェース線215を介し、監視制御用ルータもしくはスイッチ210との間でEthernet信号の監視制御信号を送受信する。監視制御網用ルータもしくはEthernetスイッチ210は、光通信装置200の監視制御部202とEthernet−OSC変換220−1〜220−n、あるいはEthernet−OSC変換部220−1〜220−nのうちの1対1、1対m、m対m(m≧2)等を選択して、Ethernet信号の監視制御信号を送受信する。Ethernet−OSC変換部220−1〜220−nはEthernet信号の監視制御信号から光監視制御信号(OSC)への変換あるいはその逆変換を行う。光通信装置200の主信号部201は、光通信装置の種類によって機能が異なるが、ここでは、少なくとも波長多重分離部2010−1〜2010−nを備えて、少なくとも1以上の主信号と少なくとも1以上の光監視制御信号(OSC)とを合波、分波する機能を有するものとする。
【0013】
以下に、監視制御チャネルの信号の流れについて説明する。監視制御網用ルータもしくはEthernetスイッチ210から出力されたEthernet信号の監視制御信号は、Ethernet−OSC変換部220−1〜220−nの一つあるいは複数のいずれかに入力され、そこで光監視制御信号(OSC)のフォーマット、ビットレットと整合される。ITU−I勧告G.872では、OSCの信号フォーマットが特に規定されていないため、例えばSDH(Synchronous Digital Hierarcky;同期デジタルハイアラーキ)/SONET(Synchronous Optical Network;光同期伝送網)フレームフォーマットを用いる場合にはEthernet信号をペイロード部に配置する。Ethernet−OSC変換部220−1〜220−nの出力(光監視制御信号)は、光通信装置200の主信号部201にある波長多重分離部2010−1〜2010−nの対応するものにて主信号と波長多重され、光ファイバケーブル230を用いて隣接ノードに伝達される。一方、光ファイバケーブル230から伝達された光信号は波長多重分離部2010−1〜2010−nにて分波され、光監視制御信号(OSC)がEthernet−OSC変換部220−1〜220−nに入力される。該Ethernet−OSC変換部220−1〜220−nにおいて、OSC用のフォーマットビットレートからEthernet信号の監視制御信号に復元され、監視制御網用ルータもしくはEthernetスイッチ210に入力される。
【0014】
図3にEthernet−OSC変換部の構成例を示す。Ethernet−OSC変換部300は、Ethernet−IF部310、Ethernet SERDES部320、マッピング部330、OSC SERDES部340、OSC−IF部350から構成される。Ethernetとの物理インターフェース部310はEthernetの物理層のインターフェースである。Ethernetには様々な物理層規格があるので、このEthernet−IF部310で所望の物理層規格からEthernetフレームを取り出し、またその逆変換を行う。Ethernet SERDES部320はEthernet信号をマッピング部330のインタフェース条件に合わせる変換部である。ここでは、マッピング部330に対してはパラレル信号に、Ethernet−IF部310に対してはシリアル信号に変換を行う。マッピング部330は、入力されたEthernetフレームをOSCのフレームに変換し、またその逆変換であるOSCのフレームをEthernetフレームに変換する。OSC SERDES部340はOSC信号をマッピング部330のインターフェース条件に合わせる処理部である。特にSDH/SONET規格を用いる場合にはそのLSIなどをそのまま使うことができる。OSC−IF部350はトランシーバで、光信号の送受信を行う部分である。このOSC−IF部350では、受信された光信号をシリアルの電気信号に変換するとともに、電気信号を光信号として送信する。
【0015】
以上、本発明の実施例について説明したが、本発明は図1乃至図3の構成に限定されるものでないことは云うまでもない。
【0016】
【発明の効果】
以上説明したように、本発明によれば、複数の光通信装置を1つのEthernetセグメントで管理することができるのでネットワーク管理を効率化することが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施例の光通信システム監視制御網の全体構成図である。
【図2】本発明の一実施例の光通信ノード装置の構成図である。
【図3】光通信ノード装置に用いられるEthernet−OSC変換部の構成例である。
【図4】従来の光通信システム監視制御網の構成例である。
【符号の説明】
101〜105 光通信装置
111 監視制御網用ルータ
112〜115 監視制御網用Ethernetスイッチ
121〜125 光ファイバケーブル
131〜140 Ethernet−OSC変換部
200 光通信装置
201 主信号部
2010−1〜2010−n 波長多重分離部
202 監視制御部
210 監視制御網用ルータもしくはEthernetスイッチ
220−1〜220−n Ethernet−OSC変換部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a monitoring control signal transmission technique in an optical communication system, and more particularly to an optical communication system monitoring control network using Ethernet as a monitoring control signal transmission means .
[0002]
[Prior art]
Supervisory control network configuration of a conventional optical communication system, to place a router for monitoring control network at a ratio of approximately 1: 1 to the optical communication apparatus for transmitting a main signal (user signal), the inter-router connected by a dedicated line or the like It was common to do this (for example, see Non-Patent Document 1).
[0003]
FIG. 4 shows a conventional configuration example. In FIG. 4, 401 to 405 are optical communication apparatuses (OTN apparatuses), and 411 to 415 are routers for a supervisory control network. The optical communication devices 401 to 405 are connected by an optical fiber cable and transmit a main signal (user signal). On the other hand, the routers 411 to 414 are connected by a dedicated line or the like, and transmit and receive supervisory control signals for the optical communication apparatuses 411 to 415 by time division multiplexing or the like.
[0004]
[Non-Patent Document 1]
Watanabe et al., “Photonic transport network testbed of NTT”, ECOC'2000, September, 2000
[0005]
[Problem to be Solved by the Invention]
The supervisory control network architecture of a conventional optical communication system, for managing the optical communication device by placing the router for monitoring control network at a ratio of approximately 1: 1 to the optical communication apparatus, it requires a large number of routers, yet They needed to be set correctly.
[0006]
The present invention has been made in view of such problems in the configuration of the supervisory control network of the conventional optical communication system. For the construction of the supervisory control network, the installation of the supervisory control network router of the optical communication apparatus is minimized. It aims at realizing the efficiency improvement of the maintenance operation of an optical communication system by reducing operation.
[0007]
[Hand throws to solve problems]
The present invention employs Ethernet as a means for transmitting a supervisory control signal of an optical communication apparatus in an optical communication system in which a plurality of optical communication apparatuses are coupled to each other via an optical fiber cable .
That is, according to the present invention, the supervisory control signal of the optical communication apparatus that transmits the main signal is transparently transmitted by Ethernet, and the router for the supervisory control network is minimized, and the Ethernet switch, Ethernet-OSC is used instead of the router. Use conversion means. Thereby, the Ethernet segment (network unit) can be expanded, and a plurality of optical communication apparatuses can be managed by one Ethernet segment.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the overall configuration of a network according to an embodiment of the present invention. In FIG. 1, 101 to 105 are optical communication devices (OTN devices), 111 is a router for a supervisory control network, 112 to 115 are Ethernet switches (SW) for a supervisory control network, 121 to 125 are fiber cables for transmission lines, 131 to 140 is an Ethernet-OSC converter (CV), and 141 to 145 are interface lines. The thick line represents the main signal path, and the middle thick line represents the supervisory control channel.
[0009]
The optical communication apparatuses 101 to 105 transmit main signals (user signals) to each other via the optical fiber cables 121 to 125. The optical communication devices 101 to 105 and the router 111 or the Ethernet switches 112 to 115 transmit and receive monitoring control signals for Ethernet signals (Ethernet frames) via the interfaces 141 to 145, respectively.
[0010]
The monitoring control network router 111 or the Ethernet switches 112 to 115 are combined with the Ethernet-OSC conversion units 131 to 140, and the monitoring control signal of the Ethernet signal from the router 111 or the Ethernet switches 112 to 115 is transferred to the Ethernet by the Ethernet-OSC conversion unit. The signal is converted into an optical supervisory control signal (OSC), input to the optical communication devices 101 to 105 of the node, and transmitted to the adjacent optical communication device using the optical fiber cables 121 to 125. In the receiving side node, the optical supervisory control signal is inversely converted into the supervisory control signal of the Ethernet signal by the Ethernet-OSC converter, and is input to the router 111 or the Ethernet switches 112 to 115. As for the optical supervisory control signal (OSC), ITU-T Recommendation G. 872 and conforms to this.
[0011]
FIG. 1 shows a monitoring network of one Ethernet segment. In this example, the number of monitoring control network routers is limited to one, and Ethernet switches 112 to 115 and Ethernet-OSC conversion units 131 to 140 are used instead. By transmitting the Ethernet signal transparently, the five optical communication apparatuses 101 to 105 are managed by one Ethernet segment. Of course, the number of optical communication devices to be managed need not be five.
[0012]
FIG. 2 shows a configuration example of an optical communication node device according to an embodiment of the present invention. In FIG. 2, reference numeral 200 denotes an optical communication apparatus, 210 denotes a supervisory control network router or an Ethernet switch, and 220-1 to 220-n denote Ethernet-OSC conversion units. The optical communication device 200 includes a main signal unit 201 that processes a main signal, and a monitoring control unit 202 that performs monitoring control of the entire optical communication device including the main signal unit 201. The monitoring control unit 202 transmits / receives a monitoring control signal of an Ethernet signal to / from the monitoring control router or the switch 210 via the interface line 215. The monitoring control network router or the Ethernet switch 210 is one of the monitoring control unit 202 and the Ethernet-OSC conversions 220-1 to 220-n or the Ethernet-OSC conversion units 220-1 to 220-n of the optical communication apparatus 200. The monitor control signal of the Ethernet signal is transmitted / received by selecting the pair 1, the pair m, the m pair m (m ≧ 2), or the like. The Ethernet-OSC converters 220-1 to 220-n perform conversion of the Ethernet signal from the supervisory control signal to the optical supervisory control signal (OSC) or vice versa. The main signal unit 201 of the optical communication device 200 has different functions depending on the type of the optical communication device. Here, the main signal unit 201 includes at least wavelength demultiplexing units 2010-1 to 2010-n, and includes at least one main signal and at least one main signal. The optical monitoring control signal (OSC) is combined and demultiplexed.
[0013]
Hereinafter, the signal flow of the supervisory control channel will be described. The supervisory control signal of the Ethernet signal output from the router for the supervisory control network or the Ethernet switch 210 is input to one or a plurality of the Ethernet-OSC converters 220-1 to 220-n, where the optical supervisory control signal Aligned with (OSC) format, bitlet. ITU-I Recommendation G. In 872, the OSC signal format is not particularly defined. For example, when the SDH (Synchronous Digital Hierarcky) / SONET (Synchronous Optical Network) frame format is used, the Ethernet signal is used as the payload portion. To place. The outputs (optical supervisory control signals) of the Ethernet-OSC conversion units 220-1 to 220-n correspond to those of the wavelength demultiplexing units 2010-1 to 2010-n in the main signal unit 201 of the optical communication apparatus 200. Wavelength multiplexed with the main signal and transmitted to the adjacent node using the optical fiber cable 230. On the other hand, the optical signal transmitted from the optical fiber cable 230 is demultiplexed by the wavelength demultiplexing units 2010-1 to 2010-n, and the optical monitoring control signal (OSC) is converted to the Ethernet-OSC conversion units 220-1 to 220-n. Is input. In the Ethernet-OSC converters 220-1 to 220 -n, the OSC format bit rate is restored to the monitoring control signal of the Ethernet signal and is input to the monitoring control network router or the Ethernet switch 210.
[0014]
FIG. 3 shows a configuration example of the Ethernet-OSC conversion unit. The Ethernet-OSC conversion unit 300 includes an Ethernet-IF unit 310, an Ethernet SERDES unit 320, a mapping unit 330, an OSC SERDES unit 340, and an OSC-IF unit 350. The physical interface unit 310 with Ethernet is an interface of the physical layer of Ethernet. Since there are various physical layer standards in Ethernet, the Ethernet-IF unit 310 extracts an Ethernet frame from a desired physical layer standard and performs reverse conversion thereof. The Ethernet SERDES unit 320 is a conversion unit that matches the Ethernet signal with the interface condition of the mapping unit 330. Here, the mapping unit 330 is converted into a parallel signal, and the Ethernet-IF unit 310 is converted into a serial signal. The mapping unit 330 converts the input Ethernet frame into an OSC frame, and converts the OSC frame, which is the inverse conversion thereof, into an Ethernet frame. The OSC SERDES unit 340 is a processing unit that matches the OSC signal with the interface condition of the mapping unit 330. In particular, when the SDH / SONET standard is used, the LSI or the like can be used as it is. The OSC-IF unit 350 is a transceiver that transmits and receives optical signals. The OSC-IF unit 350 converts the received optical signal into a serial electrical signal and transmits the electrical signal as an optical signal.
[0015]
As mentioned above, although the Example of this invention was described, it cannot be overemphasized that this invention is not limited to the structure of FIG. 1 thru | or FIG.
[0016]
【The invention's effect】
As described above, according to the present invention, since a plurality of optical communication devices can be managed by one Ethernet segment, network management can be made efficient.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an optical communication system monitoring and control network according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of an optical communication node device according to an embodiment of the present invention.
FIG. 3 is a configuration example of an Ethernet-OSC conversion unit used in an optical communication node device.
FIG. 4 is a configuration example of a conventional optical communication system supervisory control network.
[Explanation of symbols]
101 to 105 Optical communication device 111 Monitoring control network routers 112 to 115 Monitoring control network Ethernet switches 121 to 125 Optical fiber cables 131 to 140 Ethernet-OSC conversion unit 200 Optical communication device 201 Main signal unit 2010-1 to 2010-n Wavelength demultiplexing unit 202 Monitor control unit 210 Monitor control network router or Ethernet switch 220-1 to 220-n Ethernet-OSC conversion unit

Claims (2)

複数の光通信装置が互いに光ファイバケーブルを介して結合されてなる光通信システムにおいて、前記光通信装置の監視制御信号を伝達する監視制御網であって、In an optical communication system in which a plurality of optical communication devices are coupled to each other via an optical fiber cable, a monitoring control network for transmitting a monitoring control signal of the optical communication device,
少なくとも一つのノードの光通信装置に監視制御網用ルータを設け、それ以外のノードの光通信装置には監視制御網用EA supervisory control network router is provided in the optical communication device of at least one node, and the supervisory control network E is provided in the optical communication devices of other nodes. thernetthernet スイッチを設け、当該ノードの前記光通信装置と前記ルータもしくは前記EA switch is provided, and the optical communication device of the node and the router or E thernetthernet スイッチとはインタフェースを介してEThe switch is E through the interface thernetthernet 信号の監視制御信号を送受信し、Send and receive signal monitoring control signals,
前記ルータおよび前記EThe router and the E thernetthernet スイッチの各々に、前記EEach of the switches has the E thernetthernet 信号の監視制御信号を光監視制御信号へ変換及びその逆変換を行う変換部を結合し、A conversion unit for converting the monitoring control signal of the signal into the optical monitoring control signal and vice versa,
当該ノードの前記ルータもしくは前記EThe router or E of the node thernetthernet スイッチからの前記EE from switch thernetthernet 信号の監視制御信号を前記変換部で光監視制御信号に変換し、前記光監視制御信号を光ファイバケーブルを介して隣接ノードに伝達するようにして、前記複数の光通信装置を一つのEA signal supervisory control signal is converted into an optical supervisory control signal by the conversion unit, and the optical supervisory control signal is transmitted to an adjacent node via an optical fiber cable, so that the plurality of optical communication devices are connected to one E thernetthernet セグメントで管理することを特徴とする光通信システム監視制御網。An optical communication system supervisory control network managed by a segment.
各光通信装置は、主信号と前記変換部からの光監視制御信号を多重化して光ファイバケーブルに送信し、また、光ファイバケーブルから受信した光信号を分離し、光監視制御信号を前記変換部へ伝達する光多重分離部を有することを特徴とする請求項1記載の光通信システム監視制御網。Each optical communication device multiplexes the main signal and the optical monitoring control signal from the conversion unit and transmits it to the optical fiber cable, separates the optical signal received from the optical fiber cable, and converts the optical monitoring control signal to the conversion 2. The optical communication system supervisory control network according to claim 1, further comprising an optical demultiplexing unit for transmission to said unit.
JP2003159934A 2003-06-04 2003-06-04 Optical communication system supervisory control network Expired - Fee Related JP4046227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159934A JP4046227B2 (en) 2003-06-04 2003-06-04 Optical communication system supervisory control network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159934A JP4046227B2 (en) 2003-06-04 2003-06-04 Optical communication system supervisory control network

Publications (2)

Publication Number Publication Date
JP2004363944A JP2004363944A (en) 2004-12-24
JP4046227B2 true JP4046227B2 (en) 2008-02-13

Family

ID=34052864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159934A Expired - Fee Related JP4046227B2 (en) 2003-06-04 2003-06-04 Optical communication system supervisory control network

Country Status (1)

Country Link
JP (1) JP4046227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320973B2 (en) * 2008-10-22 2013-10-23 富士通株式会社 Optical fiber transmission line measuring device and optical fiber transmission line measuring system

Also Published As

Publication number Publication date
JP2004363944A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4984797B2 (en) Optical network system
EP3036869B1 (en) Reconfigurable and variable-rate shared multi-transponder architecture for flexible ethernet-based optical networks
US7298973B2 (en) Architecture, method and system of multiple high-speed servers to network in WDM based photonic burst-switched networks
JP4844219B2 (en) Optical network and node
US7266295B2 (en) Modular reconfigurable multi-server system and method for high-speed networking within photonic burst-switched network
JP4511557B2 (en) Method, apparatus and system for optical communication
US8442040B2 (en) Modular adaptation and configuration of a network node architecture
US7925165B2 (en) Packet and optical routing equipment and method
JP3813063B2 (en) Communication system and wavelength division multiplexing apparatus
US20080279567A1 (en) Asymmetric ethernet optical network system
US6741811B2 (en) Optical cross-connect device and system having the device
JP2000224145A (en) Device and method for optical transmission
US20100061726A1 (en) Dynamically Reconfiguring An Optical Network Using An Ethernet Switch
US7848228B2 (en) Communication system, communication card, and communication method
JP2013503579A (en) Distributed electrical cross device and system and method for realizing SNC cascade protection thereof
US8340516B2 (en) Grooming method and apparatus for optical communication network
EP1502474B1 (en) Hierarchical switch architecture for core optical networks
JP4046227B2 (en) Optical communication system supervisory control network
CN100488083C (en) Service scheduling device in optical communication network and method thereof
US6594045B2 (en) Flexible optical network architecture and optical add/drop multiplexer/demultiplexer therefor
US20150249874A1 (en) Optical communication apparatus and optical communication method
CN107295429B (en) An optical switching node device with wavelength as address label
WO2003107565A1 (en) A virtual protection method and means for the fiber path
WO2024002115A1 (en) Service processing method, optical module, access site and convergence site
JP3732771B2 (en) Optical packet routing system and optical packet routing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees