[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4046062B2 - Exhaust gas recirculation control device for internal combustion engine - Google Patents

Exhaust gas recirculation control device for internal combustion engine Download PDF

Info

Publication number
JP4046062B2
JP4046062B2 JP2003364850A JP2003364850A JP4046062B2 JP 4046062 B2 JP4046062 B2 JP 4046062B2 JP 2003364850 A JP2003364850 A JP 2003364850A JP 2003364850 A JP2003364850 A JP 2003364850A JP 4046062 B2 JP4046062 B2 JP 4046062B2
Authority
JP
Japan
Prior art keywords
pressure side
control valve
load
engine
recirculation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364850A
Other languages
Japanese (ja)
Other versions
JP2005127247A (en
Inventor
佳宜 橋本
静夫 佐々木
康二 吉▲崎▼
太郎 青山
宏樹 村田
和久 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003364850A priority Critical patent/JP4046062B2/en
Publication of JP2005127247A publication Critical patent/JP2005127247A/en
Application granted granted Critical
Publication of JP4046062B2 publication Critical patent/JP4046062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は内燃機関の排気再循環制御装置に関する。   The present invention relates to an exhaust gas recirculation control device for an internal combustion engine.

吸気通路内に配置されたコンプレッサを排気通路内に配置されたタービンにより駆動する過給機と、タービン出口下流の排気通路とコンプレッサ入口上流の吸気通路とを低圧側排気再循環(以下、EGRとも称する)通路により接続すると共に低圧側EGR通路内に低圧側EGR制御弁を配置し、タービン入口上流の排気通路とコンプレッサ出口下流の吸気通路とを高圧側EGR通路により接続すると共に高圧側EGR通路内に高圧側EGR制御弁を配置し、機関低負荷運転時には低圧側EGR制御弁を閉弁して高圧側EGR通路を介しEGRガスを機関に供給し、機関中負荷運転時には高圧側EGR制御弁を閉弁して低圧側EGR通路を介しEGRガスを機関に供給するようにした内燃機関が公知である(特許文献1の図17等参照)。   A turbocharger that drives a compressor disposed in the intake passage by a turbine disposed in the exhaust passage, an exhaust passage downstream of the turbine outlet, and an intake passage upstream of the compressor inlet (hereinafter also referred to as EGR). And a low pressure side EGR control valve is disposed in the low pressure side EGR passage, and the exhaust passage upstream of the turbine inlet and the intake passage downstream of the compressor outlet are connected by the high pressure side EGR passage and in the high pressure side EGR passage. The high-pressure side EGR control valve is disposed in the engine, the low-pressure side EGR control valve is closed during engine low-load operation, and EGR gas is supplied to the engine via the high-pressure side EGR passage. An internal combustion engine that is closed and supplies EGR gas to the engine via a low-pressure side EGR passage is known (see FIG. 17 of Patent Document 1).

高圧側EGR通路を介しEGRガスを供給する場合には高圧側EGR通路の流出端が機関に近いので良好な応答性が得られるので機関に供給されるEGRガスの量を精密に制御でき、従って高圧側EGR通路を介しEGRガスを供給するのが好ましい。ところが、機関負荷が高くなると高圧側EGR通路の上下流の圧力差が小さくなるので機関に十分な量のEGRガスを供給するのが困難になる。一方、低圧側EGR通路を介しEGRガスを供給する場合には機関負荷が高くなっても低圧側EGR通路上下流の圧力差が小さくならず、十分な量のEGRガスを供給することができる。   When EGR gas is supplied via the high pressure side EGR passage, the outflow end of the high pressure side EGR passage is close to the engine, so that a good response can be obtained, so that the amount of EGR gas supplied to the engine can be precisely controlled. It is preferable to supply EGR gas through the high pressure side EGR passage. However, when the engine load increases, the pressure difference between the upstream side and the downstream side of the high pressure side EGR passage becomes small, and it becomes difficult to supply a sufficient amount of EGR gas to the engine. On the other hand, when supplying EGR gas via the low pressure side EGR passage, even if the engine load increases, the pressure difference between the upstream and downstream sides of the low pressure side EGR passage does not become small, and a sufficient amount of EGR gas can be supplied.

そこで上述の内燃機関では、機関低負荷運転時には高圧側EGR通路を介しEGRガスを機関に供給し、機関中負荷運転時には低圧側EGR通路を介しEGRガスを機関に供給するようにしている。   Therefore, in the above-described internal combustion engine, EGR gas is supplied to the engine via the high-pressure side EGR passage during low engine load operation, and EGR gas is supplied to the engine via the low-pressure side EGR passage during medium load operation.

ところで、機関高負荷運転時には機関に多量の新気を供給しなければならず、このため機関へのEGRガスの供給を停止するのが一般的である。そうすると、上述した内燃機関では、機関低負荷運転時には高圧側EGR通路を介しEGRガスを供給し、機関中負荷運転時には低圧側EGR通路を介しEGRガスを供給し、機関高負荷運転時にはEGRガスの供給が停止されるということになる。   By the way, a large amount of fresh air must be supplied to the engine at the time of engine high load operation. For this reason, the supply of EGR gas to the engine is generally stopped. Then, in the internal combustion engine described above, EGR gas is supplied via the high pressure side EGR passage during low engine load operation, EGR gas is supplied via the low pressure side EGR passage during medium load operation, and EGR gas is supplied during high engine load operation. The supply will be stopped.

特開2001−140703号公報JP 2001-140703 A 特開平5−86948号公報Japanese Patent Laid-Open No. 5-86948 特開平5−187327号公報Japanese Patent Laid-Open No. 5-187327

上述の内燃機関において、高圧側EGR制御弁が開弁され低圧側EGR制御弁が閉弁されている低負荷運転から加速運転が行われる場合、まず機関中負荷運転になると高圧側EGR制御弁が閉弁され低圧側EGR制御弁が開弁され、次いで機関高負荷運転になると低圧側EGR制御弁が閉弁が停止される。この場合、低圧側EGR制御弁は閉弁停止状態から開弁され次いで再び閉弁され、即ち一時的に開弁されるということになる。ここで、低圧側EGR制御弁が開弁されている時間は加速運転の加速度合いに依存する。このため、急加速運転が行われた場合には極めて短い時間の間に低圧側EGR制御弁の開弁動作と閉弁動作とが行われることになり、その結果低圧側EGR制御弁の耐久性が悪化するおそれがある。   In the above-described internal combustion engine, when the acceleration operation is performed from the low load operation in which the high pressure side EGR control valve is opened and the low pressure side EGR control valve is closed, the high pressure side EGR control valve is first set to the medium load operation. When the valve is closed and the low-pressure side EGR control valve is opened, and then the engine high load operation is started, the low-pressure side EGR control valve is closed. In this case, the low-pressure side EGR control valve is opened from the closed state and then closed again, that is, temporarily opened. Here, the time during which the low pressure side EGR control valve is opened depends on the acceleration degree of the acceleration operation. For this reason, when the rapid acceleration operation is performed, the valve opening operation and the valve closing operation of the low pressure side EGR control valve are performed in an extremely short time. As a result, the durability of the low pressure side EGR control valve is determined. May get worse.

また、加速運転時に低圧側EGR制御弁が開弁されて機関にEGRガスが供給されると、機関に多量の新気を供給することができず、機関出力を急激に増大させることができなくなるおそれもある。   Further, when the low pressure side EGR control valve is opened during acceleration operation and EGR gas is supplied to the engine, a large amount of fresh air cannot be supplied to the engine, and the engine output cannot be increased rapidly. There is also a fear.

そこで本発明は、EGR装置の耐久性が悪化するのを阻止しかつ加速性能を確保することができる内燃機関の排気再循環制御装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an exhaust gas recirculation control device for an internal combustion engine that can prevent deterioration of the durability of the EGR device and ensure acceleration performance.

前記課題を解決するために1番目の発明によれば、吸気通路内に配置されたコンプレッサを排気通路内に配置されたタービンにより駆動する過給機を具備し、タービン入口上流の排気通路とコンプレッサ出口下流の吸気通路とを高圧側排気再循環通路により接続すると共に該高圧側排気再循環通路内に高圧側排気再循環制御弁を配置し、タービン出口下流の排気通路とコンプレッサ入口上流の吸気通路とを低圧側排気再循環通路により接続すると共に該低圧側排気再循環通路内に低圧側排気再循環制御弁を配置し、高圧側排気再循環制御弁を機関負荷が予め定められた設定負荷よりも低いときに開弁し機関負荷が設定負荷よりも高いときに閉弁し、低圧側排気再循環制御弁を機関負荷が設定負荷よりも低いときに閉弁し機関負荷が設定負荷よりも高いときに開弁し、機関負荷が設定負荷よりも高く設定された上限負荷よりも高いときには高圧側排気再循環制御弁と低圧側排気再循環制御弁との双方を閉弁するようにした内燃機関の排気再循環制御装置において、機関負荷が設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関緩加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を機関負荷に応じて開弁又は閉弁し、機関負荷が設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関急加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を閉弁状態に保持するようにしている。 In order to solve the above problems, according to a first aspect of the present invention, a turbocharger that drives a compressor disposed in an intake passage by a turbine disposed in an exhaust passage is provided, and an exhaust passage upstream of the turbine inlet and the compressor are provided. An intake passage downstream of the outlet is connected by a high pressure side exhaust recirculation passage, and a high pressure side exhaust recirculation control valve is disposed in the high pressure side exhaust recirculation passage, and an exhaust passage downstream of the turbine outlet and an intake passage upstream of the compressor inlet Are connected by a low-pressure side exhaust recirculation passage, and a low-pressure side exhaust recirculation control valve is disposed in the low-pressure side exhaust recirculation passage. When the engine load is lower than the set load, the valve is closed.When the engine load is lower than the set load, the valve is closed. And opened when is high, when higher than the upper limit load is set higher than the set load is the engine load was to close the both the high pressure side exhaust gas recirculation control valve and the low pressure-side exhaust recirculation control valve In the exhaust gas recirculation control device for an internal combustion engine , the engine slow acceleration operation is performed when the engine load is lower than the set load and the high pressure exhaust gas recirculation control valve is opened and the low pressure exhaust gas recirculation control valve is closed. When the engine load is higher than the upper limit load, the low-pressure side exhaust recirculation control valve is opened or closed according to the engine load, and the engine load is lower than the set load and the high-pressure side exhaust recirculation control valve is opened. When the engine sudden acceleration operation is performed when the low-pressure side exhaust recirculation control valve is closed and the engine load becomes higher than the upper limit load, the low-pressure side exhaust recirculation control valve is kept closed. ing.

また、前記課題を解決するために2番目の発明によれば、吸気通路内に配置されたコンプレッサを排気通路内に配置されたタービンにより駆動する過給機を具備し、タービン入口上流の排気通路とコンプレッサ出口下流の吸気通路とを高圧側排気再循環通路により接続すると共に該高圧側排気再循環通路内に高圧側排気再循環制御弁を配置し、タービン出口下流の排気通路とコンプレッサ入口上流の吸気通路とを低圧側排気再循環通路により接続すると共に該低圧側排気再循環通路内に低圧側排気再循環制御弁を配置し、低圧側排気再循環制御弁を機関負荷が第1の設定負荷よりも低いときに閉弁し機関負荷が第1の設定負荷よりも高いときに開弁し、高圧側排気再循環制御弁を機関負荷が第1の設定負荷よりも高く設定された第2の設定負荷よりも低いときに開弁し機関負荷が第2の設定負荷よりも高いときに閉弁し、機関負荷が第2の設定負荷よりも高く設定された上限負荷よりも高いときには高圧側排気再循環制御弁と低圧側排気再循環制御弁との双方を閉弁するようにした内燃機関の排気再循環制御装置において、機関負荷が第1の設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関緩加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を機関負荷に応じて開弁又は閉弁し、機関負荷が第1の設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関急加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を閉弁状態に保持するようにしている。 In order to solve the above-mentioned problem, according to a second aspect of the present invention, there is provided a supercharger that drives a compressor disposed in the intake passage by a turbine disposed in the exhaust passage, and the exhaust passage upstream of the turbine inlet And an intake passage downstream of the compressor outlet by a high pressure side exhaust recirculation passage, and a high pressure side exhaust recirculation control valve is disposed in the high pressure side exhaust recirculation passage, and the exhaust passage downstream of the turbine outlet and the upstream side of the compressor inlet are arranged. The low pressure side exhaust gas recirculation passage is connected to the intake passage by the low pressure side exhaust gas recirculation passage, and the low pressure side exhaust gas recirculation control valve is disposed in the low pressure side exhaust gas recirculation passage. When the engine load is lower than the first set load, the valve is opened and when the engine load is higher than the first set load, the high-pressure side exhaust gas recirculation control valve is set to the second engine load set higher than the first set load. Setting negative It closed when higher than the valve opening and the engine load is a second set load when lower than the high-pressure-side exhaust recirculation when higher than the upper limit load is set higher than the engine load is the second set load In an exhaust gas recirculation control device for an internal combustion engine in which both the control valve and the low pressure side exhaust gas recirculation control valve are closed , the engine load is lower than the first set load and the high pressure side exhaust gas recirculation control valve is opened. When the engine is accelerating and the engine load is higher than the upper limit load when the low pressure exhaust recirculation control valve is closed, the low pressure exhaust recirculation control valve is opened according to the engine load. Alternatively, when the engine load is lower than the first set load and the high pressure side exhaust gas recirculation control valve is opened and the low pressure side exhaust gas recirculation control valve is closed, the engine rapid acceleration operation is performed. When the engine load is higher than the upper limit load, And so as to hold the recirculation control valve in a closed state.

EGR装置の耐久性が悪化するのを阻止しかつ加速性能を確保することができる。   The deterioration of the durability of the EGR device can be prevented and acceleration performance can be ensured.

図1は本発明を圧縮着火式内燃機関に適用した場合を示している。しかしながら、本発明を火花点火式内燃機関に適用することもできる。   FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine. However, the present invention can also be applied to a spark ignition internal combustion engine.

図1を参照すると、機関本体1は例えば4つの気筒1aを有する。各気筒1aはそれぞれ対応する吸気枝管2を介して共通のサージタンク3に連結され、サージタンク3は吸気ダクト4を介して排気ターボチャージャ5のコンプレッサ6の出口に連結される。コンプレッサ6の入口には吸気管4aが連結される。吸気ダクト4内にはステップモータ7Hにより駆動されるスロットル弁8Hが配置され、吸気管4a内にはステップモータ7Lにより駆動されるスロットル弁8Lが配置される。更に、吸気ダクト4周りには吸気ダクト4内を流れる吸入空気を冷却するための冷却装置9が配置される。   Referring to FIG. 1, the engine body 1 has, for example, four cylinders 1a. Each cylinder 1 a is connected to a common surge tank 3 via a corresponding intake branch pipe 2, and the surge tank 3 is connected to an outlet of a compressor 6 of an exhaust turbocharger 5 via an intake duct 4. An intake pipe 4 a is connected to the inlet of the compressor 6. A throttle valve 8H driven by a step motor 7H is arranged in the intake duct 4, and a throttle valve 8L driven by a step motor 7L is arranged in the intake pipe 4a. Further, a cooling device 9 for cooling the intake air flowing through the intake duct 4 is disposed around the intake duct 4.

一方、各気筒1aは排気マニホルド10及び排気管11を介して排気ターボチャージャ5の排気タービン12の入口に連結され、排気タービン12の出口は排気管13を介して触媒コンバータ14に連結される。触媒コンバータ14には排気管13aが連結される。   On the other hand, each cylinder 1 a is connected to the inlet of the exhaust turbine 12 of the exhaust turbocharger 5 via the exhaust manifold 10 and the exhaust pipe 11, and the outlet of the exhaust turbine 12 is connected to the catalytic converter 14 via the exhaust pipe 13. An exhaust pipe 13 a is connected to the catalytic converter 14.

各気筒1aの筒内には燃料噴射弁15が配置され、これら燃料噴射弁15は共通のコモンレール16を介して吐出量可変の電気制御式燃料ポンプ17に連結される。燃料ポンプ17の吸込口は燃料タンク18に連結される。コモンレール16にはコモンレール16内の燃料圧を検出するための燃料圧センサ(図示しない)が取付けられており、燃料圧センサの出力信号に基づいてコモンレール16内の燃料圧が目標燃料圧となるように燃料ポンプ17の吐出量が制御される。   Fuel injection valves 15 are arranged in the cylinders of the respective cylinders 1 a, and these fuel injection valves 15 are connected to an electrically controlled fuel pump 17 having a variable discharge amount via a common rail 16. The suction port of the fuel pump 17 is connected to the fuel tank 18. A fuel pressure sensor (not shown) for detecting the fuel pressure in the common rail 16 is attached to the common rail 16 so that the fuel pressure in the common rail 16 becomes the target fuel pressure based on the output signal of the fuel pressure sensor. In addition, the discharge amount of the fuel pump 17 is controlled.

排気マニホルド10とサージタンク3とは高圧側EGR通路19Hを介して互いに連結され、高圧側EGR通路19H内には電気制御式の高圧側EGR制御弁20Hが配置される。高圧側EGR通路19H周りには高圧側EGR通路19H内を流れるEGRガスを冷却するための冷却装置21Hが配置される。一方、触媒コンバータ14下流の排気管13aとスロットル弁8L下流の吸気管4aとは低圧側EGR通路19Lを介して互いに連結され、低圧側EGR通路19L内には電気制御式の低圧側EGR制御弁20Lが配置される。低圧側EGR通路19L周りには低圧側EGR通路19L内を流れるEGRガスを冷却するための冷却装置21Lが配置される。   The exhaust manifold 10 and the surge tank 3 are connected to each other via a high pressure side EGR passage 19H, and an electrically controlled high pressure side EGR control valve 20H is disposed in the high pressure side EGR passage 19H. Around the high pressure side EGR passage 19H, a cooling device 21H for cooling the EGR gas flowing in the high pressure side EGR passage 19H is arranged. On the other hand, the exhaust pipe 13a downstream of the catalytic converter 14 and the intake pipe 4a downstream of the throttle valve 8L are connected to each other via a low pressure side EGR passage 19L, and an electrically controlled low pressure side EGR control valve is provided in the low pressure side EGR passage 19L. 20L is arranged. A cooling device 21L for cooling the EGR gas flowing in the low pressure side EGR passage 19L is disposed around the low pressure side EGR passage 19L.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、バックアップRAM(B−RAM)35、入力ポート36及び出力ポート37を具備する。スロットル弁8L上流の吸気管4aには吸入空気量を検出するためのエアフローメータ40が取り付けられ、エアフローメータ40の出力信号は対応するAD変換器38を介して入力ポート36に入力される。また、アクセルペダル(図示しない)にはアクセルペダルの踏み込み量に比例した出力電圧を発生する踏み込み量センサ41が接続され、踏み込み量センサ41の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。このアクセルペダルの踏み込み量は機関負荷Lを表している。更に、入力ポート36にはクランクシャフトが例えば10°回転する毎に出力パルスを発生するクランク角センサ42が接続される。CPU34ではクランク角センサ42からの出力パルスに基づいて機関回転数Nが算出される。一方、出力ポート37は対応する駆動回路39を介してステップモータ7H,7L、燃料噴射弁15、燃料ポンプ17、高圧側EGR制御弁20H、及び低圧側EGR制御弁20Lにそれぞれ接続される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, and a backup RAM (B-RAM). 35, an input port 36 and an output port 37. An air flow meter 40 for detecting the amount of intake air is attached to the intake pipe 4a upstream of the throttle valve 8L, and an output signal of the air flow meter 40 is input to the input port 36 via the corresponding AD converter 38. An accelerator pedal (not shown) is connected to a depression amount sensor 41 that generates an output voltage proportional to the depression amount of the accelerator pedal. The output voltage of the depression amount sensor 41 is input to the input port via the corresponding AD converter 38. 36. The amount of depression of the accelerator pedal represents the engine load L. Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 10 ° is connected to the input port 36. The CPU 34 calculates the engine speed N based on the output pulse from the crank angle sensor 42. On the other hand, the output port 37 is connected to the stepping motors 7H and 7L, the fuel injection valve 15, the fuel pump 17, the high-pressure side EGR control valve 20H, and the low-pressure side EGR control valve 20L through corresponding drive circuits 39, respectively.

図1に示される内燃機関では、EGRガスを高圧側EGR通路19Hを介して機関に供給することもできるし、低圧側EGR通路19Lを介して供給することもできる。EGRガスを高圧側EGR通路19Hを介して供給する場合には、良好な応答性を確保することができ、従って機関に供給されるEGRガスの量を精密に制御することができる。ところが、機関負荷が高くなると高圧側EGR通路19Hの上下流の圧力差が小さくなるので機関に十分な量のEGRガスを供給するのが困難になる。一方、低圧側EGR通路19Lを介しEGRガスを供給する場合には機関負荷が高くなっても低圧側EGR通路19Lの上下流の圧力差が小さくならず、十分な量のEGRガスを供給することができる。   In the internal combustion engine shown in FIG. 1, EGR gas can be supplied to the engine via the high-pressure side EGR passage 19H, or can be supplied via the low-pressure side EGR passage 19L. When supplying the EGR gas via the high-pressure side EGR passage 19H, good responsiveness can be ensured, and therefore the amount of EGR gas supplied to the engine can be precisely controlled. However, when the engine load becomes high, the pressure difference between the upstream and downstream sides of the high pressure side EGR passage 19H becomes small, so that it becomes difficult to supply a sufficient amount of EGR gas to the engine. On the other hand, when supplying EGR gas via the low pressure side EGR passage 19L, the pressure difference between the upstream and downstream sides of the low pressure side EGR passage 19L is not reduced even when the engine load increases, and a sufficient amount of EGR gas is supplied. Can do.

そこで本発明による第1実施例では、機関負荷Lが予め定められた設定負荷LS(N)よりも低いときには高圧側EGR通路19Hのみを介してEGRガスを供給し、機関負荷Lが設定負荷LS(N)よりも高いときには低圧側EGR通路19Lのみを介してEGRガスを供給するようにしている。   Therefore, in the first embodiment according to the present invention, when the engine load L is lower than the predetermined set load LS (N), EGR gas is supplied only through the high pressure side EGR passage 19H, and the engine load L is set to the set load LS. When it is higher than (N), the EGR gas is supplied only through the low pressure side EGR passage 19L.

ただし、機関負荷Lが設定負荷LS(N)よりも高く設定された上限負荷LU(N)よりも高いときには、機関に多量の新気を供給するために、機関へのEGRガスの供給が停止される。   However, when the engine load L is higher than the upper limit load LU (N) set higher than the set load LS (N), the supply of EGR gas to the engine is stopped in order to supply a large amount of fresh air to the engine. Is done.

これらをまとめると、図2に示されるように機関負荷Lが設定負荷LS(N)よりも低く従って機関運転状態が第1領域I内にあるときには、低圧側EGR制御弁20Lが閉弁され高圧側EGR制御弁20Hが開弁され、EGRガスが高圧側EGR通路19Hのみを介して機関に供給される。この場合の高圧側EGR制御弁20Hの開度DHは機関運転状態例えば機関負荷L及び機関回転数Nの関数として図3(A)に示されるマップの形で予めROM32内に記憶されている。   In summary, as shown in FIG. 2, when the engine load L is lower than the set load LS (N) and therefore the engine operating state is in the first region I, the low pressure side EGR control valve 20L is closed and the high pressure is increased. The side EGR control valve 20H is opened, and EGR gas is supplied to the engine only through the high pressure side EGR passage 19H. The opening degree DH of the high pressure side EGR control valve 20H in this case is stored in advance in the ROM 32 in the form of a map shown in FIG. 3A as a function of the engine operating state, for example, the engine load L and the engine speed N.

一方、機関負荷Lが設定負荷LS(N)よりも高く上限負荷LU(N)よりも低く従って機関運転状態が第2領域II内にあるときには、高圧側EGR制御弁20Hが閉弁され低圧側EGR制御弁20Lが開弁され、EGRガスが低圧側EGR通路19Lのみを介して機関に供給される。この場合の低圧側EGR制御弁20Lの開度DLは機関運転状態例えば機関負荷L及び機関回転数Nの関数として図3(B)に示されるマップの形で予めROM32内に記憶されている。   On the other hand, when the engine load L is higher than the set load LS (N) and lower than the upper limit load LU (N) and therefore the engine operating state is in the second region II, the high pressure side EGR control valve 20H is closed and the low pressure side The EGR control valve 20L is opened, and EGR gas is supplied to the engine only through the low-pressure side EGR passage 19L. The opening DL of the low pressure side EGR control valve 20L in this case is stored in advance in the ROM 32 in the form of a map shown in FIG. 3B as a function of the engine operating state, for example, the engine load L and the engine speed N.

機関負荷Lが上限負荷LU(N)よりも高く従って機関運転状態が第3領域III内にあるときには、高圧側EGR制御弁20H及び低圧側EGR制御弁20Lが閉弁され、機関へのEGRガスの供給が停止される。   When the engine load L is higher than the upper limit load LU (N) and therefore the engine operating state is in the third region III, the high-pressure side EGR control valve 20H and the low-pressure side EGR control valve 20L are closed, and EGR gas to the engine Is stopped.

図3(A)及び(B)において黒丸で示される各格子点は開度DH,DLがそれぞれ設定されている点を表しており、格子点間については補間によって開度DH,DLがそれぞれ算出される。なお、設定負荷LS(N)及び上限負荷LU(N)はそれぞれ機関回転数Nの関数として図2に示されるマップの形で予めROM32内に記憶されている。   Each grid point indicated by a black circle in FIGS. 3 (A) and 3 (B) represents a point at which the opening degree DH, DL is set, and the opening degree DH, DL is calculated by interpolation between the lattice points. Is done. The set load LS (N) and the upper limit load LU (N) are stored in advance in the ROM 32 in the form of a map shown in FIG.

このように機関運転状態が属する領域に応じて高圧側EGR制御弁20H及び低圧側EGR制御弁20Lが制御される。従って、機関加速運転が行われて機関運転状態が例えば図4に矢印Aで示されるように第1領域Iから第2領域IIに移行すると、高圧側EGR制御弁20Hが開弁から閉弁に切り替えられ、低圧側EGR制御弁20Lが閉弁から開弁に切り替えられる。   Thus, the high pressure side EGR control valve 20H and the low pressure side EGR control valve 20L are controlled in accordance with the region to which the engine operating state belongs. Accordingly, when the engine acceleration operation is performed and the engine operation state shifts from the first region I to the second region II as indicated by an arrow A in FIG. 4, for example, the high pressure side EGR control valve 20H is changed from being opened to being closed. The low pressure side EGR control valve 20L is switched from the closed valve to the opened valve.

一方、機関運転状態が図4に矢印Bで示されるように第1領域Iから第3領域IIIに移行する場合には、次のようにして高圧側EGR制御弁20H及び低圧側EGR制御弁20Lが制御される。   On the other hand, when the engine operating state shifts from the first region I to the third region III as indicated by the arrow B in FIG. 4, the high pressure side EGR control valve 20H and the low pressure side EGR control valve 20L are as follows. Is controlled.

図5(A)は機関緩加速運転が行われる場合を示している。図5(A)を参照すると、矢印Xで示されるように機関緩加速運転が開始されると機関負荷Lが増大し始め、このとき高圧側EGR制御弁20Hは開弁状態に保持され低圧側EGR制御弁20Lは閉弁状態に保持される。次いで、矢印Yで示されるように機関負荷Lが設定負荷LS(N)よりも高くなり機関運転状態が第2領域IIに移行すると、高圧側EGR制御弁20Hが閉弁され低圧側EGR制御弁20Lが開弁される。次いで、矢印Zで示されるように機関負荷Lが上限負荷LU(N)よりも高くなり機関運転状態が第3領域IIIに移行すると、低圧側EGR制御弁20Lが閉弁され、斯くしてEGRガスの供給が停止される。   FIG. 5 (A) shows a case where the engine slow acceleration operation is performed. Referring to FIG. 5A, when the engine slow acceleration operation is started as indicated by an arrow X, the engine load L starts to increase. At this time, the high-pressure side EGR control valve 20H is held in the open state and the low-pressure side. The EGR control valve 20L is held in a closed state. Next, as indicated by an arrow Y, when the engine load L becomes higher than the set load LS (N) and the engine operating state shifts to the second region II, the high pressure side EGR control valve 20H is closed and the low pressure side EGR control valve. 20L is opened. Next, when the engine load L becomes higher than the upper limit load LU (N) as indicated by the arrow Z and the engine operating state shifts to the third region III, the low pressure side EGR control valve 20L is closed, and thus EGR. Gas supply is stopped.

これに対し、機関急加速運転が行われる場合を示す図5(B)を参照すると、矢印Xで示されるように機関急加速運転が開始されると、高圧側EGR制御弁20Hが閉弁される。このとき、低圧側EGR制御弁20Lも閉弁されているので、機関へのEGRガスの供給が停止されることになる。次いで、矢印Yで示されるように機関負荷Lが設定負荷LS(N)よりも高くなり機関運転状態が第2領域IIに移行しても、高圧側EGR制御弁20H及び低圧側EGR制御弁20Lは閉弁状態に保持され、EGRガスの供給が停止され続ける。次いで、矢印Zで示されるように機関負荷Lが上限負荷LU(N)よりも高くなり機関運転状態が第3領域IIIに移行しても、高圧側EGR制御弁20H及び低圧側EGR制御弁20Lは閉弁状態に保持され、EGRガスの供給が停止され続ける。このようにしているのは次の理由による。   On the other hand, referring to FIG. 5B showing the case where the engine rapid acceleration operation is performed, when the engine rapid acceleration operation is started as indicated by the arrow X, the high pressure side EGR control valve 20H is closed. The At this time, since the low pressure side EGR control valve 20L is also closed, the supply of the EGR gas to the engine is stopped. Next, as shown by the arrow Y, even if the engine load L becomes higher than the set load LS (N) and the engine operating state shifts to the second region II, the high pressure side EGR control valve 20H and the low pressure side EGR control valve 20L. Is kept closed, and the supply of EGR gas continues to be stopped. Next, even if the engine load L becomes higher than the upper limit load LU (N) as indicated by the arrow Z and the engine operating state shifts to the third region III, the high pressure side EGR control valve 20H and the low pressure side EGR control valve 20L. Is kept closed, and the supply of EGR gas continues to be stopped. This is done for the following reason.

図5(A)に示される例では時間tだけ低圧側EGR制御弁20Lが開弁され、この時間tは加速運転の加速度合いに依存する。従って、冒頭で述べたように、急加速運転が行われると極めて短い時間の間に低圧側EGR制御弁20Lの開弁動作と閉弁動作とが行われることになり、その結果低圧側EGR制御弁20Lの耐久性が悪化するおそれがある。また、加速運転時に低圧側EGR制御弁20Lが開弁されて機関にEGRガスが供給されると、機関に多量の新気を供給することができず、機関出力を急激に増大させることができなくなるおそれもある。   In the example shown in FIG. 5A, the low pressure side EGR control valve 20L is opened only for time t, and this time t depends on the acceleration degree of acceleration operation. Therefore, as described at the beginning, when the rapid acceleration operation is performed, the low pressure side EGR control valve 20L is opened and closed in a very short time, and as a result, the low pressure side EGR control is performed. The durability of the valve 20L may be deteriorated. Further, when the low pressure side EGR control valve 20L is opened during acceleration operation and EGR gas is supplied to the engine, a large amount of fresh air cannot be supplied to the engine, and the engine output can be increased rapidly. There is also a risk of disappearing.

そこで本発明による第1実施例では、機関負荷Lが設定負荷LS(N)よりも低く高圧側EGR制御弁20Hが開弁され低圧側EGR制御弁20Lが閉弁されているときに機関急加速運転が行われて機関負荷Lが上限負荷LU(N)よりも高くなるときには低圧側EGR制御弁20Lを閉弁状態に保持するようにしている。その結果、低圧側EGR制御弁20Lの耐久性が悪化するのを阻止し、加速性能を確保することができる。なお、緩加速運転が行われているか急加速運転が行われているかは例えば機関負荷Lの変化速度に基づいて決めることができる。   Therefore, in the first embodiment according to the present invention, when the engine load L is lower than the set load LS (N) and the high pressure side EGR control valve 20H is opened and the low pressure side EGR control valve 20L is closed, the engine sudden acceleration is performed. When the operation is performed and the engine load L becomes higher than the upper limit load LU (N), the low-pressure side EGR control valve 20L is kept closed. As a result, it is possible to prevent the durability of the low pressure side EGR control valve 20L from deteriorating and to ensure acceleration performance. Whether the slow acceleration operation or the rapid acceleration operation is being performed can be determined based on, for example, the changing speed of the engine load L.

図6は本発明による第1実施例のEGR制御ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。   FIG. 6 shows an EGR control routine of the first embodiment according to the present invention. This routine is executed by interruption every predetermined time.

図6を参照すると、まずステップ100では機関急加速運転が行われているか否かが判別される。機関急加速運転が行われていないとき、即ち緩加速運転又は定常運転などが行われているときには次いでステップ101に進み、上限負荷LU(N)が図2のマップから算出される。続くステップ102では機関負荷Lが上限負荷LU(N)よりも低いか否かが判別される。L<LU(N)のときには次いでステップ103に進み、図2のマップから設定負荷LS(N)が算出される。続くステップ104では機関負荷Lが設定負荷LS(N)よりも低いか否かが判別される。L<LS(N)のとき、即ち機関運転状態が第1領域I内にあるときには次いでステップ105に進み、低圧側EGR制御弁20Lの開度DLがゼロとされ、即ち低圧側EGR制御弁20Lが閉弁される。続くステップ106では図3(A)のマップから高圧側EGR制御弁20Hの開度DHが算出される。一方、L≧LS(N)のとき、即ち機関運転状態が第2領域II内にあるときにはステップ104からステップ107に進み、図3(B)のマップから低圧側EGR制御弁20Lの開度DLが算出される。続くステップ108では高圧側EGR制御弁20Hの開度DHがゼロとされ、即ち高圧側EGR制御弁20Hが閉弁される。   Referring to FIG. 6, first, at step 100, it is judged if the engine rapid acceleration operation is being performed. When the engine rapid acceleration operation is not performed, that is, when the slow acceleration operation or the steady operation is performed, the process proceeds to step 101, and the upper limit load LU (N) is calculated from the map of FIG. In the following step 102, it is determined whether or not the engine load L is lower than the upper limit load LU (N). When L <LU (N), the routine proceeds to step 103 where the set load LS (N) is calculated from the map of FIG. In the following step 104, it is determined whether or not the engine load L is lower than the set load LS (N). When L <LS (N), that is, when the engine operating state is in the first region I, the routine proceeds to step 105 where the opening DL of the low pressure side EGR control valve 20L is made zero, that is, the low pressure side EGR control valve 20L. Is closed. In the subsequent step 106, the opening degree DH of the high pressure side EGR control valve 20H is calculated from the map of FIG. On the other hand, when L ≧ LS (N), that is, when the engine operating state is in the second region II, the routine proceeds from step 104 to step 107, and the opening DL of the low pressure side EGR control valve 20L from the map of FIG. Is calculated. At the next step 108, the opening degree DH of the high pressure side EGR control valve 20H is made zero, that is, the high pressure side EGR control valve 20H is closed.

L≧LU(N)のとき、即ち機関運転状態が第3領域III内にあるときにはステップ102からステップ109に進み、低圧側EGR制御弁20Lの開度DL及び高圧側EGR制御弁20Hの開度DHが共にゼロとされる。   When L ≧ LU (N), that is, when the engine operating state is in the third region III, the routine proceeds from step 102 to step 109, where the opening DL of the low-pressure side EGR control valve 20L and the opening of the high-pressure side EGR control valve 20H Both DH are set to zero.

一方、急加速運転が行われているときにはステップ100からステップ109に進み、低圧側EGR制御弁20Lの開度DL及び高圧側EGR制御弁20Hの開度DHが共にゼロとされる。低圧側EGR制御弁20L及び高圧側EGR制御弁20Hはそれぞれの開度が算出された開度DL,DHに一致するように制御される。   On the other hand, when the rapid acceleration operation is being performed, the routine proceeds from step 100 to step 109, where both the opening DL of the low pressure side EGR control valve 20L and the opening DH of the high pressure side EGR control valve 20H are made zero. The low-pressure side EGR control valve 20L and the high-pressure side EGR control valve 20H are controlled so that the respective opening degrees coincide with the calculated opening degrees DL and DH.

次に、図7を参照しながら本発明による第2実施例を説明する。   Next, a second embodiment according to the present invention will be described with reference to FIG.

本発明による第2実施例では、図7に示されるように4つの領域が設けられている。機関負荷Lが第1の設定負荷LS1(N)よりも低い第1領域Iでは、高圧側EGR制御弁20Hが開弁され低圧側EGR制御弁20Lが閉弁される。   In the second embodiment according to the present invention, four regions are provided as shown in FIG. In the first region I where the engine load L is lower than the first set load LS1 (N), the high pressure side EGR control valve 20H is opened and the low pressure side EGR control valve 20L is closed.

機関負荷Lが第1の設定負荷LS1(N)よりも高く設定された第2の設定負荷LS2(N)よりも高くかつ上限負荷LU(N)よりも低い第2領域IIでは、低圧側EGR制御弁20Lが開弁され高圧側EGR制御弁20Hが閉弁される。機関負荷Lが上限負荷LU(N)よりも高い第3領域IIIでは、高圧側EGR制御弁20Hと低圧側EGR制御弁20Lとの双方が閉弁される。   In the second region II where the engine load L is higher than the second set load LS2 (N) set higher than the first set load LS1 (N) and lower than the upper limit load LU (N), the low pressure side EGR The control valve 20L is opened and the high pressure side EGR control valve 20H is closed. In the third region III in which the engine load L is higher than the upper limit load LU (N), both the high pressure side EGR control valve 20H and the low pressure side EGR control valve 20L are closed.

機関負荷Lが第1の設定負荷LS1(N)よりも高く第2の設定負荷LS2(N)よりも低い第4領域IVでは、高圧側EGR制御弁20Hと低圧側EGR制御弁20Lとの双方が開弁される。なお、第1の設定負荷LS1(N)、第2の設定負荷LS2(N)、及び上限負荷LU(N)はそれぞれ機関回転数Nの関数として図7に示されるマップの形で予めROM32内に記憶されている。   In the fourth region IV where the engine load L is higher than the first set load LS1 (N) and lower than the second set load LS2 (N), both the high pressure side EGR control valve 20H and the low pressure side EGR control valve 20L are used. Is opened. The first set load LS1 (N), the second set load LS2 (N), and the upper limit load LU (N) are stored in advance in the ROM 32 as a function of the engine speed N in the form of a map shown in FIG. Is remembered.

言い換えると、高圧側EGR制御弁20Hを機関負荷Lが第2の設定負荷LS2(N)よりも低いときに開弁し機関負荷Lが第2の設定負荷LS2(N)よりも高いときに閉弁し、低圧側EGR制御弁20Lを機関負荷Lが第1の設定負荷LS1(N)よりも低いときに開弁し機関負荷Lが第1の設定負荷LS1(N)よりも高くかつ第2の設定負荷LS2(N)よりも低いときに開弁しているということになる。   In other words, the high pressure side EGR control valve 20H is opened when the engine load L is lower than the second set load LS2 (N) and closed when the engine load L is higher than the second set load LS2 (N). The low-pressure side EGR control valve 20L is opened when the engine load L is lower than the first set load LS1 (N), and the engine load L is higher than the first set load LS1 (N) and the second This means that the valve is open when it is lower than the set load LS2 (N).

この場合の高圧側EGR制御弁20Hの開度DHは機関運転状態例えば機関負荷L及び機関回転数Nの関数として図8(A)に示されるマップの形で予めROM32内に記憶されており、低圧側EGR制御弁20Lの開度DLも機関運転状態例えば機関負荷L及び機関回転数Nの関数として図8(B)に示されるマップの形で予めROM32内に記憶されている。   The opening degree DH of the high-pressure side EGR control valve 20H in this case is stored in the ROM 32 in advance in the form of a map shown in FIG. 8A as a function of the engine operating state, for example, the engine load L and the engine speed N, The opening DL of the low pressure side EGR control valve 20L is also stored in advance in the ROM 32 in the form of a map shown in FIG. 8B as a function of the engine operating state, for example, the engine load L and the engine speed N.

ここで、第1の設定負荷LS1(N)を本発明による第1実施例の設定負荷LS(N)よりも低く、第2の設定負荷LS2(N)を設定負荷LS(N)よりも高く設定することができる。即ち、本発明による第1実施例に比べて、高圧側EGR制御弁20Hが開弁される運転領域を低負荷側に拡大し、低圧側EGR制御弁20Lが開弁される運転領域を高負荷側に拡大することができる。   Here, the first set load LS1 (N) is lower than the set load LS (N) of the first embodiment according to the present invention, and the second set load LS2 (N) is higher than the set load LS (N). Can be set. That is, compared with the first embodiment according to the present invention, the operating range in which the high pressure side EGR control valve 20H is opened is expanded to the low load side, and the operating range in which the low pressure side EGR control valve 20L is opened is a high load. Can be enlarged to the side.

本発明による第2実施例でも、機関運転状態が機関急加速運転でもって第1領域Iから第3領域IIIに移行される場合には低圧側EGR制御弁20Lが閉弁状態に保持される。   Also in the second embodiment according to the present invention, when the engine operating state is shifted from the first region I to the third region III by the engine rapid acceleration operation, the low pressure side EGR control valve 20L is held in the closed state.

これに対し、機関運転状態が機関緩加速運転でもって第1領域Iから第3領域IIIに移行される場合には、順次、低圧側EGR制御弁20Lが開弁され、高圧側EGR制御弁20Hが閉弁され、低圧側EGR制御弁20Lが閉弁される。   On the other hand, when the engine operating state is shifted from the first region I to the third region III in the engine slow acceleration operation, the low pressure side EGR control valve 20L is sequentially opened, and the high pressure side EGR control valve 20H. Is closed, and the low-pressure side EGR control valve 20L is closed.

図9は本発明による第2実施例のEGR制御ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。   FIG. 9 shows an EGR control routine of the second embodiment according to the present invention. This routine is executed by interruption every predetermined time.

図9を参照すると、まずステップ120では機関急加速運転が行われているか否かが判別される。機関急加速運転が行われていないときには次いでステップ121に進み、上限負荷LU(N)が図7のマップから算出される。続くステップ122では機関負荷Lが上限負荷LU(N)よりも低いか否かが判別される。L<LU(N)のときには次いでステップ123に進み、図7のマップから第1の設定負荷LS1(N)が算出される。続くステップ124では機関負荷Lが第1の設定負荷LS1(N)よりも低いか否かが判別される。L<LS1(N)のとき、即ち機関運転状態が第1領域I内にあるときには次いでステップ125に進み、低圧側EGR制御弁20Lの開度DLがゼロとされる。次いでステップ127に進む。これに対し、L≧LS1(N)のとき、即ち機関運転状態が第2領域II又は第4領域IV内にあるときには次いでステップ126に進み、図8(B)のマップから低圧側EGR制御弁20Lの開度DL算出される。次いでステップ127に進む。   Referring to FIG. 9, first, at step 120, it is judged if the engine rapid acceleration operation is being performed. When the engine rapid acceleration operation is not performed, the routine proceeds to step 121, where the upper limit load LU (N) is calculated from the map of FIG. In the following step 122, it is determined whether or not the engine load L is lower than the upper limit load LU (N). When L <LU (N), the routine proceeds to step 123 where the first set load LS1 (N) is calculated from the map of FIG. In the following step 124, it is determined whether or not the engine load L is lower than the first set load LS1 (N). When L <LS1 (N), that is, when the engine operating state is in the first region I, the routine proceeds to step 125, where the opening degree DL of the low pressure side EGR control valve 20L is made zero. Next, the routine proceeds to step 127. On the other hand, when L ≧ LS1 (N), that is, when the engine operating state is in the second region II or the fourth region IV, the routine proceeds to step 126, where the low pressure side EGR control valve is determined from the map of FIG. The opening DL of 20 L is calculated. Next, the routine proceeds to step 127.

ステップ127では図7のマップから第2の設定負荷LS2(N)が算出される。続くステップ128では機関負荷Lが第2の設定負荷LS2(N)よりも低いか否かが判別される。L<LS2(N)のとき、即ち機関運転状態が第1領域I又は第4領域IV内にあるときには次いでステップ129に進み、図8(A)のマップから高圧側EGR制御弁20Hの開度DHが算出される。一方、L≧LS2(N)のとき、即ち機関運転状態が第2領域II内にあるときにはステップ130に進み、高圧側EGR制御弁20Hの開度DHがゼロとされる。   In step 127, the second set load LS2 (N) is calculated from the map of FIG. In the following step 128, it is determined whether or not the engine load L is lower than the second set load LS2 (N). When L <LS2 (N), that is, when the engine operating state is in the first region I or the fourth region IV, the routine proceeds to step 129, where the opening degree of the high pressure side EGR control valve 20H is determined from the map of FIG. DH is calculated. On the other hand, when L ≧ LS2 (N), that is, when the engine operating state is in the second region II, the routine proceeds to step 130 where the opening degree DH of the high pressure side EGR control valve 20H is made zero.

L≧LU(N)のとき、即ち機関運転状態が第3領域III内にあるときにはステップ122からステップ131に進み、低圧側EGR制御弁20Lの開度DL及び高圧側EGR制御弁20Hの開度DHが共にゼロとされる。   When L ≧ LU (N), that is, when the engine operating state is in the third region III, the routine proceeds from step 122 to step 131, where the opening DL of the low-pressure side EGR control valve 20L and the opening of the high-pressure side EGR control valve 20H Both DH are set to zero.

一方、急加速運転が行われているときにはステップ120からステップ131に進み、低圧側EGR制御弁20Lの開度DL及び高圧側EGR制御弁20Hの開度DHが共にゼロとされる。   On the other hand, when the rapid acceleration operation is being performed, the routine proceeds from step 120 to step 131, where both the opening DL of the low pressure side EGR control valve 20L and the opening DH of the high pressure side EGR control valve 20H are made zero.

本発明による第2実施例のその他の構成及び作用は本発明による第1実施例と同様であるので説明を省略する。   Since other configurations and operations of the second embodiment according to the present invention are the same as those of the first embodiment according to the present invention, the description thereof is omitted.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. 設定負荷LS(N)及び上限負荷LU(N)を示す線図である。It is a diagram which shows setting load LS (N) and upper limit load LU (N). 高圧側EGR制御弁及び低圧側EGR制御弁の開度を示す線図である。It is a diagram which shows the opening degree of a high pressure side EGR control valve and a low pressure side EGR control valve. 機関運転状態の変化を説明する図である。It is a figure explaining the change of an engine operating state. 本発明による第1実施例を説明するためのタイムチャートである。It is a time chart for demonstrating 1st Example by this invention. 本発明による第1実施例のEGR制御ルーチンを示すフローチャートである。It is a flowchart which shows the EGR control routine of 1st Example by this invention. 第1の設定負荷LS1(N)、第2の設定負荷LS2(N)、及び上限負荷LU(N)を示す線図である。FIG. 4 is a diagram showing a first set load LS1 (N), a second set load LS2 (N), and an upper limit load LU (N). 高圧側EGR制御弁及び低圧側EGR制御弁の開度を示す線図である。It is a diagram which shows the opening degree of a high pressure side EGR control valve and a low pressure side EGR control valve. 本発明による第2実施例のEGR制御ルーチンを示すフローチャートである。It is a flowchart which shows the EGR control routine of 2nd Example by this invention.

符号の説明Explanation of symbols

1…機関本体
3…サージタンク
4a…吸気管
5…排気ターボチャージャ
6…タービン
10…排気マニホルド
12…コンプレッサ
13a…排気管
19H…高圧側EGR通路
19L…低圧側EGR通路
20H…高圧側EGR制御弁
20L…低圧側EGR制御弁
41…踏み込み量センサ
DESCRIPTION OF SYMBOLS 1 ... Engine body 3 ... Surge tank 4a ... Intake pipe 5 ... Exhaust turbocharger 6 ... Turbine 10 ... Exhaust manifold 12 ... Compressor 13a ... Exhaust pipe 19H ... High pressure side EGR passage 19L ... Low pressure side EGR passage 20H ... High pressure side EGR control valve 20L ... Low pressure side EGR control valve 41 ... Depression amount sensor

Claims (2)

吸気通路内に配置されたコンプレッサを排気通路内に配置されたタービンにより駆動する過給機を具備し、タービン入口上流の排気通路とコンプレッサ出口下流の吸気通路とを高圧側排気再循環通路により接続すると共に該高圧側排気再循環通路内に高圧側排気再循環制御弁を配置し、タービン出口下流の排気通路とコンプレッサ入口上流の吸気通路とを低圧側排気再循環通路により接続すると共に該低圧側排気再循環通路内に低圧側排気再循環制御弁を配置し、高圧側排気再循環制御弁を機関負荷が予め定められた設定負荷よりも低いときに開弁し機関負荷が設定負荷よりも高いときに閉弁し、低圧側排気再循環制御弁を機関負荷が設定負荷よりも低いときに閉弁し機関負荷が設定負荷よりも高いときに開弁し、機関負荷が設定負荷よりも高く設定された上限負荷よりも高いときには高圧側排気再循環制御弁と低圧側排気再循環制御弁との双方を閉弁するようにした内燃機関の排気再循環制御装置において、機関負荷が設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関緩加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を機関負荷に応じて開弁又は閉弁し、機関負荷が設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関急加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を閉弁状態に保持するようにした内燃機関の排気再循環制御装置。 A turbocharger that drives a compressor disposed in the intake passage by a turbine disposed in the exhaust passage, and connects the exhaust passage upstream of the turbine inlet and the intake passage downstream of the compressor outlet by a high-pressure side exhaust recirculation passage. And a high pressure side exhaust recirculation control valve is disposed in the high pressure side exhaust recirculation passage, and the exhaust passage downstream of the turbine outlet and the intake passage upstream of the compressor inlet are connected by the low pressure side exhaust recirculation passage. A low-pressure side exhaust recirculation control valve is arranged in the exhaust gas recirculation passage, and the high-pressure side exhaust gas recirculation control valve is opened when the engine load is lower than a predetermined set load, and the engine load is higher than the set load. closed when, and opens when closed and the engine load when the lower than the engine load and the low-pressure-side exhaust recirculation control valve is set load is higher than the set load, than the set load is the engine load In the exhaust recirculation control system for an internal combustion engine which is adapted to close both the high pressure side exhaust gas recirculation control valve and the low pressure-side exhaust recirculation control valve when Ku above the set limit load, the engine load is set Load When the engine load is higher than the upper limit load when the engine load is higher than the upper limit load when the low pressure exhaust recirculation control valve is open and the low pressure exhaust recirculation control valve is closed When the recirculation control valve is opened or closed according to the engine load , the engine load is lower than the set load, the high pressure exhaust recirculation control valve is opened, and the low pressure exhaust recirculation control valve is closed An exhaust gas recirculation control device for an internal combustion engine that keeps the low pressure side exhaust gas recirculation control valve closed when the engine sudden acceleration operation is performed and the engine load becomes higher than the upper limit load. 吸気通路内に配置されたコンプレッサを排気通路内に配置されたタービンにより駆動する過給機を具備し、タービン入口上流の排気通路とコンプレッサ出口下流の吸気通路とを高圧側排気再循環通路により接続すると共に該高圧側排気再循環通路内に高圧側排気再循環制御弁を配置し、タービン出口下流の排気通路とコンプレッサ入口上流の吸気通路とを低圧側排気再循環通路により接続すると共に該低圧側排気再循環通路内に低圧側排気再循環制御弁を配置し、低圧側排気再循環制御弁を機関負荷が第1の設定負荷よりも低いときに閉弁し機関負荷が第1の設定負荷よりも高いときに開弁し、高圧側排気再循環制御弁を機関負荷が第1の設定負荷よりも高く設定された第2の設定負荷よりも低いときに開弁し機関負荷が第2の設定負荷よりも高いときに閉弁し、機関負荷が第2の設定負荷よりも高く設定された上限負荷よりも高いときには高圧側排気再循環制御弁と低圧側排気再循環制御弁との双方を閉弁するようにした内燃機関の排気再循環制御装置において、機関負荷が第1の設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関緩加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を機関負荷に応じて開弁又は閉弁し、機関負荷が第1の設定負荷よりも低く高圧側排気再循環制御弁が開弁され低圧側排気再循環制御弁が閉弁されているときに機関急加速運転が行われて機関負荷が上限負荷よりも高くなるときには低圧側排気再循環制御弁を閉弁状態に保持するようにした内燃機関の排気再循環制御装置。 A turbocharger that drives a compressor disposed in the intake passage by a turbine disposed in the exhaust passage, and connects the exhaust passage upstream of the turbine inlet and the intake passage downstream of the compressor outlet by a high-pressure side exhaust recirculation passage. And a high pressure side exhaust recirculation control valve is disposed in the high pressure side exhaust recirculation passage, and the exhaust passage downstream of the turbine outlet and the intake passage upstream of the compressor inlet are connected by the low pressure side exhaust recirculation passage. A low-pressure side exhaust recirculation control valve is disposed in the exhaust gas recirculation passage, and the low-pressure side exhaust recirculation control valve is closed when the engine load is lower than the first set load, and the engine load is higher than the first set load. When the engine load is higher than the first set load, the high pressure side exhaust gas recirculation control valve is opened when the engine load is lower than the second set load set higher than the first set load. Than load Closed when high, so as to close the both the high pressure side exhaust gas recirculation control valve and the low pressure-side exhaust recirculation control valve when higher than high set upper limit load than the engine load is the second set load When the engine load is lower than the first set load and the high-pressure side exhaust recirculation control valve is opened and the low-pressure side exhaust recirculation control valve is closed, When slow acceleration operation is performed and the engine load becomes higher than the upper limit load, the low pressure side exhaust recirculation control valve is opened or closed according to the engine load , and the engine load is lower than the first set load and the high pressure side When the exhaust gas recirculation control valve is opened and the low pressure exhaust gas recirculation control valve is closed, the engine sudden acceleration operation is performed and the engine load becomes higher than the upper limit load. Internal combustion engine designed to keep valve closed Exhaust gas recirculation control device.
JP2003364850A 2003-10-24 2003-10-24 Exhaust gas recirculation control device for internal combustion engine Expired - Fee Related JP4046062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364850A JP4046062B2 (en) 2003-10-24 2003-10-24 Exhaust gas recirculation control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364850A JP4046062B2 (en) 2003-10-24 2003-10-24 Exhaust gas recirculation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005127247A JP2005127247A (en) 2005-05-19
JP4046062B2 true JP4046062B2 (en) 2008-02-13

Family

ID=34643709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364850A Expired - Fee Related JP4046062B2 (en) 2003-10-24 2003-10-24 Exhaust gas recirculation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4046062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217322A (en) * 2012-04-10 2013-10-24 Mitsubishi Motors Corp Exhaust purification device of internal combustion engine
JP2013217323A (en) * 2012-04-10 2013-10-24 Mitsubishi Motors Corp Exhaust purification device of internal combustion engine

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2434406A (en) * 2005-08-25 2007-07-25 Ford Global Tech Llc I.c. engine exhaust gas recirculation (EGR) system with dual high pressure and low pressure EGR loops
US7380400B2 (en) * 2005-10-06 2008-06-03 Ford Global Technologies, Llc System and method for high pressure and low pressure exhaust gas recirculation control and estimation
JP4670592B2 (en) * 2005-11-01 2011-04-13 トヨタ自動車株式会社 Exhaust gas recirculation system for internal combustion engines
JP4626489B2 (en) * 2005-11-02 2011-02-09 マツダ株式会社 diesel engine
US20070144170A1 (en) * 2005-12-22 2007-06-28 Caterpillar Inc. Compressor having integral EGR valve and mixer
JP4215069B2 (en) 2006-04-26 2009-01-28 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP2008019723A (en) * 2006-07-10 2008-01-31 Calsonic Kansei Corp Egr device and its control method
JP2008057449A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP4240101B2 (en) * 2006-09-29 2009-03-18 トヨタ自動車株式会社 EGR system for internal combustion engine
JP4333725B2 (en) * 2006-10-25 2009-09-16 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP4285528B2 (en) 2006-11-06 2009-06-24 トヨタ自動車株式会社 Exhaust gas recirculation system for internal combustion engines
JP4735519B2 (en) * 2006-11-17 2011-07-27 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP4301295B2 (en) * 2007-01-18 2009-07-22 トヨタ自動車株式会社 EGR system for internal combustion engine
JP4867713B2 (en) * 2007-02-27 2012-02-01 トヨタ自動車株式会社 Control device for internal combustion engine with EGR device
JP2008248729A (en) 2007-03-29 2008-10-16 Honda Motor Co Ltd Egr control device for internal combustion engine
JP2008309053A (en) * 2007-06-14 2008-12-25 Toyota Motor Corp Control device for internal combustion engine
JP4888297B2 (en) * 2007-09-19 2012-02-29 マツダ株式会社 Diesel engine exhaust gas recirculation control device
JP4870179B2 (en) 2009-02-06 2012-02-08 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5053306B2 (en) * 2009-02-06 2012-10-17 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
FR2948978A3 (en) * 2009-08-07 2011-02-11 Renault Sa Air intake system operating method for diesel engine of motor vehicle, involves activating low pressure exhaust gas recirculation device in second operating mode, and high pressure exhaust gas recirculation device in third operating mode
DE102016219781A1 (en) * 2016-10-12 2018-04-12 Robert Bosch Gmbh Method and control unit for balancing and diagnosing an exhaust gas recirculation mass flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217322A (en) * 2012-04-10 2013-10-24 Mitsubishi Motors Corp Exhaust purification device of internal combustion engine
JP2013217323A (en) * 2012-04-10 2013-10-24 Mitsubishi Motors Corp Exhaust purification device of internal combustion engine

Also Published As

Publication number Publication date
JP2005127247A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4046062B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP4470893B2 (en) Control device for internal combustion engine
US6917873B2 (en) Control of multiple supercharged compression ignition engines having EGR
CN107654314B (en) Engine system
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
US20070074513A1 (en) Turbo charging in a variable displacement engine
US10513976B2 (en) Engine system
JP5187123B2 (en) Control device for internal combustion engine
WO2014156210A1 (en) Control device for internal combustion engine
JP2008138598A (en) Egr system for internal combustion engine
JP2010053788A (en) Sequential turbo system
JP2007303380A (en) Exhaust gas control device for internal combustion engine
US10634044B2 (en) Engine system and method using the same
JP5163515B2 (en) Control device for internal combustion engine
JP4501730B2 (en) Variable cylinder internal combustion engine
JPH09151805A (en) E.g.r. device for diesel engine
JPH11229885A (en) Diesel engine
JP6323488B2 (en) Control device for internal combustion engine
JP2019152122A (en) Internal combustion engine system
JP2009002278A (en) Control device of internal combustion engine having supercharger
JP2010190150A (en) Egr device
JP2009299483A (en) Control device for internal combustion engine
JP2002364372A (en) Supercharging system for diesel engine
WO2014208360A1 (en) Engine control device
JP2020067016A (en) Control system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees