[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4045211B2 - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP4045211B2
JP4045211B2 JP2003183711A JP2003183711A JP4045211B2 JP 4045211 B2 JP4045211 B2 JP 4045211B2 JP 2003183711 A JP2003183711 A JP 2003183711A JP 2003183711 A JP2003183711 A JP 2003183711A JP 4045211 B2 JP4045211 B2 JP 4045211B2
Authority
JP
Japan
Prior art keywords
sample
pressure
suction
automatic analyzer
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003183711A
Other languages
Japanese (ja)
Other versions
JP2005017144A (en
Inventor
雅人 石沢
和美 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003183711A priority Critical patent/JP4045211B2/en
Publication of JP2005017144A publication Critical patent/JP2005017144A/en
Application granted granted Critical
Publication of JP4045211B2 publication Critical patent/JP4045211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は血液,尿等の生体サンプルの定性・定量分析を自動で行う自動分析装置に係わり、特に一方の容器から他方の容器へ分注プローブにより液体を分注する機能を備えた自動分析装置に関する。
【0002】
【従来の技術】
自動分析装置は、血液や尿などの生体試料からなるサンプルをサンプル容器から反応ライン上の反応容器へサンプルを分注し、更に試薬容器から反応ライン上の反応容器へ試薬を分注し、サンプルと試薬の混合液を光度計の如き測定手段によって測定して定性あるいは定量分析を行う。
【0003】
サンプル,試薬共に分注動作の際には分注対象の液体内へ分注プローブの先端を浸漬させるが、その浸漬深さが大きいほどプローブ外壁への液体付着量が増しコンタミネーションが大きくなる。そこで、分注プローブの浸漬深さを極力低減する為に、容器内の液体の液面を検出しプローブの先端が液面より僅かに下に達した位置でプローブの下降動作を停止させ、次いでプローブ内へ所定量の液体を吸引するように動作制御する手法が一般的である。サンプルの液面を検出する手段としては、サンプルプローブとサンプル間の静電容量を測定する方法などが使われている。この方法では、サンプルプローブとサンプルが接触すると静電容量が大きく変化することを利用して液面を検出している。
【0004】
このようなサンプルプローブを用いたサンプル吸引時にオペレータの分注作業時の不具合等により検体、又は試薬の液面上部に膜、或いは泡が生成されている場合がある。この場合、分注プローブ先端が液面上の膜、或いは泡に接触した時点で静電容量が大きく変化するため、膜や泡を液面として検知し、既設の液面から僅かに下として設定されているプローブ浸漬高さでは液面に到達できない可能性がある。すなわち、引き続き行われる吸引動作にて、液体ではなく定量未満の液体、或いは空気を吸引し期待値とは異なる分析結果を出力する可能性を有していた。この問題を解決するため特許文献1では吸引流路に圧力センサを設け、吸引動作停止後における吸引流路内の圧力を検知し、検知した圧力から変化率を算出し、算出した変化率を所定の閾値と比較し、吸引流路の詰まり又は吸引量不足を検出する方法が開示されている。
【0005】
【特許文献1】
特開2000−46846号公報
【0006】
【発明が解決しようとする課題】
特許文献1記載の方法では圧力の変化率を閾値と比較して吸引量不足を検知している。
【0007】
しかし、吸引流路が詰まった場合は圧力の変化量が多く検知が比較的容易なのに対し、吸引量不足、すなわち吸引時に空気をも吸い込んだ場合の圧力の変化量は非常に小さく、変化率を所定の閾値と比較しての吸引量不足の判定は困難な場合がある。
【0008】
更に圧力センサは半導体を用いていることが多いが、このような半導体圧力センサは温度等による出力のドリフトが避けられない。この場合、出力ドリフトの方が吸引量不足による圧力変化より大きい場合も有り得るため、誤検出する可能性があった。特に吸引量が不足したかどうかを固定した閾値で判定する場合には、このドリフトの影響が大きい。
【0009】
本発明はこのような問題に鑑み、自動分析装置において、液面上に膜、或いは泡が存在することにより所定量の液体が吸引が行われなかった場合でも、正確にそれを検知できる機能を備えた自動分析装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明の構成は以下の通りである。
【0011】
分注プローブを用い試料容器から反応容器へ試料を分注する分注装置と、前記分注プローブを用いて試料を前記試料容器から吸引する際の、該分注プローブ内の圧力を測定する圧力測定手段と、前記反応容器の内容物を分析する分析手段と、
を備えた自動分析装置において、
試料吸引動作前に、異なる量の空気を前記分注プローブにて吸引し、前記圧力測定手段により測定された異なる量の空気の吸引時圧力値を記憶する記憶手段と、
該記憶手段に記憶された異なる量の空気の吸引時圧力値に基づき空気吸引時の閾値を算出する算出手段と、試料吸引時の圧力と前記閾値を比較することにより吸引動作中に試料が正常に定量吸引されたかどうかを検出する検出手段とを備えた自動分析装置。
【0012】
本発明は試料分注プローブのみならず試薬分注プローブにも適用可能である。プローブとは、分注する液体に一部を浸漬し、該液体を吸引する機構を意味する。試料容器,反応容器は、必ずしも容器状である必要はなく、液体が保持できるものであれば良い。圧力測定手段は半導体圧力センサ等の圧力値を電圧の変化として出力するセンサと、該センサからの出力を必要に応じて増幅するアンプからなるのが一般的構成であるがこれに限定されるものではない。分析手段は光度計により反応容器中の液体の色の変化を検出するものの他、内容物を分析できるものであればどのようなものであっても良い。
【0013】
【発明の実施の形態】
以下に本発明の実施例を図1から順を追って説明する。
【0014】
図1は一般的な自動分析装置の分注機構周辺部概略図を示す。各部の機能は公知のものである為、詳細についての記述は省略する。サンプリング機構1のサンプリングアーム2は上下すると共に回転し、サンプリングアーム2に取り付けられたプローブ105を用いて、左右に回転するサンプルディスク102に配置されたサンプル容器101内の試料7を吸引し、反応容器106へ吐出するように構成されている。本図からもわかるようにサンプル容器(試料容器)101のサンプルディスク102への配置はサンプルディスク102上へ直接配置する場合や試験管(図示は無い)上にサンプル容器101を載せる事も可能なユニバーサルな配置に対応可能な構造のものが一般的である。
【0015】
図1における自動分析装置の構成をさらに説明する。回転自在な試薬ディスク125上には分析対象となる複数の分析項目に対応する試薬のボトル112が配置されている。可動アームに取り付けられた試薬分注プローブ110は、試薬ボトル112から反応容器106へ所定量の試薬を分注する。
【0016】
サンプル分注プローブ105は、サンプル用シリンジポンプ107の動作に伴ってサンプルの吸引動作、及び吐出動作を実行する。試薬分注プローブ110は、試薬用シリンジポンプ111の動作に伴って試薬の吸引動作、及び吐出動作を実行する。各サンプルのために分析すべき分析項目は、キーボード121、又はCRT118の画面のような入力装置から入力される。この自動分析装置における各ユニットの動作は、コンピュータ103により制御される。
【0017】
サンプルディスク102の間欠回転に伴ってサンプル容器101はサンプル吸引位置へ移送され、停止中のサンプル容器内にサンプル分注プローブ105が降下される。その下降動作に伴って分注プローブ105の先端がサンプルの液面に接触すると液面検出回路151から検出信号が出力され、それに基づいてコンピュータ103がサンプリングアーム(可動アーム)2の駆動部の下降動作を停止するよう制御する。次に分注プローブ105内に所定量のサンプルを吸引した後、分注プローブ105は上死点まで上昇する。分注プローブ105がサンプルを所定量吸引している間は、分注プローブ105とサンプル用ポンプ107流路間の吸引動作中の流路内圧力変動を圧力センサ152からの信号を用い圧力検出回路153で監視し、吸引中の圧力変動に異常を発見した場合は所定量吸引されていない可能性が高い為、当該分析データに対しアラームを付加する。
【0018】
次にサンプリングアーム2が水平方向に旋回し反応ディスク109上の反応容器106の位置でサンプル分注プローブ105を下降し反応容器106内へ保持していたサンプルを吐出する。サンプルが入った反応容器106が試薬添加位置まで移動された時に、該当する分析項目に対応した試薬が試薬分注プローブ110から添加される。サンプル、及び試薬の分注に伴って試料容器101内のサンプル、及び試薬ボトル112内の試薬の液面が検出される。サンプル、及び試薬が加えられた反応容器内の混合物は、攪拌器113により攪拌される。反応容器列の移送中に複数の反応容器が光源114からの光束を横切り、各混合物の吸光度、あるいは発光値が測定手段としての光度計115により測定される。吸光度信号は、A/D変換器116を経由しインターフェース104を介してコンピュータ103に入り、分析項目の濃度が計算される。分析結果は、インターフェース104を介してプリンタ117に印字出力するか、又はCRT118に画面出力すると共に、メモリとしてのハードディスク122に格納される。測光が終了した反応容器106は、洗浄機構119の位置にて洗浄される。洗浄用ポンプ120は、反応容器へ洗浄水を供給すると共に、反応容器から廃棄を排出する。図1の例では、サンプルディスク102に同心円状に3列のサンプル容器101がセットできるように3列の容器保持部が形成されており、サンプル分注プローブ105によるサンプル吸引位置が各々の列に1個ずつ設定されている。
【0019】
次に、検体容器、或いは試薬容器内液体の液面上に発生した膜、或いは泡の悪影響について以下説明する。
【0020】
人血を遠心分離した後に血清を検体容器に分注する際、特に手分注で行われた場合は分注用ピペットの操作状況により液面上の膜や気泡が発生する確率は非常に高くなり、分注後に泡の存在有無を目視検査したとしてもヒューマンエラーなどにより泡の存在を検出できずに装置へ実装される可能性も充分考えられる。又、一部の試薬には界面活性剤を含有し泡立ち易い組成である試薬も存在し、装置実装時の容器内液の揺れ、或いは容器容量にもよるが内液の波立ちにより液面の数mm上に膜が生成される可能性が考えられる。
【0021】
しかしながら液面検知時の液体内へ分注プローブの先端の浸漬深さはコンタミネーションを極力防ぐ為に液面より僅かに下、具体的には2〜4mm程度試薬に浸漬した位置でプローブの下降動作を停止させ、次いでプローブ内へ所定量の液体を吸引するように制御している。
【0022】
この為に膜、或いは泡により液面と認識し停止した高さと真の液面高さに数mm以上、具体的には約5mm以上の相違があった場合は、前述液面検知動作での試薬での浸漬深さでは真の液面まで到達せず、真の液面から液体の試薬を吸引せず、真の液面の上に生成された泡、或いは膜が形成されていた場合は空気を分注し、最終的に分析結果が期待値と異なる危険性を有していた。
【0023】
次に図2、及び図3を用い本発明の一実施例を以下に説明する。
【0024】
図2は正常に定量吸引した場合のプローブに加わる圧力波形と膜を検知し液体の代わりに空気を吸引した場合のプローブ印加圧力波形を示す。図2からわかるようにこれらの波形は相似であり▲1▼吸引前圧力値に明確な差異は確認できない。しかし▲2▼吸引中圧力値、又▲3▼吸引後圧力値にも波形間に約20%程度の相違が認められる。つまり本発明の骨子は▲2▼吸引中圧力値−▲1▼吸引前圧力値の差異、或いは▲3▼吸引後圧力値−▲1▼吸引前圧力値の差異を算出し、空気吸引時の圧力の期待値から導かれた閾値と吸引動作毎に比較し、これらの相違が特定値、つまり閾値以上の相違が認められた場合に異常状態と認識する機能にある。
【0025】
具体的な差異の算出手段としては▲2▼吸引中圧力の特定期間の平均値−▲1▼吸引前圧力の特定期間の平均値、或いは▲2▼吸引中圧力の特定期間の圧力上昇値−▲1▼吸引前圧力の特定期間の圧力上昇値が考えられる。同様に▲3▼吸引後圧力の特定期間の平均値−▲1▼吸引前圧力の特定期間の平均値、或いは▲3▼吸引後圧力の特定期間の圧力上昇値−▲1▼吸引前圧力の特定期間の圧力上昇値を比較する手法も容易に考えられる。又、前述特定期間の値としては数十ms、具体的には50ms〜1100ms程度が現実的な値として考えられるが、本実施例内で本値を特定するものではない。
【0026】
次に非定量吸引と判断する為の閾値を算出する手段の一例を下記する。通常の分析装置では分析動作開始直後に流路内の気泡除去,分析用試薬の残テスト数確認など準備動作が行われ一般的には数分を要し、その後に分析検体の吸引動作が行われる。本発明ではこの準備動作内に予め分注プローブで特定量の空気を吸引し非定量吸引判定用の閾値をその都度算出することにある。つまり分析開始直後の準備動作内に閾値を算出することにより、引き続き行われる分析項目の処理能力に何ら影響を及ぼすことなく本発明を実現できることにある。
【0027】
更に分析開始毎に閾値を算出することにより流路系の日差変動などの不安定要因を取り除くことができ安定、且つ信頼性の高い閾値を設定することが可能となる。分注プローブにつまりが生じた場合には、プローブ内圧力の変化が大きいので、閾値を固定しても詰まりの有無を検出することは比較的容易である。特に試料吸引後は詰まりが生じていない場合にはプローブ内圧力は吸引後しばらくすると大気圧にもどるはずであるが、詰まりが生じている場合は、プローブ内圧力が負圧のままとなる。このため、吸引後しばらくした後の圧力を閾値と比較することで精度の良い詰まり検知が可能である。ところが、吸引量不足の場合には、正常に吸引された場合と比較しても圧力変動量は小さく、かつ吸引の後しばらくするとプローブ内圧力は大気圧に戻ってしまうため、動的な圧力値を用いて判定する必要がある。そのため、固定された閾値との比較による判定は現実的には極めて困難である。そのため、本発明では、分注開始前に異なる量の空気を吸引し、そのときの圧力値に基づいて閾値を設定することに特徴がある。これにより、半導体圧力センサのドリフト等による誤差を排除することができる。
【0028】
次に、閾値の算出法の具体例を説明する。例えば、装置として分注可能な最大吸引量,最小吸引量の2点の空気吸引時圧力値を算出し、これら2点間の圧力値を結ぶ近似式から全吸引量の閾値を算出する手段が考えられる。当然最大吸引量,中間閾値吸引量,最小吸引量の3点の空気吸引時圧力値を算出し、前述同様に近似式から閾値を算出しても構わない。或いは本閾値をルーチン動作毎に新たに算出せず、予め期待される閾値のテーブルを準備し特定量の空気吸引動作から最適な閾値を選択する手段など様々な算出手法が考えられるが、本実施例内でその手法を特定するものではない。
【0029】
次に本実施例の検出精度の向上させる手法の一例を説明する。圧力センサは半導体ゲージである為に温度影響を受けやすい、この為に周囲温度を温度保証する手法が一般的であるが、流路内の洗浄水温度の変動に伴い圧力検知感度に微小な変化を受ける場合もごくまれに想定できる。このような場合においても準備動作時の▲1▼吸引前圧力値と各検知動作の▲1▼吸引前圧力値の差異、つまり微動な変動分を検知動作毎に閾値に差異分を補正し、閾値の精度を向上させる手法も一例とし考えられる。
【0030】
図3は本発明で提案した閾値と検知圧力の一例を示し、具体的には前述▲2▼吸引中圧力の特定期間の平均値−▲1▼吸引前圧力の特定期間の平均圧力値との差異と準備動作で最大吸引量,最小吸引量の2点の空気吸引時圧力値を算出された閾値、それぞれの具体例を示したものである。本図からわかるように定量吸引時の圧力−非定量吸引時の圧力値には明確な差異が存在し、この圧力差範囲内で閾値を設定することにより定量吸引−非定量吸引時の別を確実に認識できることがわかる。
【0031】
本認識結果を用いたアプリケーションの例として非定量吸引と認識した場合に期待値外のデータを出力する可能性がある分析データにアラームを自動的に付加し、期待値とは異なる可能性がある情報を付帯させ分析結果を出力する。或いは分析データをマスクし結果を出力しない等が考えられ、期待値外データの報告を防止するシステムも容易に構成することが可能である。
【0032】
つまり上述の通り本発明を適用することにより、これまで人的部分に頼っていた作業を自動化でき、分注動作の大幅な信頼性向上に寄与することが可能となる。
【0033】
【発明の効果】
以上説明したように本発明によれば、試料容器内の試料液面上、或いは試薬容器内の試薬液面上に膜、或いは泡が存在した場合、真の液面ではなく膜、又は泡を検知してしまい、プローブの先端が液面に到達せずに分注し、つまり期待値通りの定量の液体ではなく期待値未満の液体を分注し、最終的に期待値と異なる分析結果を出力する危険性を有していたが、本発明を実施することにより、前述試料容器内の試料液面上、或いは試薬容器内の試薬液面上に泡の層が存在しても確実に試薬液面に到達し、期待量を定量吸引することができ確実な吸引動作を行い、安定した分析結果を得ることができる自動分析装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明が適用される自動分析装置の全体構成を示す概略図。
【図2】定量吸引時、及び非定量吸引時の圧力検知波形。
【図3】本発明を適用した定量吸引時、及び非定量吸引時の圧力差異の一例。
【符号の説明】
1…サンプリング機構、2…サンプリングアーム、7…試料、101…サンプル容器、102…サンプルディスク、103…コンピュータ、104…インターフェース、105…プローブ、106…反応容器、107…サンプル用シリンジポンプ、109…反応ディスク、110…試薬分注プローブ、111…試薬用シリンジポンプ、112…試薬のボトル、113…攪拌器、114…光源、115…光度計、116…A/D変換器、117…プリンタ、118…CRT、119…洗浄機構、120…洗浄用ポンプ、121…キーボード、122…ハードディスク、125…試薬ディスク、151…液面検出回路、152…圧力センサ、
153…圧力検出回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic analyzer that automatically performs qualitative and quantitative analysis of biological samples such as blood and urine, and more particularly, an automatic analyzer having a function of dispensing a liquid from one container to another using a dispensing probe. About.
[0002]
[Prior art]
The automatic analyzer dispenses a sample consisting of a biological sample such as blood or urine from the sample container to the reaction container on the reaction line, and further dispenses the reagent from the reagent container to the reaction container on the reaction line. Qualitative or quantitative analysis is performed by measuring the mixture of the reagent and the reagent by a measuring means such as a photometer.
[0003]
During the dispensing operation for both the sample and the reagent, the tip of the dispensing probe is immersed in the liquid to be dispensed. The greater the immersion depth, the greater the amount of liquid attached to the outer wall of the probe and the greater the contamination. Therefore, in order to reduce the immersion depth of the dispensing probe as much as possible, the liquid level of the liquid in the container is detected, and the descending operation of the probe is stopped at the position where the tip of the probe reaches slightly below the liquid level. A general technique is to control the operation so that a predetermined amount of liquid is sucked into the probe. As a means for detecting the liquid level of the sample, a method of measuring the capacitance between the sample probe and the sample is used. In this method, the liquid level is detected by utilizing the fact that the capacitance greatly changes when the sample probe comes into contact with the sample.
[0004]
When a sample is sucked using such a sample probe, there may be a case where a film or a bubble is generated above the liquid surface of the specimen or the reagent due to a problem during the dispensing operation of the operator. In this case, the capacitance changes greatly when the tip of the dispensing probe comes into contact with the film or bubbles on the liquid level, so the film or bubbles are detected as the liquid level and set slightly below the existing liquid level. There is a possibility that the liquid level cannot be reached at the probe immersion height. That is, in a subsequent suction operation, a liquid less than a fixed amount or air is sucked instead of a liquid, and an analysis result different from an expected value may be output. In order to solve this problem, in Patent Document 1, a pressure sensor is provided in the suction flow path, the pressure in the suction flow path after the suction operation is stopped is detected, the rate of change is calculated from the detected pressure, and the calculated rate of change is predetermined. And a method for detecting clogging of the suction flow path or insufficient suction amount.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-46846
[Problems to be solved by the invention]
In the method described in Patent Document 1, the rate of change in pressure is compared with a threshold value to detect an insufficient suction amount.
[0007]
However, when the suction flow path is clogged, the amount of change in pressure is large and detection is relatively easy, whereas the amount of change in pressure is very small when the suction amount is insufficient, that is, when air is also sucked in during suction, and the rate of change is low. It may be difficult to determine whether the amount of suction is insufficient compared to a predetermined threshold.
[0008]
Further, the pressure sensor often uses a semiconductor, but such a semiconductor pressure sensor cannot avoid an output drift due to temperature or the like. In this case, there is a possibility that the output drift is larger than the pressure change due to the insufficient suction amount, and therefore there is a possibility of erroneous detection. In particular, when determining whether or not the suction amount is insufficient with a fixed threshold value, the influence of this drift is large.
[0009]
In view of such a problem, the present invention has a function in an automatic analyzer that can accurately detect even when a predetermined amount of liquid is not sucked due to the presence of a film or a bubble on the liquid surface. It is to provide an automatic analyzer equipped.
[0010]
[Means for Solving the Problems]
The configuration of the present invention for achieving the above object is as follows.
[0011]
A dispensing device that dispenses a sample from a sample container to a reaction container using a dispensing probe, and a pressure that measures the pressure in the dispensing probe when the sample is aspirated from the sample container using the dispensing probe. Measuring means; and analyzing means for analyzing the contents of the reaction vessel;
In an automatic analyzer equipped with
Storage means for sucking different amounts of air with the dispensing probe before the sample suction operation and storing pressure values at the time of suction of the different amounts of air measured by the pressure measuring means;
The calculation means for calculating the threshold value during air suction based on the pressure value during suction of different amounts of air stored in the storage means, and the sample is normal during the suction operation by comparing the pressure during sample suction with the threshold value. And an automatic analyzer having a detecting means for detecting whether or not the liquid has been aspirated quantitatively.
[0012]
The present invention is applicable not only to sample dispensing probes but also to reagent dispensing probes. The probe means a mechanism that immerses a part in a liquid to be dispensed and sucks the liquid. The sample container and the reaction container are not necessarily in the shape of a container, and any container that can hold a liquid may be used. The pressure measuring means generally includes a sensor that outputs a pressure value as a change in voltage, such as a semiconductor pressure sensor, and an amplifier that amplifies the output from the sensor as necessary. is not. The analyzing means may be any means as long as it can analyze the contents in addition to detecting the color change of the liquid in the reaction vessel with a photometer.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in order from FIG.
[0014]
FIG. 1 is a schematic view of the periphery of a dispensing mechanism of a general automatic analyzer. Since the function of each part is well-known, detailed description is omitted. The sampling arm 2 of the sampling mechanism 1 moves up and down and rotates. Using the probe 105 attached to the sampling arm 2, the sample 7 in the sample container 101 arranged on the sample disk 102 rotating left and right is sucked and reacted. It is comprised so that it may discharge to the container 106. FIG. As can be seen from this figure, the sample container (sample container) 101 can be placed on the sample disk 102 directly on the sample disk 102 or the sample container 101 can be placed on a test tube (not shown). A structure that can accommodate a universal arrangement is generally used.
[0015]
The configuration of the automatic analyzer in FIG. 1 will be further described. On the rotatable reagent disk 125, reagent bottles 112 corresponding to a plurality of analysis items to be analyzed are arranged. The reagent dispensing probe 110 attached to the movable arm dispenses a predetermined amount of reagent from the reagent bottle 112 to the reaction container 106.
[0016]
The sample dispensing probe 105 performs a sample suction operation and a discharge operation in accordance with the operation of the sample syringe pump 107. The reagent dispensing probe 110 executes a reagent suction operation and a discharge operation in accordance with the operation of the reagent syringe pump 111. The analysis items to be analyzed for each sample are input from an input device such as a keyboard 121 or a CRT 118 screen. The operation of each unit in this automatic analyzer is controlled by the computer 103.
[0017]
As the sample disk 102 rotates intermittently, the sample container 101 is transferred to the sample suction position, and the sample dispensing probe 105 is lowered into the stopped sample container. When the tip of the dispensing probe 105 comes into contact with the liquid level of the sample along with the lowering operation, a detection signal is output from the liquid level detection circuit 151, and the computer 103 lowers the driving unit of the sampling arm (movable arm) 2 based on the detection signal. Control to stop operation. Next, after a predetermined amount of sample is sucked into the dispensing probe 105, the dispensing probe 105 rises to the top dead center. While the dispensing probe 105 is sucking a predetermined amount of sample, the pressure detection circuit uses the signal from the pressure sensor 152 to detect the pressure fluctuation in the flow channel during the suction operation between the dispensing probe 105 and the sample pump 107 flow channel. When monitoring is performed at 153 and an abnormality is found in the pressure fluctuation during suction, an alarm is added to the analysis data because there is a high possibility that a predetermined amount has not been sucked.
[0018]
Next, the sampling arm 2 rotates in the horizontal direction, the sample dispensing probe 105 is lowered at the position of the reaction vessel 106 on the reaction disk 109, and the sample held in the reaction vessel 106 is discharged. When the reaction container 106 containing the sample is moved to the reagent addition position, a reagent corresponding to the corresponding analysis item is added from the reagent dispensing probe 110. As the sample and reagent are dispensed, the liquid level of the sample in the sample container 101 and the reagent in the reagent bottle 112 is detected. The sample and the mixture in the reaction vessel to which the reagent has been added are stirred by the stirrer 113. During the transfer of the reaction container row, a plurality of reaction containers cross the light beam from the light source 114, and the absorbance or luminescence value of each mixture is measured by a photometer 115 as a measuring means. The absorbance signal enters the computer 103 via the interface 104 via the A / D converter 116, and the concentration of the analysis item is calculated. The analysis result is printed out to the printer 117 via the interface 104 or output to the CRT 118 and stored in the hard disk 122 as a memory. After completion of photometry, the reaction vessel 106 is cleaned at the position of the cleaning mechanism 119. The cleaning pump 120 supplies cleaning water to the reaction container and discharges waste from the reaction container. In the example of FIG. 1, three rows of container holders are formed so that three rows of sample vessels 101 can be set concentrically on the sample disk 102, and the sample suction position by the sample dispensing probe 105 is in each row. One by one is set.
[0019]
Next, the adverse effects of the film or bubbles generated on the liquid surface of the sample container or the liquid in the reagent container will be described below.
[0020]
When dispensing serum into a specimen container after centrifuging human blood, especially when performed manually, the probability of the formation of a film or air bubbles on the liquid surface is very high depending on the operation of the pipetting pipette. Therefore, even if the presence / absence of bubbles is visually inspected after dispensing, the possibility that the presence of bubbles cannot be detected due to a human error or the like may be sufficiently considered. In addition, some reagents contain surfactants and have a composition that easily foams, and the number of liquid levels may vary depending on the shaking of the liquid in the container when the device is mounted or the wave of the internal liquid depending on the container capacity. It is possible that a film is formed on mm.
[0021]
However, the immersion depth of the tip of the dispensing probe into the liquid at the time of detecting the liquid level is slightly below the liquid level to prevent contamination as much as possible, specifically, the probe descends at a position immersed in a reagent of about 2 to 4 mm. Control is performed so that the operation is stopped, and then a predetermined amount of liquid is sucked into the probe.
[0022]
For this reason, if there is a difference of several mm or more, specifically about 5 mm or more, between the height at which the liquid level is recognized by the film or bubbles and stopped, and the true liquid level height, more specifically, about 5 mm or more, If the immersion depth with the reagent does not reach the true liquid level, the liquid reagent is not aspirated from the true liquid level, and bubbles or films formed on the true liquid level are formed The air was dispensed, and finally the analysis results had a risk of being different from the expected value.
[0023]
Next, an embodiment of the present invention will be described below with reference to FIGS.
[0024]
FIG. 2 shows the pressure waveform applied to the probe and the pressure waveform applied to the probe when air is sucked in place of the liquid by detecting the film when the fixed amount is normally sucked. As can be seen from FIG. 2, these waveforms are similar. (1) No clear difference can be confirmed in the pressure value before suction. However, a difference of about 20% is recognized between the waveforms in (2) pressure value during suction and (3) pressure value after suction. That is, the gist of the present invention is to calculate (2) pressure value during suction-(1) pressure value before suction, or (3) pressure value after suction-(1) difference in pressure value before suction, Compared to the threshold value derived from the expected value of the pressure for each suction operation, these differences are in a function of recognizing an abnormal state when a difference greater than a specific value, that is, the threshold value is recognized.
[0025]
As specific means for calculating the difference, (2) the average value of the pressure during suction for a specific period-(1) the average value of the pressure before suction for a specific period, or (2) the pressure increase value for the specific period of pressure during suction- (1) A pressure increase value in a specific period of the pre-suction pressure can be considered. Similarly, (3) the average value of the post-suction pressure for a specific period-(1) the average value of the pre-suction pressure for a specific period, or (3) the pressure increase value of the post-suction pressure for a specific period-(1) the pre-suction pressure A method of comparing the pressure increase values for a specific period can be easily considered. Further, the value of the specific period may be several tens of ms, specifically about 50 ms to 1100 ms, but it is not intended to specify this value in the present embodiment.
[0026]
Next, an example of means for calculating a threshold for determining non-quantitative suction will be described below. In normal analyzers, preparation operations such as removal of bubbles in the flow path and confirmation of the number of remaining tests for the analysis reagent are performed immediately after the start of the analysis operation, which generally takes several minutes, and then the analyte is aspirated. Is called. In the present invention, a predetermined amount of air is sucked in advance by a dispensing probe during this preparation operation, and a threshold for non-quantitative suction determination is calculated each time. In other words, the present invention can be realized by calculating the threshold value in the preparatory operation immediately after the start of analysis without affecting the processing capability of the analysis item that is subsequently performed.
[0027]
Furthermore, by calculating the threshold value every time analysis is started, unstable factors such as daily fluctuations in the flow path system can be removed, and a stable and highly reliable threshold value can be set. When clogging occurs in the dispensing probe, the change in the pressure in the probe is large, so that it is relatively easy to detect the presence or absence of clogging even if the threshold value is fixed. In particular, if no clogging occurs after sample suction, the pressure inside the probe should return to atmospheric pressure after a while, but if clogging occurs, the pressure inside the probe remains negative. For this reason, it is possible to detect clogging with high accuracy by comparing the pressure after a while after suction with a threshold value. However, when the suction amount is insufficient, the pressure fluctuation amount is small compared to the case of normal suction, and the pressure inside the probe returns to atmospheric pressure for a while after suction. It is necessary to determine using Therefore, determination by comparison with a fixed threshold value is extremely difficult in practice. Therefore, the present invention is characterized in that different amounts of air are sucked before the start of dispensing, and the threshold value is set based on the pressure value at that time. Thereby, an error due to a drift of the semiconductor pressure sensor can be eliminated.
[0028]
Next, a specific example of the threshold value calculation method will be described. For example, means for calculating two air suction pressure values of the maximum suction amount and the minimum suction amount that can be dispensed as a device, and calculating a threshold value of the total suction amount from an approximate expression connecting the pressure values between these two points. Conceivable. Naturally, the pressure value at the time of air suction of three points of the maximum suction amount, the intermediate threshold suction amount, and the minimum suction amount may be calculated, and the threshold value may be calculated from the approximate expression as described above. Alternatively, various calculation methods such as a means of preparing a threshold value table in advance and selecting an optimum threshold value from a specific amount of air suction operation without newly calculating the threshold value for each routine operation can be considered. The method is not specified in the examples.
[0029]
Next, an example of a technique for improving the detection accuracy of this embodiment will be described. Since pressure sensors are semiconductor gauges, they are susceptible to temperature effects. For this reason, it is common practice to guarantee the ambient temperature, but there is a slight change in pressure detection sensitivity due to fluctuations in the temperature of the wash water in the flow path. In rare cases, it can be assumed. Even in such a case, (1) the pressure value before suction during the preparatory operation and (1) the difference between the pressure values before suction, that is, the pre-suction pressure value, that is, the minute fluctuation is corrected to the threshold value for each detection operation, A technique for improving the accuracy of the threshold is also considered as an example.
[0030]
FIG. 3 shows an example of the threshold value and the detected pressure proposed in the present invention. Specifically, the above-mentioned (2) average value of the pressure during suction for a specific period− (1) the average pressure value of the pressure before suction for the specific period. The threshold values from which the pressure values at the time of air suction at the two points of the maximum suction amount and the minimum suction amount are calculated by the difference and the preparation operation, respectively, are shown. As can be seen from this figure, there is a clear difference between the pressure at the time of quantitative suction and the pressure value at the time of non-quantitative suction. It turns out that it can be recognized reliably.
[0031]
As an example of an application using this recognition result, an alarm is automatically added to analysis data that may output data outside the expected value when it is recognized as non-quantitative aspiration, which may differ from the expected value Accompany information and output analysis results. Alternatively, it is conceivable that the analysis data is masked and the result is not output, and it is possible to easily configure a system that prevents the reporting of data outside the expected value.
[0032]
In other words, as described above, by applying the present invention, it is possible to automate the work that has been relied on the human part so far and contribute to a significant improvement in the reliability of the dispensing operation.
[0033]
【The invention's effect】
As described above, according to the present invention, when a film or a bubble is present on the sample liquid surface in the sample container or on the reagent liquid surface in the reagent container, the film or the bubble is not a true liquid surface. In other words, the tip of the probe does not reach the liquid level and is dispensed.In other words, a liquid that is less than the expected value is dispensed instead of the expected amount of liquid. Although there was a risk of output, by carrying out the present invention, even if a bubble layer exists on the sample liquid surface in the sample container or the reagent liquid surface in the reagent container, It is possible to provide an automatic analyzer that can reach the liquid level, perform quantitative suction of the expected amount, perform a reliable suction operation, and obtain a stable analysis result.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the overall configuration of an automatic analyzer to which the present invention is applied.
FIG. 2 is a pressure detection waveform during quantitative suction and non-quantitative suction.
FIG. 3 shows an example of a pressure difference between quantitative suction and non-quantitative suction to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sampling mechanism, 2 ... Sampling arm, 7 ... Sample, 101 ... Sample container, 102 ... Sample disc, 103 ... Computer, 104 ... Interface, 105 ... Probe, 106 ... Reaction container, 107 ... Sample syringe pump, 109 ... Reaction disk, 110 ... reagent dispensing probe, 111 ... reagent syringe pump, 112 ... reagent bottle, 113 ... stirrer, 114 ... light source, 115 ... photometer, 116 ... A / D converter, 117 ... printer, 118 ... CRT, 119 ... Cleaning mechanism, 120 ... Cleaning pump, 121 ... Keyboard, 122 ... Hard disk, 125 ... Reagent disk, 151 ... Liquid level detection circuit, 152 ... Pressure sensor,
153: Pressure detection circuit.

Claims (8)

分注プローブを用い試料容器から反応容器へ試料を分注する分注装置と、
前記分注プローブを用いて試料を前記試料容器から吸引する際の、該分注プローブ内の圧力を測定する圧力測定手段と、
前記反応容器の内容物を分析する分析手段と、
を備えた自動分析装置において、
試料吸引動作前に、異なる量の空気を前記分注プローブにて吸引し、
前記圧力測定手段により測定された異なる量の空気の吸引時圧力値を記憶する記憶手段と、
該記憶手段に記憶された異なる量の空気の吸引時圧力値に基づき空気吸引時の閾値を算出する算出手段と、
試料吸引時の圧力と前記閾値を比較することにより吸引動作中に試料が正常に定量吸引されたかどうかを検出する検出手段とを備えたことを特徴とする自動分析装置。
A dispensing device for dispensing a sample from a sample container to a reaction container using a dispensing probe;
Pressure measuring means for measuring the pressure in the dispensing probe when a sample is aspirated from the sample container using the dispensing probe;
Analyzing means for analyzing the contents of the reaction vessel;
In an automatic analyzer equipped with
Before the sample aspirating operation, different amounts of air are aspirated with the dispensing probe,
Storage means for storing pressure values during suction of different amounts of air measured by the pressure measuring means;
Calculating means for calculating a threshold value during air suction based on pressure values during suction of different amounts of air stored in the storage means;
An automatic analyzer comprising: detecting means for detecting whether or not a sample is normally aspirated quantitatively during an aspiration operation by comparing a pressure at the time of sample aspiration and the threshold value.
請求項1記載の自動分析装置において、
前記異なる空気の吸引時圧力値及び試料吸引時の圧力値は特定期間の圧力の平均値、あるいは特定期間の圧力上昇値を用いることを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
An automatic analyzer characterized by using an average value of pressure during a specific period or a pressure increase value during a specific period as the pressure value during suction of different air and the pressure value during sample suction.
請求項1記載の自動分析装置において、
前記異なる空気の吸引時圧力値及び試料吸引時の圧力値は吸引終了後の特定期間の圧力の平均値、あるいは吸引終了後の特定期間の圧力上昇値を用いることを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
2. The automatic analyzer according to claim 1, wherein the pressure value at the time of sucking different air and the pressure value at the time of sucking the sample use an average value of pressure during a specific period after completion of suction or a pressure increase value during a specific period after completion of suction.
請求項2または3記載の自動分析装置において、
前記特定期間の長さが50〜100msであることを特徴とする自動分析装置。
The automatic analyzer according to claim 2 or 3,
The automatic analyzer is characterized in that the length of the specific period is 50 to 100 ms.
請求項1〜4のいずれかに記載の自動分析装置において、
前記異なる空気の吸引は、分析動作開始直後の流路内の気泡除去を含む準備動作中に行うことを特徴とする自動分析装置。
In the automatic analyzer in any one of Claims 1-4,
The automatic analyzer according to claim 1, wherein the suction of the different air is performed during a preparatory operation including bubble removal in the flow channel immediately after the start of the analysis operation.
請求項1〜4のいずれかに記載の自動分析装置において、
前記異なる空気の量は、前記分注プローブの吸引可能な最大値と最小値の2種類を用い、この2点の圧力値を結ぶ近似式からすべての範囲の空気吸引量での閾値を算出する機能を備えたことを特徴とする自動分析装置。
In the automatic analyzer in any one of Claims 1-4,
As the different air amounts, two types of maximum and minimum values that can be sucked by the dispensing probe are used, and the threshold values for the air suction amounts in all ranges are calculated from an approximate expression that connects these two pressure values. An automatic analyzer characterized by having a function.
請求項1〜6のいずれかに記載の自動分析装置において、
前記検出手段により試料が正常に定量吸引されなかったと検出された試料の分析データにアラームを付加する機能を備えたことを特徴とする自動分析システム。
In the automatic analyzer in any one of Claims 1-6,
An automatic analysis system comprising a function of adding an alarm to analysis data of a sample detected that the sample is not normally quantitatively aspirated by the detection means.
請求項1〜6のいずれかに記載の自動分析装置において、
前記検出手段により試料が正常に定量吸引されなかったと検出された試料の分析データをマスクし結果を出力しない機能を備えたことを特徴とする自動分析システム。
In the automatic analyzer in any one of Claims 1-6,
An automatic analysis system comprising a function of masking analysis data of a sample detected that the sample is not normally quantitatively sucked by the detection means and not outputting a result.
JP2003183711A 2003-06-27 2003-06-27 Automatic analyzer Expired - Lifetime JP4045211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183711A JP4045211B2 (en) 2003-06-27 2003-06-27 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183711A JP4045211B2 (en) 2003-06-27 2003-06-27 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2005017144A JP2005017144A (en) 2005-01-20
JP4045211B2 true JP4045211B2 (en) 2008-02-13

Family

ID=34183678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183711A Expired - Lifetime JP4045211B2 (en) 2003-06-27 2003-06-27 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP4045211B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719622B2 (en) * 2006-05-29 2011-07-06 株式会社日立ハイテクノロジーズ Automatic analyzer
JP4491477B2 (en) 2007-08-31 2010-06-30 株式会社日立ハイテクノロジーズ Automatic analyzer
US7867769B2 (en) * 2007-09-19 2011-01-11 Siemens Healthcare Diagnostics Inc. Clog detection in a clinical sampling pipette
JP5277214B2 (en) * 2010-07-27 2013-08-28 株式会社日立ハイテクノロジーズ Automatic analyzer
JP6018828B2 (en) * 2012-07-27 2016-11-02 株式会社日立ハイテクノロジーズ Automatic analyzer
JP6566537B2 (en) * 2014-07-02 2019-08-28 国立大学法人山口大学 Forward primer
JP2016206112A (en) * 2015-04-27 2016-12-08 東芝メディカルシステムズ株式会社 Automatic analyzer
CN110794159A (en) * 2019-11-04 2020-02-14 广州科方生物技术股份有限公司 Sample adding mechanism
CN114166830B (en) * 2021-12-08 2023-07-14 苏州长光华医生物医学工程有限公司 Sampling needle pipeline and sampling judgment method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799268B2 (en) * 1992-07-23 1998-09-17 株式会社日立製作所 Automatic analyzer
JPH0792171A (en) * 1993-09-22 1995-04-07 Nittec Co Ltd Container carrying system
JPH07239335A (en) * 1994-02-28 1995-09-12 Hitachi Ltd Automatic analyzer
US5750881A (en) * 1995-07-13 1998-05-12 Chiron Diagnostics Corporation Method and apparatus for aspirating and dispensing sample fluids
JPH09257805A (en) * 1996-03-18 1997-10-03 Tosoh Corp Dispensing unit and method for discriminating its non-defective or defective
JP3700402B2 (en) * 1998-07-24 2005-09-28 富士レビオ株式会社 Method for detecting clogged suction channel or insufficient suction volume, sample liquid suction device, and dispensing device
JP2001242182A (en) * 2000-02-25 2001-09-07 Hitachi Ltd Sample-dispensing apparatus autoanalyzer
JP4601811B2 (en) * 2000-12-12 2010-12-22 株式会社東芝 Automatic analyzer
JP4248328B2 (en) * 2002-08-07 2009-04-02 株式会社日立ハイテクノロジーズ Sample dispensing apparatus and automatic analyzer using the same
JP2004271266A (en) * 2003-03-06 2004-09-30 Hitachi High-Technologies Corp Dispensing device and autoanalyzer using the same

Also Published As

Publication number Publication date
JP2005017144A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4117181B2 (en) Automatic analyzer
JP5178830B2 (en) Automatic analyzer
JP5686744B2 (en) Automatic analyzer
US6890761B2 (en) Automatic analyzer
WO2013035444A1 (en) Automatic analyzing apparatus
WO2007129741A1 (en) Automatic analyzer
JP2004271266A (en) Dispensing device and autoanalyzer using the same
JP5222771B2 (en) Automatic analyzer
JP4045211B2 (en) Automatic analyzer
EP2075587B1 (en) Automatic analyzer and dispensing method thereof
JP5575410B2 (en) Automatic analyzer
WO2018163744A1 (en) Automatic analysis device
JP5199785B2 (en) Blood sample detection method, blood sample dispensing method, blood sample analysis method, dispensing apparatus, and blood sample type detection method
JP2010271203A (en) Sampling method of liquid, and automatic analyzer
JP4110082B2 (en) Automatic analyzer
JP3120180U (en) Automatic analyzer
JP6121743B2 (en) Automatic analyzer
JPH05306973A (en) Method and device for dispensing liquid
JP6338898B2 (en) Automatic analyzer
JP2592837B2 (en) Automatic chemical analyzer
JP3109443U (en) Automatic analyzer
JP2000046624A (en) Analyser having liquid residual quantity detecting function
WO2022185919A1 (en) Automated analysis device, and sample dispensing method
US20230143509A1 (en) Automatic sampling method for handling whole blood
JP2011007697A (en) Autoanalyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4045211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term