[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4045033B2 - Method for producing fine tin powder - Google Patents

Method for producing fine tin powder Download PDF

Info

Publication number
JP4045033B2
JP4045033B2 JP28509998A JP28509998A JP4045033B2 JP 4045033 B2 JP4045033 B2 JP 4045033B2 JP 28509998 A JP28509998 A JP 28509998A JP 28509998 A JP28509998 A JP 28509998A JP 4045033 B2 JP4045033 B2 JP 4045033B2
Authority
JP
Japan
Prior art keywords
tin
powder
type
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28509998A
Other languages
Japanese (ja)
Other versions
JP2000119708A (en
Inventor
健三 塙
和明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP28509998A priority Critical patent/JP4045033B2/en
Publication of JP2000119708A publication Critical patent/JP2000119708A/en
Application granted granted Critical
Publication of JP4045033B2 publication Critical patent/JP4045033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、経済性に優れ、簡便、かつ高収率の微小スズ粉末の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、電子機器の配線基板の小型化に伴い表面実装の技術が急速に発展した。とりわけ、実装技術の中心となっているマイクロソルダリング技術もますます高度化している。この表面実装の時にはハンダペーストを用いるが、このハンダペーストに対する要求も厳しいものとなってきており、ハンダ粉も微細化のものが要求されている。
【0003】
従来、ハンダ粉としては、スズ−鉛系ハンダが一般的であり、平均粒径20〜40μm程度のものが用いられているが、パッドサイズが25〜100μmやパッドピッチが25〜50μmという微細な回路基板パターンの要求もあり、これに対応するためには20μm未満の微細粉末であるハンダ粉を使用する必要がある。
【0004】
このため、ハンダ粉に用いられるスズ粉末としても平均粒径5〜7μm程度の微小粉末が要求されている。このようなスズの微小粉末を得るために、例えばアトマイズ粉を分級することが考えられるが、歩留まりが極めて悪く、経済性に劣る。また、このような微小粉末のスズを得るために、水アトマイズ法によっても可能であるが、装置的に大規模となり、トータル的には非常に高コストとなってしまう。
【0005】
従って、本発明の目的は、簡便で経済性に優れ、しかも高収率の微小スズ粉末の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、検討の結果、高純度のスズ地金又は粉末をα化した後、衝突板式粉砕機で粉砕することによって、上記目的が達成し得ることを知見した。
【0007】
本発明は、上記知見に基づきなされたもので、純度99.95重量%以上のスズ地金又は粉末を−30〜−50℃でα化させた後、衝突板式粉砕機で粉砕することを特徴とする微小スズ粉末の製造方法を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明では、純度99.95重量%以上のスズ地金又は粉末を用いる。この地金は、例えばスズを鋳造することによって得られる。スズ粉末は上記地金を溶融し、これをアトマイズすることにより得られる。このアトマイズ粉末の平均粒径は、20〜50μm程度である。
【0009】
このスズ地金又は粉末の純度は、上記のように99.95重量%以上であり、純度がこれ未満であり、不純物を多く含有するとスズのα化が阻害される。特に、鉛、ビスマス、アンチモンを不純物として多く含有した場合には、スズのα化が阻害される。また、上記スズ地金又は粉末に、ケイ素及び/又はゲルマニウムを含有させることによって、スズのα化を促進することができる。このようなケイ素及び/又はゲルマニウムの含有量は、スズ地金又は粉末に対して、0.5重量%以下、好ましくは0.01〜0.5重量%である。
【0010】
本発明では、このスズ地金又は粉末を−30〜−50℃でα化させる。スズにはβ型とα型の2つの同素体がある。一般的なスズは密度7.28g/cm3 のβ型(正方晶)で白色錫と呼ばれている。他方の密度5.80g/cm3 のα型(立法晶)は灰色錫と呼ばれ特殊な環境下、例えば極寒地でなければ見ることはできない。α型スズはβ型から転移する際に密度差による体積膨張を伴うために脆化する。本発明では、上記β型のスズ地金又は粉末を−30〜−50℃で3〜10日保持することによってα化させる。
【0011】
本発明では、このようにα化させたスズを粉砕し、微小化する。粉砕には、衝突板式粉砕機を用いる。このような衝突板式粉砕機としては、エバラトリアードジェット(PM型、荏原製作所社製)、IDS式ジェットミル(IDS−2型、日本ニューマチック工業社製)等が挙げられる。
【0012】
このスズ地金又は粉末のα化、粉砕は、所定の粒径、すなわち平均粒径5〜7μmになるまで1回或いは数回繰り返し行なわれる。このようにして、平均粒径5〜7μmの微小スズ粉末が得られる。
【0013】
この微小スズ粉末は、ハンダ粉、特にファインピッチ用のハンダ粉の材料として好適に使用できる。
【0014】
【実施例】
以下、実施例等に基づき本発明を具体的に説明する。
【0015】
<α型転移に対するスズ地金の影響>
〔試験例1〕
純度99.99重量%以上のスズ地金を溶解鋳造し、直径20mm、厚さ5mmの円盤状の試料を作製した。これを−40℃の冷凍庫に保持し、β型からα型へ転移する様子を観察した。1日経過後、試料表面に紫色の点状の隆起物(wartsと呼ばれるα型スズの初期痕跡)が数点観察された。その後、α型スズは点状の隆起物を基点にして全体に広がっていき、4日経過後には全体がα型に転移して崩壊した。
【0016】
〔試験例2〕
試験例1と同様の純度99.99重量%以上のスズ地金を溶解し、これに0.05重量%のゲルマニウムを添加して鋳造し、直径20mm、厚さ5mmの円盤状の試料を作製した。試料を−40℃の冷凍庫に保持して観察した。α型の初期痕跡が認められるまで0.5日、全体がα型に至って崩壊するまで2日であった。これによりα型への転移に対して、促進元素としてのゲルマニウムの有効性が確認された。ゲルマニウムの結晶構造はα型スズと同じ等軸晶系のダイヤモンド構造を持ち、ゲルマニウムが種となってα型への転移が促進される。
【0017】
〔試験例3〕
試験例2と同様に、純度99.99重量%以上のスズ地金を溶解し、これにゲルマニウムと同じ等軸晶系のダイヤモンド構造を持つケイ素を0.05重量%添加した試料を作製し、−40℃の冷凍庫に保持して観察した。α型の初期痕跡が認められるまで0.5日、全体がα型に至って崩壊するまで3日で、ゲルマニウムと同様にケイ素の有効性も確認された。
【0018】
〔試験例4〕
試験例1〜3に用いたのと同様の純度99.99重量%以上のスズ地金をガスアトマイズ法によりアトマイズ粉を作製した。これを透明なラミネート袋に充填して真空に密封した後、−40℃の冷凍庫に保持した観察した。2日経過後、銀白色のガスアトマイズ粉の中に紫に近い灰色の変色域が点在していることが認められた。6日経過後には、充填したアトマイズ粉全量の変色が認められた。この変色したアトマイズ粉は、X線回折パターンによりα型スズであることが確認された。
【0019】
〔比較試験例1〕
試験例1の円盤状試料を−20℃の冷凍庫に保持して観察した。α型の初期痕跡が認められるまで11日、全体がα型に至って崩壊するまで30日で、−40℃の保持と比較してα型への転移が遅くなった。
【0020】
〔比較試験例2〕
純度99.90重量%のスズ地金を溶解鋳造し、直径20mm、厚さ5mmの円盤状の試料を作製した。これを−40℃の冷凍庫に保持して観察した。32日経過後にα型スズの初期痕跡が数点観察されたが、その後の転移の進行は非常に緩やかで、1年以上経過しても全体がα型スズに転移して崩壊するには至らなかった。
【0021】
〔比較試験例3〕
比較試験例2と同様の純度99.90重量%以上のスズ地金に、試験例2と同様に、0.05%のゲルマニウムを添加して円盤状の試料を作製した。これを−40℃の冷凍庫に保持して観察した。20日経過後にα型スズの初期痕跡が数点観察されたが、その後の転移の進行は非常に緩やかで、1年以上経過しても全体がα型スズに転移して崩壊するには至らなかった。
【0022】
〔比較試験例4〕
99.90重量%スズ地金から試験例4と同様にガスアトマイズ法によりアトマイズ粉を作製した。試験例4と同様に透明なラミネート袋に充填して真空に密封した後、−40℃の冷凍庫に保持した観察した。1年以上経過しても銀白色を保ったままでα型への転移は認められなかった。
【0023】
これら試験例1〜4及び比較試験例1〜4の結果等を表1に示すと共に、純度99.99重量%以上のスズ地金及び純度99.90重量%のスズ地金の不純物含有量を表2に示す。
【0024】
【表1】

Figure 0004045033
【0025】
【表2】
Figure 0004045033
【0026】
<微小スズ粉末の製造>
〔実施例1〕
試験例4で得られた平均粒径35.7μmのアトマイズ粉を用い、α化、粉砕及び分級を下記の通り行った。
(第1回α化)
上記アトマイズ粉を透明なラミネート袋に充填し、真空包装して−40℃で8日保持した。
(第1回粉砕)
衝突板式粉砕機としてエバラトリアードジェット(PM型、荏原製作所社製)を用いた。この粉砕機は、衝突板による粉砕と旋回による摩擦粉砕を組み合わせた乾式粉砕機である。供給圧力6.5kg/cm2 、旋回圧力4.0kg/cm2 、原料供給速度1.0kg/hで粉砕を行った。その結果、回収率は99%、回収品の平均粒径は15.9μmであった。
(第2回α化)
第1回粉砕で得られた平均粒径15.9μmの回収品を−40℃で3日保持した。
(第2回粉砕)
第1回粉砕と全く同様にして粉砕を行った。その結果、回収率は98%、回収品の平均粒径は8.56μmであった。
(分級)
分級機として、MDSセパレーター(MDS−130型、日本ニューマチック工業社製)を用い、供給速度5kg/hで分級を行った。その結果、分級後の微粉の歩留りは59%、平均粒径は6.13μm、出発原料であるアトマイズ粉からの歩留りは57%であった。
【0027】
〔実施例2〕
試験例4で得られた平均粒径35.7μmのアトマイズ粉を用い、α化及び粉砕を下記の通り行った。
(第1回α化)
上記アトマイズ粉を透明なラミネート袋に充填し、真空包装して−40℃で8日保持した。
(第1回粉砕)
衝突板式粉砕機としてIDS式ジェットミル(IDS−2型、日本ニューマチック工業社製)を用いた。この粉砕機は、優れた粉砕力と精密な分級機構を有する衝突板式粉砕機である。供給圧力6.0kg/cm2 、原料供給速度4.5kg/hで粉砕を行った。その結果、回収率は89%、回収品の平均粒径は15.6μmであった。
(第2回α化)
第1回粉砕で得られた平均粒径15.6μmの回収品を−40℃で3日保持した。
(第2回粉砕)
第1回粉砕と全く同様にして粉砕を行った。その結果、回収率は55%、回収品の平均粒径は5.26μm、出発原料であるアトマイズ粉からの歩留りは49%であった。
【0028】
〔実施例3〕
純度99.99重量%のスズ地金塊を用い、α化、粉砕及び分級を下記の通り行った。
(第1回α化)
上記スズ地金塊を−40℃で14日保持した。この結果、スズ地金塊は粒状或いは針状の粒子にまで崩壊した。崩壊後の粒度は16メッシュオーバー1%、16〜100メッシュ90%、100メッシュアンダー9%であった。
(第1回粉砕)
実施例1の第1回粉砕と同一の粉砕機、粉砕条件で粉砕を行った。その結果、回収率は98%、回収品の平均粒径は50.9μmであった。
(第2回α化)
第1回粉砕で得られた平均粒径50.9μmの回収品を−40℃で3日保持した。
(第2回粉砕)
第1回粉砕と全く同様にして粉砕を行った。その結果、回収率は96%、回収品の平均粒径は14.00μmであった。
(分級)
実施例1の分級と同一の分級機、分級条件で分級を行った。その結果、分級後の微粉の歩留り37%、平均粒径5.49μm、スズ地金からの歩留り35%であり、スズ地金塊からでも微小スズ粉を製造することが可能となった。
【0030】
〔比較例1〕
試験例4で得られた平均粒径35.7μmのアトマイズ粉を用い、分級のみを下記の通り行った。
(分級)
実施例1の分級と同一の分級機、分級条件で分級を行った。その結果、分級後の微粉の歩留り0.6%、平均粒径6.08μmであり、歩留りが極端に悪かった。
【0031】
〔比較例2〕
試験例4で得られた平均粒径35.7μmのアトマイズ粉を用い、粉砕のみを下記の通り行った。
(第1回粉砕)
実施例1の第1回粉砕と同一の粉砕機、粉砕条件で粉砕を行った。その結果、回収率は75%、回収品の平均粒径は37.1μmであり、β型スズのままでは延性があり粉砕による微細化は起こらず、逆にスズ粉末同志の付着による粒径の増大が起きた。
【0032】
〔比較例3〕
試験例4で得られた平均粒径35.7μmのアトマイズ粉を用い、α化、粉砕及び分級を下記の通り行った。
(第1回α化)
上記アトマイズ粉を透明なラミネート袋に充填し、真空包装して−40℃で8日保持した。
(第1回粉砕)
粉砕機としてシングルトラックジェットミル(FS−4型、セイシン企業社製)を用いた。この粉砕機は、粒子の相互衝突と相互摩擦による乾式粉砕機で、衝突板式粉砕機ではない。供給圧力7.4kg/cm2 、原料供給速度0.85kg/hで粉砕を行った。その結果、回収率は55%、回収品の平均粒径は15.9μmであった。
(第2回α化)
第1回粉砕で得られた平均粒径15.9μmの回収品を−40℃で3日保持した。
(第2回粉砕)
第1回粉砕と全く同様にして粉砕を行った。その結果、回収率は30%、回収品の平均粒径は8.56μmであった。
(分級)
実施例1の分級と同一の分級機、分級条件で分級を行った。その結果、分級後の微粉の歩留り59%、平均粒径6.13μm、出発原料であるアトマイズ粉からの歩留りは10%であった。この粉砕機においては、粉砕室に供給されたα型スズ粉末は、瞬間的には微細化されるが、粒子相互の衝突と摩擦を継続的に受けるために直ぐにβ型に戻ってしまう。β型に戻ったスズ粉末は、それ以上の微細化は起こらず、逆に粗大化が進行して粉砕機内に留まって回収率の低下を招くことになる。
【0033】
【発明の効果】
以上説明したように、本発明の製造方法によって、簡便で経済性に優れ、しかも高収率で微小スズ粉末が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing fine tin powder that is excellent in economic efficiency, simple and high yield.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, with the miniaturization of wiring boards of electronic devices, surface mounting technology has rapidly developed. In particular, micro soldering technology, which is the center of packaging technology, is becoming increasingly sophisticated. Solder paste is used for this surface mounting, but the demand for this solder paste is becoming severe, and the solder powder is required to be finer.
[0003]
Conventionally, tin-lead solder is generally used as the solder powder, and one having an average particle diameter of about 20 to 40 μm is used, but the fine pad size is 25 to 100 μm and the pad pitch is 25 to 50 μm. There is also a demand for a circuit board pattern, and in order to meet this requirement, it is necessary to use solder powder which is a fine powder of less than 20 μm.
[0004]
For this reason, a fine powder having an average particle size of about 5 to 7 μm is also required as a tin powder used for solder powder. In order to obtain such tin fine powder, for example, it is conceivable to classify atomized powder, but the yield is extremely poor and the economy is poor. Further, in order to obtain such fine powder tin, it is possible by the water atomization method, but the scale becomes large in terms of apparatus, and the total cost becomes very high.
[0005]
Accordingly, an object of the present invention is to provide a method for producing a fine tin powder which is simple and excellent in economic efficiency and has a high yield.
[0006]
[Means for Solving the Problems]
As a result of the study, the present inventors have found that the above object can be achieved by converting a high-purity tin metal or powder into α and then pulverizing it with a collision plate pulverizer.
[0007]
The present invention has been made on the basis of the above findings, and is characterized in that a tin metal or powder having a purity of 99.95% by weight or more is alphatized at -30 to -50 ° C and then pulverized by a collision plate pulverizer. A method for producing a fine tin powder is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, tin metal or powder having a purity of 99.95% by weight or more is used. This metal is obtained, for example, by casting tin. Tin powder is obtained by melting the above-mentioned metal and atomizing it. The average particle size of the atomized powder is about 20 to 50 μm.
[0009]
As described above, the purity of this tin metal or powder is 99.95% by weight or more, and the purity is less than this. In particular, when a large amount of lead, bismuth, and antimony are contained as impurities, the alpha conversion of tin is inhibited. Moreover, alpha-ization of tin can be accelerated | stimulated by making the said tin ingot or powder contain silicon and / or germanium. The content of silicon and / or germanium is 0.5% by weight or less, preferably 0.01 to 0.5% by weight, based on tin metal or powder.
[0010]
In the present invention, this tin metal or powder is pregelatinized at -30 to -50 ° C. Tin has two allotropes, β-type and α-type. General tin is β-type (tetragonal) with a density of 7.28 g / cm 3 and is called white tin. On the other hand, the α-type (legislative crystal) with a density of 5.80 g / cm 3 is called gray tin and cannot be seen unless it is in a special environment, for example, in a cold region. α-type tin becomes brittle because it undergoes volume expansion due to density difference when it transitions from β-type. In the present invention, the β-type tin ingot or powder is gelatinized by holding at −30 to −50 ° C. for 3 to 10 days.
[0011]
In the present invention, the tin that has been pregelatinized in this way is pulverized and miniaturized. An impact plate type pulverizer is used for pulverization. Examples of such a collision plate pulverizer include an Ebara triad jet (PM type, manufactured by Ebara Seisakusho Co., Ltd.), an IDS type jet mill (IDS-2 type, manufactured by Nippon Pneumatic Industrial Co., Ltd. ), and the like .
[0012]
The tin metal or powder is pregelatinized and pulverized once or several times until a predetermined particle size, that is, an average particle size of 5 to 7 μm. In this way, fine tin powder having an average particle size of 5 to 7 μm is obtained.
[0013]
This fine tin powder can be suitably used as a material for solder powder, particularly for fine pitch.
[0014]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like.
[0015]
<Effect of tin bullion on α-type transition>
[Test Example 1]
A tin metal having a purity of 99.99% by weight or more was melted and cast to prepare a disk-shaped sample having a diameter of 20 mm and a thickness of 5 mm. This was held in a freezer at −40 ° C., and the state of transition from β type to α type was observed. After 1 day, several purple dot-like ridges (initial traces of α-type tin called “warts”) were observed on the sample surface. Thereafter, the α-type tin spreads from the point-like raised matter to the whole, and after 4 days, the whole changed to the α-type and collapsed.
[0016]
[Test Example 2]
A tin metal having a purity of 99.99% by weight or more similar to that of Test Example 1 is dissolved, 0.05% by weight of germanium is added thereto, and cast to prepare a disk-shaped sample having a diameter of 20 mm and a thickness of 5 mm. did. The sample was held in a freezer at −40 ° C. and observed. It was 0.5 days until the initial trace of α-type was observed, and 2 days until the whole reached α-type and collapsed. This confirmed the effectiveness of germanium as an accelerating element for the transition to α-type. The crystal structure of germanium has the same equiaxed diamond structure as that of α-type tin, and germanium serves as a seed to promote the transition to α-type.
[0017]
[Test Example 3]
In the same manner as in Test Example 2, a tin metal having a purity of 99.99% by weight or more was dissolved, and a sample having 0.05% by weight of silicon having the same equiaxed diamond structure as germanium added thereto was prepared. Observation was carried out by holding in a -40 ° C freezer. The effectiveness of silicon was confirmed as well as germanium in 0.5 days until the initial trace of α-type was observed and 3 days until the whole reached α-type and collapsed.
[0018]
[Test Example 4]
Atomized powder was produced by a gas atomization method using a tin metal having a purity of 99.99% by weight or more similar to that used in Test Examples 1 to 3. This was filled in a transparent laminate bag and sealed in a vacuum, and then observed in a freezer at −40 ° C. After two days, it was confirmed that grayish discoloration areas near purple were scattered in the silver-white gas atomized powder. After 6 days, discoloration of the filled atomized powder was observed. This discolored atomized powder was confirmed to be α-type tin by an X-ray diffraction pattern.
[0019]
[Comparative Test Example 1]
The disk-shaped sample of Test Example 1 was observed while being held in a -20 ° C freezer. 11 days until the initial trace of α-type was observed, and 30 days until the whole reached α-type and disintegrated, and the transition to α-type was delayed as compared with -40 ° C retention.
[0020]
[Comparative Test Example 2]
A tin metal having a purity of 99.90% by weight was melt-cast to produce a disk-shaped sample having a diameter of 20 mm and a thickness of 5 mm. This was held in a freezer at −40 ° C. and observed. Several initial traces of α-type tin were observed after the passage of 32 days, but the subsequent progress of the transition was very slow, and even after a year or more, the whole transitioned to α-type tin and collapsed. There wasn't.
[0021]
[Comparative Test Example 3]
In the same manner as in Test Example 2, 0.05% germanium was added to a tin metal having a purity of 99.90% by weight or more similar to Comparative Test Example 2 to prepare a disk-shaped sample. This was held in a freezer at −40 ° C. and observed. Several initial traces of α-type tin were observed after 20 days, but the progress of the subsequent transition was very slow, and even after a year or more, the whole had transformed into α-type tin and collapsed. There wasn't.
[0022]
[Comparative Test Example 4]
Atomized powder was produced from 99.90% by weight tin in the same manner as in Test Example 4 by the gas atomization method. In the same manner as in Test Example 4, the sample was filled in a transparent laminate bag and sealed in a vacuum, and then observed in a freezer at −40 ° C. Even after 1 year or more, the transition to α-type was not observed while maintaining the silver white color.
[0023]
The results of these Test Examples 1 to 4 and Comparative Test Examples 1 to 4 are shown in Table 1, and the impurity content of tin bullion having a purity of 99.99 wt% or more and tin bullion having a purity of 99.90 wt% is shown. It shows in Table 2.
[0024]
[Table 1]
Figure 0004045033
[0025]
[Table 2]
Figure 0004045033
[0026]
<Manufacture of fine tin powder>
[Example 1]
Using the atomized powder having an average particle size of 35.7 μm obtained in Test Example 4, pregelatinization, pulverization, and classification were performed as follows.
(First alpha)
The atomized powder was filled in a transparent laminate bag, vacuum packaged, and held at −40 ° C. for 8 days.
(1st grinding)
An Ebara triad jet (PM type, manufactured by Ebara Seisakusho) was used as a collision plate type pulverizer. This pulverizer is a dry pulverizer that combines pulverization by a collision plate and friction pulverization by swirling. Supply pressure 6.5 kg / cm 2, turning pressure 4.0 kg / cm 2, was triturated with feeding rate 1.0 kg / h. As a result, the recovery rate was 99%, and the average particle size of the recovered product was 15.9 μm.
(2nd alpha)
A recovered product having an average particle diameter of 15.9 μm obtained by the first pulverization was held at −40 ° C. for 3 days.
(2nd grinding)
Grinding was performed in exactly the same way as the first grinding. As a result, the recovery rate was 98%, and the average particle size of the recovered product was 8.56 μm.
(Classification)
As a classifier, an MDS separator (MDS-130 type, manufactured by Nippon Pneumatic Industry Co., Ltd.) was used, and classification was performed at a supply rate of 5 kg / h. As a result, the yield of fine powder after classification was 59%, the average particle size was 6.13 μm, and the yield from atomized powder as a starting material was 57%.
[0027]
[Example 2]
Using the atomized powder having an average particle diameter of 35.7 μm obtained in Test Example 4, the gelatinization and pulverization were performed as follows.
(First alpha)
The atomized powder was filled in a transparent laminate bag, vacuum packaged, and held at −40 ° C. for 8 days.
(1st grinding)
An IDS jet mill (IDS-2 type, manufactured by Nippon Pneumatic Industry Co., Ltd.) was used as a collision plate type pulverizer. This crusher is a collision plate type crusher having an excellent crushing force and a precise classification mechanism. Grinding was performed at a supply pressure of 6.0 kg / cm 2 and a raw material supply speed of 4.5 kg / h. As a result, the recovery rate was 89%, and the average particle size of the recovered product was 15.6 μm.
(2nd alpha)
The recovered product having an average particle diameter of 15.6 μm obtained by the first pulverization was kept at −40 ° C. for 3 days.
(2nd grinding)
Grinding was performed in exactly the same way as the first grinding. As a result, the recovery rate was 55%, the average particle size of the recovered product was 5.26 μm, and the yield from the atomized powder as the starting material was 49%.
[0028]
Example 3
Using a tin ingot with a purity of 99.99% by weight, pregelatinization, pulverization and classification were performed as follows.
(First alpha)
The tin bullion was held at −40 ° C. for 14 days. As a result, the tin metal block collapsed into granular or acicular particles. The particle size after disintegration was 16% over 1%, 16-100 mesh 90%, 100 mesh under 9%.
(1st grinding)
The pulverization was performed using the same pulverizer and pulverization conditions as those in the first pulverization of Example 1. As a result, the recovery rate was 98%, and the average particle size of the recovered products was 50.9 μm.
(2nd alpha)
The recovered product having an average particle diameter of 50.9 μm obtained by the first pulverization was held at −40 ° C. for 3 days.
(2nd grinding)
Grinding was performed in exactly the same way as the first grinding. As a result, the recovery rate was 96%, and the average particle size of the recovered product was 14.00 μm.
(Classification)
Classification was performed using the same classifier and classification conditions as those used in Example 1. As a result, the yield of fine powder after classification was 37%, the average particle size was 5.49 μm, and the yield was 35% from tin bullion, making it possible to produce fine tin powder even from tin bullion.
[0030]
[Comparative Example 1]
Using the atomized powder having an average particle size of 35.7 μm obtained in Test Example 4, only classification was performed as follows.
(Classification)
Classification was performed using the same classifier and classification conditions as those used in Example 1. As a result, the yield of fine powder after classification was 0.6% and the average particle size was 6.08 μm, and the yield was extremely bad.
[0031]
[Comparative Example 2]
Using the atomized powder having an average particle size of 35.7 μm obtained in Test Example 4, only grinding was performed as follows.
(1st grinding)
The pulverization was performed using the same pulverizer and pulverization conditions as those in the first pulverization of Example 1. As a result, the recovery rate is 75%, the average particle size of the recovered product is 37.1 μm, and the β-type tin is ductile and does not become finer by pulverization. An increase occurred.
[0032]
[Comparative Example 3]
Using the atomized powder having an average particle size of 35.7 μm obtained in Test Example 4, pregelatinization, pulverization, and classification were performed as follows.
(First alpha)
The atomized powder was filled in a transparent laminate bag, vacuum packaged, and held at −40 ° C. for 8 days.
(1st grinding)
A single track jet mill (FS-4 type, manufactured by Seishin Enterprise Co., Ltd.) was used as a pulverizer. The grinder is a dry pulverizer through mutual collision and mutual friction of the particles, not an impact plate type pulverizing machine. Grinding was performed at a supply pressure of 7.4 kg / cm 2 and a raw material supply rate of 0.85 kg / h. As a result, the recovery rate was 55%, and the average particle size of the recovered product was 15.9 μm.
(2nd alpha)
A recovered product having an average particle diameter of 15.9 μm obtained by the first pulverization was held at −40 ° C. for 3 days.
(2nd grinding)
Grinding was performed in exactly the same way as the first grinding. As a result, the recovery rate was 30%, and the average particle size of the recovered product was 8.56 μm.
(Classification)
Classification was performed using the same classifier and classification conditions as those used in Example 1. As a result, the yield of fine powder after classification was 59%, the average particle size was 6.13 μm, and the yield from atomized powder as a starting material was 10%. In this pulverizer, the α-type tin powder supplied to the pulverization chamber is instantaneously refined, but immediately returns to the β-type in order to continuously receive collision and friction between particles. The tin powder that has returned to the β-type is not further refined, and conversely, coarsening proceeds and remains in the pulverizer, leading to a reduction in the recovery rate.
[0033]
【The invention's effect】
As explained above, the production method of the present invention provides a simple and excellent economic efficiency and a fine tin powder with a high yield.

Claims (4)

純度99.95重量%以上のスズ地金又は粉末を−30〜−50℃でα化させた後、衝突板式粉砕機で粉砕することを特徴とする微小スズ粉末の製造方法。A method for producing fine tin powder, characterized in that tin metal or powder having a purity of 99.95% by weight or more is alphatized at -30 to -50 ° C and then pulverized by a collision plate pulverizer. 上記α化、粉砕を繰り返す請求項1記載の微小スズ粉末の製造方法。  The manufacturing method of the fine tin powder of Claim 1 which repeats the said gelatinization and grinding | pulverization. 上記スズ地金又は粉末がケイ素及び/又はゲルマニウムを0.01〜0.5重量%含有する請求項1又は2記載の微小スズ粉末の製造方法。Method for producing a fine tin powder according to claim 1 or 2, wherein said tin ingots or powder has a silicon and / or germanium .01 to 0.5 wt.% Free. 平均粒径が5〜7μmである請求項1、2又は3記載の微小スズ粉末の製造方法。  The method for producing fine tin powder according to claim 1, 2 or 3, wherein the average particle size is 5 to 7 µm.
JP28509998A 1998-10-07 1998-10-07 Method for producing fine tin powder Expired - Lifetime JP4045033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28509998A JP4045033B2 (en) 1998-10-07 1998-10-07 Method for producing fine tin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28509998A JP4045033B2 (en) 1998-10-07 1998-10-07 Method for producing fine tin powder

Publications (2)

Publication Number Publication Date
JP2000119708A JP2000119708A (en) 2000-04-25
JP4045033B2 true JP4045033B2 (en) 2008-02-13

Family

ID=17687120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28509998A Expired - Lifetime JP4045033B2 (en) 1998-10-07 1998-10-07 Method for producing fine tin powder

Country Status (1)

Country Link
JP (1) JP4045033B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030026142A (en) * 2001-09-25 2003-03-31 주연준 Fabrication method of Sn powder
KR100962024B1 (en) 2008-04-10 2010-06-08 (주)나마텍 Method for producing tin oxide powder and tin oxide powder produced thereby
JP5118574B2 (en) * 2008-08-07 2013-01-16 三井金属鉱業株式会社 Solder powder and solder paste
US8287772B2 (en) 2009-05-14 2012-10-16 3M Innovative Properties Company Low energy milling method, low crystallinity alloy, and negative electrode composition
US8257864B2 (en) * 2009-06-29 2012-09-04 3M Innovative Properties Company Method of making tin-based alloys for negative electrode compositions
JP5354398B2 (en) * 2011-05-24 2013-11-27 住友金属鉱山株式会社 True spherical fine powder

Also Published As

Publication number Publication date
JP2000119708A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
US20230364677A1 (en) Alloy powder, preparation method therefor, and use therefor
CN108913927B (en) Raw material mixing method, preparation process and product of molybdenum-copper alloy for heat sink
JP4045033B2 (en) Method for producing fine tin powder
RU2126310C1 (en) Powder of metallic cobalt as binding agent for manufacture of tools and/or wear-resistant coatings based on diamond and/or hard alloy and cermet article including the binding agent
JPS59186258A (en) Method of producing zinc powder for alkali battery
US2189640A (en) Manufacture and production of hard solders
JP2002501440A (en) Prealloyed copper-containing powder and its use in the production of diamond tools
JP2000239713A (en) Production of flaky silver powder
JPS59100233A (en) Manufacture of flake-like mother alloy for preparation of dental amalgam
CN112626404A (en) 3D printing high-performance WMoTaTi high-entropy alloy and low-cost powder preparation method thereof
JP2606946B2 (en) Ti-W target material and method of manufacturing the same
EP0099219A2 (en) Method of producing an agglomerated metallurgical composition
CN113020605B (en) In-situ toughened high-performance spherical tungsten powder for laser 3D printing and preparation method thereof
Murty et al. Synthesis of nanocrystalline NiAl over a wide composition range by mechanical alloying
JPH10183208A (en) Production of silver powder
JP2000080408A (en) Production of fine copper powder
US4453977A (en) Low silver containing dental amalgam alloys
JP3247303B2 (en) Titanium silicide sputtering target and method of manufacturing the same
JPH03173704A (en) Production of target for sputtering
JP2987603B2 (en) Method for producing titanium-based powder
CN105948053A (en) Preparation method of coarse-grain tungsten carbide
CN105880610A (en) Method for preparing flaky catalyst powder by using rapid-cooling ribbon method
KR100939727B1 (en) Manufacturing method of high melting point metal powder and manufacturing method of target material
TW570990B (en) Silicon substrate or silicon sputtering target and manufacturing method thereof
CN105063388B (en) It is a kind of to be used to produce chalybeate of aluminium alloy and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term