JP4043761B2 - Detecting elongate body and method for detecting pipeline information - Google Patents
Detecting elongate body and method for detecting pipeline information Download PDFInfo
- Publication number
- JP4043761B2 JP4043761B2 JP2001343492A JP2001343492A JP4043761B2 JP 4043761 B2 JP4043761 B2 JP 4043761B2 JP 2001343492 A JP2001343492 A JP 2001343492A JP 2001343492 A JP2001343492 A JP 2001343492A JP 4043761 B2 JP4043761 B2 JP 4043761B2
- Authority
- JP
- Japan
- Prior art keywords
- buried
- information
- pipe
- pipeline
- long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Description
【0001】
【発明の属する技術分野】
本発明は、地中に埋設されている管路やケーブルについての情報を、地上から検知する場合などに好適な標識用長尺体及び管路情報の検知方法に関する。
【0002】
【従来の技術】
現在、新規に地中埋設管路を設置する場合、既設の配管が敷設されている可能性があるため、事前に道路管理者が記録している書類を調査したり、部分的に試験掘削を行って、埋設物の有無や場所の確認を行う必要があった。
また、地中に埋設されている電力・通信ケーブルを収納した管路に沿って、再掘削時の損傷防止のため、例えば地上と管路の間に、ケーブル種類等を明記した図5に示す樹脂製の標識シートを管路敷設と同時に埋設することもある。このようにしておけば再度、道路工事等により管路埋設部分を掘削した場合にも、掘削過程において上記標識シートに引っかかることにより、管路が埋設してあることが判り、管路の損傷を防止できる。
また、地表面には管路の埋設ルートにそって一定の間隔で、管路の管理者記号や管路種によって色分けされた埋設標を埋め込んでおき、埋設物の位置がわかるようにされていた。このような従来技術は電力や通信管路に限らず、ガスや上下水道等の地中埋設設備・管路にも適用されてきた。
【0003】
【発明が解決しようとする課題】
上記のように管路を新設する場合には、事前調査や、試験掘削を行っているが、試験採掘等で予想したルートと別のルートに管路が敷設されていることが判明することもある。このような場合、設計を再度やりなおしたり、大規模な試験掘削を行わなくてはならず、非常に手間がかかる上に、工期が遅れてしまう問題があった。
埋設標識シートの場合も、重機等で実際に掘削していき、シートにぶつからないと管路が埋設されていることが判らず、シート上の情報も目視できないため、管路敷設予定場所で見つかった場合、管路敷設ルートの見直しが必要となった。
また、埋設標識シートに気づかず管路まで重機がとどいてしまい、既設配管を傷つけてしまうこともあるのが実情である。
また、埋設標からは地上で管理者の記号や埋設位置、管路種に関する情報は得られるが、それ以上の情報、例えば埋設深さや管路条数、ケーブルの種類、敷設時期、敷設業者など、メンテナンスや災害復旧等で緊急に必要となる詳細な情報については得ることができず、管理者の保管する書類を調べたりする必要があった。
本発明は上記事情に鑑みなされたものであって、本発明の目的は、埋設管路やケーブルに関する情報を簡単に得ることができるようにするともに、保守点検履歴やケーブルの種類等の詳細情報を現地で確認できようにすることである。
【0004】
【課題を解決するための手段】
上述する課題を解決するため、本発明は、テープやひも等の長尺体上に無線応答タグを所定の間隔で設置して標識用長尺体を構成した。この無線応答タグに対して電磁波を照射することにより、非接触で無線応答タグに記憶させた情報、例えばケーブルや埋設管路等の埋設情報、長尺体の一端からの距離情報、あるいは標準情報を地上から検知できるようにしたものである。
無線応答タグとしては、RFID(Radio Frequency Identifcation) タグが知られている。上記RFIDタグを用いる非接触式認識システムは、無線(電磁波) でRFIDタグに内蔵されたICメモリと情報のやりとりを行うシステムであり、非接触でデータの読み出し、書き換えが可能であるため、これまで物流管理等で用いられていたバーコードや、キャッシュカード等に用いられてきた磁気テープにかわるものとして注目されており、現在では量産化によって単価が下落し、急激に普及し始めている。
【0005】
上記RFID非接触式認識システムの構成は、個体管理の基となる「RFIDタグ」、通信の中継を行う「アンテナ」、上記RFIDタグのID情報の読み取り/書き込みを行う「リーダ」から構成され、RFIDタグには、ID情報を格納するメモリと通信回路から成るICチップと超小型アンテナが内蔵されている。
上記アンテナは、リーダーと組み合わせて効率的な通信ができるように設計されている。リーダーはRFモジュールとコントロールモジュールから成り、上記アンテナを通じてホストコンピュータからのデータをRFIDタグに書き込んだり、RFIDタグのID情報をホストコンピュータに伝送したりする。
また、RFIDタグは、送信される電磁波により起動する無電源のものが主流となりつつある。さらに、電磁波によってタグと交信するため、土砂や水、コンクリートを介してもタグの読み書きを行うことが可能である。
【0006】
このRFIDタグに、例えば管理者名や埋設位置、管路種や管路条数、ケーブルの種類、敷設時期、敷設業者、作業内容履歴など、メンテナンスや災害復旧等で必要となる詳細な情報を記録させ、例えば樹脂製の長尺テープにある間隔でとりつけておき、これを前記埋設標識シートと同様、管路と地上の間に埋設して設置する、あるいは管路内にこのテープを通して敷設しておけば、現地で送信回路によりアンテナから固有周波数の電磁波を発信し、RFIDタグが受信してIDデータを格納したメモリに記憶させた上記情報が返信され、リーダーによりリアルタイムで地上から地中に埋設してある管路やケーブルの情報を得ることができるようになる。
このRFIDタグは、データの書き換え作業が可能であるため、最初に記憶させた情報を更新することが可能であり、メンテナンスの履歴等を書き足したり、書き換えたりすることが可能である。また、遠隔で情報の書き込みが可能であるため、敷設前にデータを書き込まないで、敷設後にデータを書き込むことも可能である。
【0007】
既設の配管への対応としては、一管路内への敷設が適している。このような敷設形態をとれば、再掘削することなく、RFIDタグの敷設が可能となる。
このように、埋設物標識用長尺体を設置すれば、記録を調査したり、試験掘削をすることなく、現地で地上から埋設管路の情報がとれることから、新設の管路工事をスムースに進めることが可能になるし、メンテナンス作業も容易になり、履歴等を残すことも簡単になる。
また、地震等の災害で管路に納められているケーブルに支障が生じたとしても、無電源のRFIDタグを採用していれば、すぐにケーブル種類等が現地で把握でき、早急な復旧作業が可能になる。
また、RFIDタグから返信される電磁波の受信強度をリーダーによって測定し、受信強度と距離の関係を解析することにより、RFIDタグとの距離を測定することもできる。
この距離測定によって、タグの埋設深さを知ることができるので、管路内に標識用長尺体が敷設されていれば、管路の埋設深さが判明することになり、掘削時にその深さ付近まで、いっぺんに開削しても管路を傷つける恐れもなくなる。
【0008】
【発明の実施の形態】
図1は本発明の実施例の標識用テープの構成を示す図である。
同図に示すように、長尺なテープ1にRFIDタグ2を所定の間隔で取り付ける。テープは例えばポリエチレンなどの樹脂製が長期使用の点から望ましいが、金属製でもよい。なお、形状はテープ状でなく、ひも状でもかまわない。
タグの間隔は0.5〜5m間隔が望ましい。すなわち、現在、RFIDタグの通信距離は最大で6m程度であり、ルート上で常に情報をモニタリングできることを考えると5m以下の間隔が望ましく、また、間隔をつめすぎると安価とはいえコストアップになることから0.5m以上の間隔が望ましい。
現在、市販されているRFIDタグは、ID情報を格納したメモリと通信回路から成るICチップと超小型アンテナを、樹脂製のシートに挟み込んで封止してあるものや、樹脂、シリコン製やガラス製のケースに収められているものがあり、これらをテープにとりつけていってもかまわない。
また、上記封止するための樹脂性のシートを長尺テープ状にして、所定の間隔にICチップと小型アンテナを封止して、標識用テープとしてもよい。このようにすれば、あとからRFIDタグを設置する手間を省くことが可能になる。
【0009】
図2に上記標識用テープの敷設方法の一例を示す。
敷設方法としては、図2に示すように埋設敷設されている管路3内に、標識用テープ1を挿通して設置する方法を採ることができる。
通常、管路内には、線材が残されていることが多く、この線材を利用すれば既設の管路であっても標識用テープを容易に挿通させることができるが、テープ1の先端にパラシュートをつけて高圧空気で管内に吹き込む、いわゆる吹き流し方式で挿通させることもできる。
この敷設方法であれば、既設管路にも簡単に適用できるメリットがあり、万が一、標識用テープを交換しなければならない場合にも、容易に交換することができる。また、既設管路の埋設位置を確認する際にも、管路に標識用テープを挿通させれば、管路の埋設位置を容易に確認することが可能となる。
さらに、RFIDタグから返信される電磁波の受信強度をリーダーによって測定し、受信強度と距離の関係を解析することにより、RFIDタグとの距離を測定することも可能であるため、例えば、図2に示したように、管内に埋設物標識用テープを納めておけば、管路深さが判るので、管路を傷つけずに掘削可能な深さをあらかじめ知ることが可能になる。
この標識用テープのRFIDタグに一方から連続番号を書き込んでおけば、この番号をたよりにマンホールからの管の長さをおおよそ知ることができる。
【0010】
図3に標識用テープの敷設方法の他の例を示す。
同図に示すように、従来の標識シートと同じように、管路3と地表との間の任意の位置に埋設物標識用テープ1を埋設する方法を採ることができる。この場合、管路本数分の埋設物標識テープを埋設してもかまわないが、複数本の管路に対し1本だけ埋設物標識用テープを敷設して、RFIDタグに複数管路の情報をまとめて記憶させておくことも可能である。
RFIDタグに記憶させる情報としては、例えば管理者名や埋設位置、管路種や管路条数、ケーブルの種類、敷設時期、敷設業者のみならず、情報の書き換えや書き加えも可能であるため、保守点検履歴やケーブルの交換履歴など、メンテナンスや災害復旧等で必要となる情報が考えられる。
また、RFIDタグは電池式のものと無電源式のものがあるが、長期使用という観点から無電源式のものが望ましい。
【0011】
埋設物標識用テープのその他の実施例を図4に示す。
同図に示すように、埋設物標識用テープに、管路・ケーブル情報を文字や記号で記載しておくことにより、掘削して掘り起こしたときに、管路等が埋設されていることを目視でも確認できるので便利である。
なお、上記の実施例は、電力・通信管路について述べたが、同じように地中埋設されているガスや上下水道管路に関しても適用することが可能である。
【0012】
【発明の効果】
以上説明したように、以下の効果を得ることができる。
(1)無線応答タグを取り付けた標識用長尺体を用いれば、現地で埋設管路やケーブルに関する情報を正確に得ることが可能となり、書類による事前調査や、試験掘削が不要となり、掘削してからのルート変更等がなくなり、正確に工事を進めることが可能となる。
また、上記標識用長尺体を既設管路中に挿通させれば、既設管路の埋設位置を容易に確認することができ、試験掘削等も不要となる。さらに、上記埋設物標識用長尺体を、管路等の埋設物と地表面の間に埋設敷設しておけば、従来の標識シートと同様な機能を持たせることもできる。
(2)メンテナンスや災害時の復旧に際しても、保守点検履歴やケーブルの種類、敷設ルート等の詳細情報が現地で確認できるため、早急な対応が可能となる。また、電子情報として情報を保管、伝送できるため、リーダーに携帯電話等の長距離通信手段を取り付けて、一括管理を行うホストコンピューターと情報を交換し、例えば地図情報等と組み合わせれば、管路網の管理システムにも応用できる。
【図面の簡単な説明】
【図1】本発明の実施例の標識用テープの構成を示す図である。
【図2】標識用テープの敷設方法の1例を示す図である。
【図3】標識用テープの敷設方法の他の例を示す図である。
【図4】標識用テープの他の例を示す図である。
【図5】従来から使用されていた標識シートの一例を示す図である。
【符号の説明】
1 テープ
2 RFIDタグ
3 管路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an elongate sign body suitable for detecting information about pipelines and cables buried in the ground from the ground and a method for detecting pipeline information .
[0002]
[Prior art]
Currently, when newly installing underground underground pipelines, there is a possibility that existing piping may be laid, so it is necessary to investigate the documents recorded by the road administrator in advance, or to perform a partial excavation It was necessary to check the presence and location of buried objects.
In addition, in order to prevent damage during re-excavation along the pipeline containing the power / communication cables buried in the ground, for example, the type of cable is clearly shown between the ground and the pipeline as shown in FIG. A resin sign sheet may be embedded at the same time as the pipe laying. In this way, even if the pipe burial part is excavated again by road construction etc., it will be found that the pipe line is buried by being caught by the sign sheet during the excavation process, and the pipe line will be damaged. Can be prevented.
In addition, the ground surface is embedded with embedment marks color-coded according to the pipe manager symbol and pipe type at regular intervals along the pipe burial route so that the position of the buried object can be known. It was. Such prior art has been applied not only to electric power and communication lines but also to underground facilities and lines such as gas and water and sewage.
[0003]
[Problems to be solved by the invention]
In the case where a pipeline is newly established as described above, preliminary surveys and test excavation are conducted, but it may be found that the pipeline is laid in a route different from the route expected in the test mining etc. is there. In such a case, it is necessary to redesign or perform a large-scale test excavation, which is very time-consuming and delays the work period.
In the case of the buried sign sheet, it is actually excavated with heavy machinery, etc., and if it does not hit the sheet, it is not known that the pipeline is buried, and the information on the sheet is not visible, so it is found at the place where the pipeline is planned to be laid In such a case, it was necessary to review the pipeline laying route.
In addition, it is a fact that the heavy equipment stays up to the pipeline without noticing the buried sign sheet, which may damage the existing piping.
In addition, information on the manager's symbol, burial position, and pipe type can be obtained from the burial mark, but more information such as burial depth, number of pipe lines, cable type, laying time, laying contractor, etc. In addition, detailed information that is urgently needed for maintenance, disaster recovery, etc. could not be obtained, and it was necessary to examine the documents kept by the administrator.
The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to easily obtain information on buried pipes and cables, and to provide detailed information such as maintenance inspection history and cable types. Is to be able to confirm on-site.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is configured to form a sign long body by installing wireless response tags at predetermined intervals on a long body such as a tape or string. By irradiating electromagnetic waves to this wireless response tag, information stored in the wireless response tag in a non-contact manner, for example, embedded information such as cables and embedded pipelines, distance information from one end of a long body, or standard information Can be detected from the ground.
An RFID (Radio Frequency Identification) tag is known as a wireless response tag. The contactless recognition system using the RFID tag is a system that exchanges information with an IC memory built in the RFID tag wirelessly (electromagnetic wave), and can read and rewrite data without contact. It has been attracting attention as a replacement for bar codes used in physical distribution management, etc., and magnetic tapes used in cash cards, etc. Currently, the unit price has fallen due to mass production and has begun to spread rapidly.
[0005]
The configuration of the RFID non-contact type recognition system includes an “RFID tag” that is a basis for individual management, an “antenna” that relays communication, and a “reader” that reads / writes ID information of the RFID tag, The RFID tag incorporates an IC chip including a memory for storing ID information and a communication circuit, and a micro antenna.
The antenna is designed for efficient communication in combination with a reader. The reader includes an RF module and a control module, and writes data from the host computer to the RFID tag through the antenna and transmits ID information of the RFID tag to the host computer.
In addition, RFID tags that are activated by electromagnetic waves transmitted are becoming mainstream. Furthermore, since the tag communicates with the electromagnetic wave, it is possible to read and write the tag through earth and sand, water, and concrete.
[0006]
Detailed information necessary for maintenance and disaster recovery, such as administrator name, burial position, pipe type and number of pipes, cable type, laying time, laying contractor, work history, etc. Record it, for example, install it at a certain interval on a long tape made of resin, and embed it between the pipeline and the ground, or install it through the tape in the pipeline, as with the embedded marker sheet. Then, an electromagnetic wave having a natural frequency is transmitted from the antenna by the transmitting circuit at the site, and the above information stored in the memory storing the ID data is received by the RFID tag and returned from the ground to the ground in real time by the reader. It becomes possible to obtain information on buried pipelines and cables.
Since this RFID tag can rewrite data, it is possible to update information stored first, and to add or rewrite a maintenance history or the like. Further, since information can be written remotely, it is possible to write data after laying without writing data before laying.
[0007]
As a measure for existing piping, laying in one pipeline is suitable. If such a laying form is taken, the RFID tag can be laid without re-digging.
In this way, if a long object for buried object marking is installed, information on the buried pipeline can be obtained from the ground without investigating records or conducting a test excavation. It is possible to proceed to the next step, the maintenance work becomes easy, and it becomes easy to leave a history and the like.
In addition, even if a cable placed in a pipeline is damaged due to a disaster such as an earthquake, if a power-less RFID tag is used, the type of cable can be immediately grasped locally, and restoration work can be performed quickly. Is possible.
Further, the distance from the RFID tag can be measured by measuring the reception intensity of the electromagnetic wave returned from the RFID tag with a reader and analyzing the relationship between the reception intensity and the distance.
By measuring the distance, it is possible to know the depth of the tag, so if a long sign is laid in the pipe, the depth of the pipe will be determined. There is no risk of damaging the pipe line even if it is cut all at once.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing the structure of a labeling tape according to an embodiment of the present invention.
As shown in the figure, RFID tags 2 are attached to a long tape 1 at a predetermined interval. The tape is preferably made of resin such as polyethylene from the viewpoint of long-term use, but may be made of metal. Note that the shape is not a tape shape and may be a string shape.
The interval between the tags is preferably 0.5 to 5 m. That is, the communication distance of the RFID tag is currently about 6 m at the maximum, and considering that information can always be monitored on the route, an interval of 5 m or less is desirable, and if the interval is too large, the cost increases although it is inexpensive. Therefore, an interval of 0.5 m or more is desirable.
Currently, RFID tags that are commercially available include those in which an IC chip consisting of a memory storing ID information and a communication circuit and an ultra-small antenna are sandwiched and sealed between resin sheets, resin, silicon and glass There are things that are housed in a case made of steel, and these may be attached to the tape.
Alternatively, the resinous sheet for sealing may be formed into a long tape, and the IC chip and the small antenna may be sealed at a predetermined interval to form a labeling tape. In this way, it is possible to save the trouble of installing the RFID tag later.
[0009]
FIG. 2 shows an example of a method for laying the labeling tape.
As a laying method, as shown in FIG. 2, a method can be employed in which the marker tape 1 is inserted and installed in a pipe line 3 laid and laid.
Usually, a wire rod is often left in the pipe, and if this wire is used, a marker tape can be easily inserted even in an existing pipe. A parachute can be attached and blown into the pipe with high-pressure air.
With this laying method, there is a merit that it can be easily applied to existing pipelines, and in the unlikely event that the marking tape has to be replaced, it can be easily replaced. Also, when checking the buried position of the existing pipeline, if the marker tape is inserted through the pipeline, the buried position of the pipeline can be easily confirmed.
Furthermore, since it is possible to measure the distance to the RFID tag by measuring the reception intensity of the electromagnetic wave returned from the RFID tag with a reader and analyzing the relationship between the reception intensity and the distance, for example, FIG. As shown, if the buried object labeling tape is placed in the pipe, the depth of the pipe is known, so that it is possible to know in advance the excavable depth without damaging the pipe.
If a serial number is written from one side to the RFID tag of this labeling tape, the length of the tube from the manhole can be roughly known based on this number.
[0010]
FIG. 3 shows another example of a method for laying a labeling tape.
As shown in the figure, a method of embedding the buried object marking tape 1 at an arbitrary position between the pipe line 3 and the ground surface can be adopted in the same manner as a conventional marking sheet. In this case, it is possible to embed buried object marking tapes as many as the number of pipelines. However, only one buried object marking tape is laid on a plurality of pipelines, and information on the multiple pipelines is placed on the RFID tag. It is also possible to store them together.
As information stored in the RFID tag, for example, it is possible to rewrite or add information as well as an administrator name, burial position, pipe type and number of pipes, cable type, laying time, laying contractor. Information necessary for maintenance and disaster recovery, such as maintenance inspection history and cable replacement history, can be considered.
The RFID tag includes a battery type and a non-powered type, but a non-powered type is desirable from the viewpoint of long-term use.
[0011]
FIG. 4 shows another embodiment of the buried object labeling tape.
As shown in the figure, by marking the pipeline and cable information in letters and symbols on the buried object marking tape, it is visually confirmed that the pipeline has been buried when excavated and dug up. But it is convenient because it can be confirmed.
In addition, although said Example described the electric power and the communication line, it is possible to apply also about the gas and water and sewage pipes which are similarly buried underground.
[0012]
【The invention's effect】
As described above, the following effects can be obtained.
(1) By using a long sign body with a wireless response tag, it is possible to obtain information on buried pipes and cables accurately on-site, eliminating the need for preliminary surveys and test excavations by documents. It will be possible to proceed with construction accurately, since there will be no change of route afterwards.
Further, if the long sign body is inserted into an existing pipeline, the buried position of the existing pipeline can be easily confirmed, and test excavation or the like is not required. Furthermore, if the long object for buried object marking is buried between the buried object such as a pipe and the ground surface, the same function as that of a conventional marker sheet can be provided.
(2) Even during maintenance and recovery from disasters, detailed information such as maintenance inspection history, cable types, and laying routes can be confirmed on-site, making it possible to respond quickly. In addition, since information can be stored and transmitted as electronic information, a long-distance communication means such as a mobile phone is attached to the reader, and information is exchanged with a host computer that performs collective management. It can also be applied to network management systems.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a labeling tape according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example of a method for laying a labeling tape.
FIG. 3 is a diagram showing another example of a method for laying a labeling tape.
FIG. 4 is a diagram showing another example of a labeling tape.
FIG. 5 is a diagram showing an example of a sign sheet that has been used conventionally.
[Explanation of symbols]
1 Tape 2 RFID tag 3 Pipe line
Claims (2)
上記標識用長尺体は、長尺体上に所定の間隔で無線応答タグが設置されたものであり、 上記無線応答タグに対して、電磁波を照射することにより、非接触で無線応答タグに記憶させたケーブルあるいは埋設管路等の埋設情報を地上から検知できるようにした
ことを特徴とする標識用長尺体。 A long sign for laying in a pipe,
The long sign body is a radio response tag installed at a predetermined interval on a long object. By irradiating the radio response tag with electromagnetic waves, the radio response tag is contactlessly formed. An elongate sign body characterized in that embedded information such as stored cables or buried pipelines can be detected from the ground .
上記無線応答タグに対して電磁波を照射し、無線応答タグからの電磁波を受信し、地上から少なくとも管路の埋設位置、埋設深さ、埋設長さを検知するIrradiate electromagnetic waves to the wireless response tag, receive electromagnetic waves from the wireless response tag, and detect at least the buried position, buried depth, and buried length of the pipeline from the ground.
ことを特徴とする管路情報の検知方法。A method for detecting pipeline information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343492A JP4043761B2 (en) | 2001-11-08 | 2001-11-08 | Detecting elongate body and method for detecting pipeline information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343492A JP4043761B2 (en) | 2001-11-08 | 2001-11-08 | Detecting elongate body and method for detecting pipeline information |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003148653A JP2003148653A (en) | 2003-05-21 |
JP4043761B2 true JP4043761B2 (en) | 2008-02-06 |
Family
ID=19157170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001343492A Expired - Fee Related JP4043761B2 (en) | 2001-11-08 | 2001-11-08 | Detecting elongate body and method for detecting pipeline information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4043761B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101435997B1 (en) * | 2014-01-16 | 2014-11-04 | 조선남 | Underground pipe |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265624A (en) * | 2003-02-12 | 2004-09-24 | Fujikura Ltd | Connected long body and cable |
JP4698148B2 (en) * | 2003-02-13 | 2011-06-08 | 株式会社フジクラ | Cable and RFID continuous body |
US7197214B2 (en) | 2004-05-24 | 2007-03-27 | Corning Cable Systems Llc | Methods and apparatus for facilitating cable locating |
JP4974588B2 (en) * | 2005-06-01 | 2012-07-11 | 株式会社半導体エネルギー研究所 | Information management method and information management system |
JP5007043B2 (en) * | 2005-12-19 | 2012-08-22 | 中国電力株式会社 | Cable position information management system, apparatus, method and program |
KR100749248B1 (en) * | 2006-01-11 | 2007-08-13 | 정현철 | Method for Constructing Location Management System Using RFID Series |
KR100694171B1 (en) * | 2006-01-11 | 2007-03-12 | 정현철 | Location management method using rfid series |
US7787823B2 (en) | 2006-09-15 | 2010-08-31 | Corning Cable Systems Llc | Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same |
US7848654B2 (en) | 2006-09-28 | 2010-12-07 | Corning Cable Systems Llc | Radio-over-fiber (RoF) wireless picocellular system with combined picocells |
US9652707B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Radio frequency identification (RFID) connected tag communications protocol and related systems and methods |
US10032102B2 (en) | 2006-10-31 | 2018-07-24 | Fiber Mountain, Inc. | Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods |
US7782202B2 (en) | 2006-10-31 | 2010-08-24 | Corning Cable Systems, Llc | Radio frequency identification of component connections |
US9652709B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods |
US8264366B2 (en) | 2009-03-31 | 2012-09-11 | Corning Incorporated | Components, systems, and methods for associating sensor data with component location |
US9652708B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods |
US8264355B2 (en) | 2006-12-14 | 2012-09-11 | Corning Cable Systems Llc | RFID systems and methods for optical fiber network deployment and maintenance |
US8873585B2 (en) | 2006-12-19 | 2014-10-28 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
CN100435179C (en) * | 2006-12-27 | 2008-11-19 | 朱鸿利 | Picture-character mosaic type underground pipeline mark plate and manufacturing method and application thereof |
US8111998B2 (en) | 2007-02-06 | 2012-02-07 | Corning Cable Systems Llc | Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems |
US20100054746A1 (en) | 2007-07-24 | 2010-03-04 | Eric Raymond Logan | Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems |
US8175459B2 (en) | 2007-10-12 | 2012-05-08 | Corning Cable Systems Llc | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
WO2009081376A2 (en) | 2007-12-20 | 2009-07-02 | Mobileaccess Networks Ltd. | Extending outdoor location based services and applications into enclosed areas |
JP5156996B2 (en) * | 2008-06-20 | 2013-03-06 | 株式会社近代設計 | Underground object position indicator |
US8731405B2 (en) | 2008-08-28 | 2014-05-20 | Corning Cable Systems Llc | RFID-based systems and methods for collecting telecommunications network information |
US9673904B2 (en) | 2009-02-03 | 2017-06-06 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
WO2010091004A1 (en) | 2009-02-03 | 2010-08-12 | Corning Cable Systems Llc | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
AU2010210766A1 (en) | 2009-02-03 | 2011-09-15 | Corning Cable Systems Llc | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
US8548330B2 (en) | 2009-07-31 | 2013-10-01 | Corning Cable Systems Llc | Sectorization in distributed antenna systems, and related components and methods |
JP5386719B2 (en) * | 2009-11-11 | 2014-01-15 | 日立金属株式会社 | Cable with identification function |
US8280259B2 (en) | 2009-11-13 | 2012-10-02 | Corning Cable Systems Llc | Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication |
EP2507746B1 (en) | 2009-11-30 | 2015-10-14 | Corning Incorporated | Rfid condition latching |
US8275265B2 (en) | 2010-02-15 | 2012-09-25 | Corning Cable Systems Llc | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
US20110268446A1 (en) | 2010-05-02 | 2011-11-03 | Cune William P | Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods |
US9525488B2 (en) | 2010-05-02 | 2016-12-20 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
US8172468B2 (en) | 2010-05-06 | 2012-05-08 | Corning Incorporated | Radio frequency identification (RFID) in communication connections, including fiber optic components |
JP4838374B2 (en) * | 2010-07-07 | 2011-12-14 | 株式会社フジシールインターナショナル | Cylindrical label with IC tag |
WO2012024247A1 (en) | 2010-08-16 | 2012-02-23 | Corning Cable Systems Llc | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
US9252874B2 (en) | 2010-10-13 | 2016-02-02 | Ccs Technology, Inc | Power management for remote antenna units in distributed antenna systems |
CN203504582U (en) | 2011-02-21 | 2014-03-26 | 康宁光缆系统有限责任公司 | Distributed antenna system and power supply apparatus for distributing electric power thereof |
EP2702710A4 (en) | 2011-04-29 | 2014-10-29 | Corning Cable Sys Llc | Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods |
CN103609146B (en) | 2011-04-29 | 2017-05-31 | 康宁光缆系统有限责任公司 | For increasing the radio frequency in distributing antenna system(RF)The system of power, method and apparatus |
WO2013148986A1 (en) | 2012-03-30 | 2013-10-03 | Corning Cable Systems Llc | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods |
EP2842245A1 (en) | 2012-04-25 | 2015-03-04 | Corning Optical Communications LLC | Distributed antenna system architectures |
CN103390176A (en) * | 2012-05-08 | 2013-11-13 | 珠海格力电器股份有限公司 | Assembly system and method |
US9165232B2 (en) | 2012-05-14 | 2015-10-20 | Corning Incorporated | Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems |
EP2883416A1 (en) | 2012-08-07 | 2015-06-17 | Corning Optical Communications Wireless Ltd. | Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods |
US9563832B2 (en) | 2012-10-08 | 2017-02-07 | Corning Incorporated | Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods |
US9455784B2 (en) | 2012-10-31 | 2016-09-27 | Corning Optical Communications Wireless Ltd | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
CN105308876B (en) | 2012-11-29 | 2018-06-22 | 康宁光电通信有限责任公司 | Remote unit antennas in distributing antenna system combines |
US9647758B2 (en) | 2012-11-30 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Cabling connectivity monitoring and verification |
EP3008828B1 (en) | 2013-06-12 | 2017-08-09 | Corning Optical Communications Wireless Ltd. | Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass) |
EP3008515A1 (en) | 2013-06-12 | 2016-04-20 | Corning Optical Communications Wireless, Ltd | Voltage controlled optical directional coupler |
US9247543B2 (en) | 2013-07-23 | 2016-01-26 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9661781B2 (en) | 2013-07-31 | 2017-05-23 | Corning Optical Communications Wireless Ltd | Remote units for distributed communication systems and related installation methods and apparatuses |
US9385810B2 (en) | 2013-09-30 | 2016-07-05 | Corning Optical Communications Wireless Ltd | Connection mapping in distributed communication systems |
US9178635B2 (en) | 2014-01-03 | 2015-11-03 | Corning Optical Communications Wireless Ltd | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
US9775123B2 (en) | 2014-03-28 | 2017-09-26 | Corning Optical Communications Wireless Ltd. | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
US9357551B2 (en) | 2014-05-30 | 2016-05-31 | Corning Optical Communications Wireless Ltd | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
US9525472B2 (en) | 2014-07-30 | 2016-12-20 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9730228B2 (en) | 2014-08-29 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
US9602210B2 (en) | 2014-09-24 | 2017-03-21 | Corning Optical Communications Wireless Ltd | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
US9420542B2 (en) | 2014-09-25 | 2016-08-16 | Corning Optical Communications Wireless Ltd | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
US10659163B2 (en) | 2014-09-25 | 2020-05-19 | Corning Optical Communications LLC | Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors |
WO2016071902A1 (en) | 2014-11-03 | 2016-05-12 | Corning Optical Communications Wireless Ltd. | Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement |
WO2016075696A1 (en) | 2014-11-13 | 2016-05-19 | Corning Optical Communications Wireless Ltd. | Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals |
US9729267B2 (en) | 2014-12-11 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
EP3235336A1 (en) | 2014-12-18 | 2017-10-25 | Corning Optical Communications Wireless Ltd. | Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
WO2016098111A1 (en) | 2014-12-18 | 2016-06-23 | Corning Optical Communications Wireless Ltd. | Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
US20160249365A1 (en) | 2015-02-19 | 2016-08-25 | Corning Optical Communications Wireless Ltd. | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das) |
US9681313B2 (en) | 2015-04-15 | 2017-06-13 | Corning Optical Communications Wireless Ltd | Optimizing remote antenna unit performance using an alternative data channel |
US9948349B2 (en) | 2015-07-17 | 2018-04-17 | Corning Optical Communications Wireless Ltd | IOT automation and data collection system |
US10560214B2 (en) | 2015-09-28 | 2020-02-11 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
US10236924B2 (en) | 2016-03-31 | 2019-03-19 | Corning Optical Communications Wireless Ltd | Reducing out-of-channel noise in a wireless distribution system (WDS) |
FR3054695B1 (en) * | 2016-08-01 | 2018-08-24 | Commissariat Energie Atomique | METHOD AND SYSTEM FOR DETECTING A SPECIFIC RELATIVE POSITION BETWEEN TWO OBJECTS |
EP3510310B1 (en) * | 2016-09-08 | 2023-06-07 | Eas Ip, Llc | Signal tape |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5943212A (en) * | 1982-09-06 | 1984-03-10 | Taisei Polymer Kk | Sign of buried object |
JPH02179492A (en) * | 1988-12-29 | 1990-07-12 | Oobayashi Doro Kk | Method and apparatus for detecting outer periphery of laid underground pipe |
JPH0439483A (en) * | 1990-06-04 | 1992-02-10 | Kubota Corp | Underground buried pipe |
JPH0830738B2 (en) * | 1990-08-03 | 1996-03-27 | 昭和電工株式会社 | Sign sheet |
JPH04336196A (en) * | 1991-05-10 | 1992-11-24 | Furukawa Electric Co Ltd:The | Propulsion of underground pusher |
JPH09166404A (en) * | 1995-12-15 | 1997-06-24 | Osaka Gas Co Ltd | Method and device for specifying position of object |
JP2001264447A (en) * | 2000-01-14 | 2001-09-26 | Osaka Gas Co Ltd | System and method for locating buried pipe |
JP2001336667A (en) * | 2000-03-24 | 2001-12-07 | Murao Giken:Kk | Buried pipe identifying device |
JP4523740B2 (en) * | 2001-07-23 | 2010-08-11 | フジテコム株式会社 | Method for editing and managing location information of underground objects and recording medium recording program therefor |
-
2001
- 2001-11-08 JP JP2001343492A patent/JP4043761B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101435997B1 (en) * | 2014-01-16 | 2014-11-04 | 조선남 | Underground pipe |
Also Published As
Publication number | Publication date |
---|---|
JP2003148653A (en) | 2003-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043761B2 (en) | Detecting elongate body and method for detecting pipeline information | |
EP2103960B1 (en) | Method and apparatus for determining position in a pipe | |
US9140818B2 (en) | Method and apparatus for determining position in a pipe | |
KR101731977B1 (en) | Indication marker with smartphone and nfc tag | |
WO2011094402A1 (en) | Locator assembly for detecting, locating and identifying buried objects and method of use | |
KR101958441B1 (en) | System for digging, construction, safety management of country life line using electronic display device and AR | |
JP2005181111A (en) | Reading device of buried pipe information | |
JPH1185925A (en) | Wireless id tag and system therefor | |
JP2007004778A (en) | Facility maintenance system | |
Uslu et al. | Underground utility locating technologies for condition assessment and renewal engineering of water pipeline infrastructure systems | |
KR200252939Y1 (en) | Administration system of layer under the ground using intelligence marker | |
KR20030004610A (en) | Administration system of layer under the ground using intelligence marker | |
KR20030030594A (en) | A System for position recognition of underground facilities | |
JPH11248035A (en) | Coupling for pipe | |
US20080129534A1 (en) | Method and Device for Localizing Anomalies Located Inside a Hollow Structure Located on Bare Ground and/or Buried | |
JPH10317410A (en) | Information system of object embedded in underground | |
JP6418519B2 (en) | Ground displacement measuring device and displacement measuring method | |
GB2377584A (en) | Position recording and relocation of buried installations | |
EP0933653A2 (en) | Apparatus for the safeguard and the remote detection of cables and works laid underground comprising a smart tape | |
Kane et al. | An alternative monitoring system for unstable slopes | |
JP2006119933A (en) | Underground electric line mark and underground electric line mark installation management system | |
JPH07134032A (en) | Buried label | |
JP2003153410A (en) | Underground box and conduit opening forming member with marker installed in the underground box | |
IT201900005942A1 (en) | Real-time identification and tracking system and method for construction and maintenance purposes | |
KR100614204B1 (en) | Detecting apparatus for the position of earth burial cable and the method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |