JP3939534B2 - Duplex stainless steel sheet and manufacturing method thereof - Google Patents
Duplex stainless steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP3939534B2 JP3939534B2 JP2001343412A JP2001343412A JP3939534B2 JP 3939534 B2 JP3939534 B2 JP 3939534B2 JP 2001343412 A JP2001343412 A JP 2001343412A JP 2001343412 A JP2001343412 A JP 2001343412A JP 3939534 B2 JP3939534 B2 JP 3939534B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- duplex stainless
- steel sheet
- ferrite phase
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001039 duplex stainless steel Inorganic materials 0.000 title claims description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910000859 α-Fe Inorganic materials 0.000 claims description 51
- 238000000137 annealing Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 17
- 229910001566 austenite Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 238000005097 cold rolling Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、加工性に優れたフェライト相とオーステナイト相から成る2相ステンレス鋼板に関するものである。
【0002】
【従来の技術】
フェライト相とオーステナイト相から成る2相ステンレス鋼板は、耐食性に優れているとともに、高強度で耐疲労特性に優れていることから、化学プラントなど広範囲に使用されているが、延性がオーステナイト系ステンレス鋼に比べて低いため、プレス成形時に割れが発生する場合が有り、加工性の向上が要望されている。
【0003】
2相ステンレス鋼は、フェライト相とオーステナイト相の比率が熱処理温度に依存して変化するため、その組織制御が重要である。従来技術の中で、特開平11−50143号公報には、熱間圧延の加熱時にフェライト単相域に加熱することで伸びが向上することが開示されている。
【0004】
ところが、フェライト単相域に加熱するという従来技術は、加熱時に著しく鋼板が軟化し、製造が困難である他、冷却過程に析出するγ相比率が不安定になり、製品伸びが向上しない場合があった。よって、従来技術では加工性に優れた2相ステンレス鋼を提供することは困難であるのが実状であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、従来技術の問題点を解決するために、製造工程においては熱間圧延のスラブ加熱および熱延板焼鈍時のα、γ相比率を制御し、製品板の集合組織を制御することを基本的技術思想とし、加工性に優れたフェライト相とオーステナイト2相ステンレス鋼板を提供することにある。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明者らは2相ステンレス鋼板の伸び向上に関して、金属組織および集合組織学的見地から詳細な研究を行った。
【0007】
本発明は、
(1)フェライト相とオーステナイト相からなる2相ステンレス鋼板において、板厚中心領域のフェライト相X線強度比{100}/{111}が2以下であり、該2相ステンレス鋼板の化学成分が、質量%で、C≦0.05%、Si≦1.0%、Mn≦2.0%、P≦0.03%、S≦0.01%であり、Ni:5〜10%、Cr:20〜30%、N:0.05〜0.20%含有し、残部がFeおよび不可避的不純物からなることを特徴とする2相ステンレス鋼板。
(2)さらに2相ステンレス鋼板の化学成分が、Mo:1.0〜5.0%、Cu:0.5〜3.0%の1種または2種以上含有する(1)に記載の2相ステンレス鋼板。
(3)さらに2相ステンレス鋼板の化学成分が、Al:0.05〜0.5%、Ca:0.001〜0.005%、Mg:0.0002〜0.002%の1種または2種以上含有する(1)又は(2)に記載の2相ステンレス鋼板。
(4)さらに2相ステンレス鋼板の化学成分が、V:0.01〜1.0%、B:0.0005〜0.005%、Ti:0.01〜0.3%、Nb:0.01〜0.3%の1種または2種以上含有する(1)〜(3)のいずれかに記載の2相ステンレス鋼板。
(5)2相ステンレス鋼スラブの加熱温度をフェライト相比率が70%〜95%となる温度に加熱して熱間圧延して熱延板とし、続いて前記熱延板をフェライト相比率が70%〜95%となる温度で熱延板焼鈍し、続いて冷間圧延し、続いて冷延板焼鈍を施すことによって板厚中心領域のフェライト相X線強度比{100}/{111}を2以下にすることを特徴とする2相ステンレス鋼板の製造方法であって、該2相ステンレス鋼板の化学成分が、C≦0.05%、Si≦1.0%、Mn≦2.0%、P≦0.03%、S≦0.01%であり、Ni:5〜10%、Cr:20〜30%、N:0.05〜0.20%、含有し、残部がFeおよび不可避的不純物からなる2相ステンレス鋼板の製造方法。
(6)さらに2相ステンレス鋼板の化学成分が、Mo:1.0〜5.0%、Cu:0.5〜3.0%を1種または2種以上含有し、残部がFeおよび不可避的不純物からなる(5)に記載の2相ステンレス鋼板の製造方法。
(7)さらに2相ステンレス鋼板の化学成分が、Al:0.05〜0.5%、Ca:0.001〜0.005%、Mg:0.0002〜0.002%を1種または2種以上含有する(5)又は(6)に記載の2相ステンレス鋼板の製造方法。
(8)さらに2相ステンレス鋼板の化学成分が、V:0.01〜1.0%、B:0.0005〜0.005%、Ti:0.01〜0.3%、Nb:0.01〜0.3%を1種または2種以上含有し、残部がFeおよび不可避的不純物からなる(5)〜(7)のいずれかに記載の2相ステンレス鋼板の製造方法。
【0008】
【発明の実施の形態】
以下に本発明の限定理由について説明する。
本発明では、製品板の集合組織において、板厚中心領域のX線積分強度比{100}/{111}を2以下にすることで、伸びが向上することを見出した。2相ステンレス鋼板は、熱延時にフェライト相の圧延方位({100}<011>,{111}<011>など)が発達する。これらの圧延方位において、{100}方位の結晶粒は著しく板厚方向にくびれやすいため、伸びを劣化させる。この結晶方位は熱延時に顕著に発達し、再結晶焼鈍によってもほとんど方位変化を示さないため、製品板まで残留し製品の伸び低下をもたらす。図1に1.5mm厚の製品板の板厚中心領域のX線積分強度比{100}/{111}と伸びの関係を示す。これより、{100}/{111}が2以下で伸びが25%以上と良好になる。これは、上述した様に、板厚方向にくびれやすく、伸びの低い{100}<011>方位結晶粒が低減することにより、鋼板全体の伸びが向上する。ここで、X線積分強度は、製品板の板厚中心領域について、X線反射強度を各結晶面について測定し、無方向性試料との強度比から算出したものである。また、伸びは、JISZ2201に規定された方法により、JIS13号B試験片を圧延方向に平行に採取して引張試験を実施して評価した。
【0009】
2相ステンレス鋼は、フェライト相とオーステナイト相の2相の比率が熱処理温度によって変化する特徴を有する。本発明では、2相ステンレス鋼を熱間圧延する際のスラブ加熱時に、フェライト相比率を70〜95%にすることを特徴とする。図2にスラブ加熱時のフェライト相比率と製品の伸びの関係を示す。これより、フェライト相が70%以上析出した場合に、伸びが25%以上と良好になる。これは、フェライト相比率を70%以上にすることにより、フェライト相が粗粒化し、その後の圧延時にフェライト相に歪みが導入されやすく、フェライト相の再結晶が促進するためである。フェライト相比率が70%未満では、オーステナイト相が多く析出することによりフェライト相の再結晶が遅らされ、フェライト相の圧延方位({100}<011>,{111}<011>など)が発達する。また、スラブ加熱時にフェライト相が95%以上になると著しく軟質化し、加熱炉内でスラブの変形が生じるため95%を上限とした。望ましくは、スラブ加熱時のフェライト相比率は、75〜85%がよい。
【0010】
ここにおいて、加熱時のフェライト相比率については、特定温度に加熱した鋼板を水冷又は空冷で冷却処理し、板厚中心領域部の組織を例えば蓚酸電解エッチングなどで現出させ、光学顕微鏡を介した画像解析により、フェライト相あるいはオーステナイト相の面積率を測定し、各相比率とした。下記熱延板焼鈍時のフェライト相比率についても同様である。
【0011】
2ステンレス鋼の熱延板は、フェライト相とオーステナイト相の2相状態であるが、フェライト相は圧延集合組織が発達し、展伸した組織である。熱延板の段階で発達した圧延集合組織は、製品板の伸び低下をもたらす。よって、熱延板焼鈍以降の工程で再結晶を促進する必要があるが、これらの方位は著しく安定であるため、熱延板焼鈍時に低減することは困難である。本発明では、熱延板焼鈍時のフェライト相比率を70〜95%にすることにより、製品板の伸びが向上することを見出した。図3に熱延板焼鈍時のフェライト相比率と製品板の伸びの関係を示す。これより、フェライト相を70%以上析出した場合に、伸びが25%以上と良好になる。これは、フェライト相比率を70%以上にすることにより、フェライト相が粗粒化するため、その後冷延した際にフェライト粒内に歪みが蓄積されやすく、冷延板焼鈍時に再結晶し難いフェライト相の圧延方位の再結晶が促されるためである。熱延板焼鈍時にフェライト相が95%以上になると著しく軟質化し、加熱炉内で鋼板の変形が生じ、板破断などのトラブルが生じるため95%を上限とした。望ましくは、熱延板焼鈍時のフェライト相比率は、75〜85%がよい。
【0012】
以上説明した様に、本発明では、伸び25%以上を得るためには、スラブ加熱温度および熱延板焼鈍温度をフェライト相比率が70〜95%になる温度とする。尚、上記鋼成分の場合、スラブ加熱温度は1150〜1300℃、熱延板焼鈍温度を1100〜1250℃とするのが好ましい。
【0013】
本発明の鋼成分は、一般的な2相ステンレス鋼であればよいが、特に上記成分が好ましい。以下の鋼組成について説明する。
【0014】
Cは、耐食性と加工性を劣化させ、製造性劣化させる元素であるが、過度の低減は精錬コストのアップにつながるとともにフェライト相とオーステナイト相の相バランス調整が困難になるため、0.05%以下とした。望ましくは、0.02%以下がよい。
【0015】
Siは、耐酸化性を向上させ、脱酸材としても添加されるが、過度な添加は製造性を劣化させる金属間化合物の析出を促進して脆化をもたらすため1.0%以下とした。望ましくは、0.6%以下がよい。
【0016】
Mnは、脱酸元素として添加される場合が有るが、加工性や耐食性を劣化させる元素であるため、2.0%以下とした。望ましくは、0.8%以下がよい。
【0017】
Pは、耐食性や加工性を劣化させるが、過度の低減は精錬コストのアップにつながるため、0.03%以下がよい。望ましくは0.02%以下がよい。
【0018】
Sは、結晶粒界に偏析し熱間加工性を劣化させる他、耐食性の劣化させるため、0.01%以下とした。望ましくは、0.001%以下がよい。
【0019】
Niは、耐酸化性を向上させる他、オーステナイト生成元素であり、5%以上必要があるが、10%以上では相比率のコントロールが出来ない。よって、Niは5〜10%がよく、望ましくは6〜8%がよい。
【0020】
Crは、耐食性および耐高温酸化性の向上のために20%以上の添加が必要であるが、30%以上の添加により靱性の劣化が生じ、製造性が劣化する。従って、Crの範囲は20〜30%とした。更に、耐食性と加工性の確保という観点では22〜28%が望ましい。
【0021】
Moは、耐食性を向上に寄与する元素であり、1.0%以上必要であるが5.0%を超えると原料コストのアップや製造性の劣化をもたらすため、1〜5%とした。望ましくは、2.0〜4.0%がよい。
【0022】
Cuは、耐食性の向上に寄与する元素であり、0.5%以上の添加が必要であるが、3.0%を超えて添加すると熱間加工性が劣化するため、3.0%以下とした。望ましくは、0.8〜2.0%以下がよい。
【0023】
Nは、耐食性を向上させる元素であり、フェライト相率のコントロールから決定されるが、過度の添加は熱間加工性を劣化させるため、0.05〜0.20%とした。望ましくは、0.08〜0.12%がよい。
【0024】
Alは、脱酸元素であり、耐酸化性や加工性向上のために添加される場合があり、その効果は0.05%以上で得られるが、0.5%超では窒化物析出により熱間延性が低下する。従って、Alの範囲は0.05〜0.5%とした。更に、製造性を考慮すると0.07〜0.2%が望ましい。
【0025】
Caは、0.001%以上の添加により、Sと結合して熱間延性を向上させるが、0.005%超ではその効果が飽和するとともに、耐食性が劣化する。従って、0.001〜0.005%とした。更に、製造性やコストを考慮すると0.002〜0.004%が望ましい。
【0026】
Mgは、0.0002%以上の添加により、脱酸元素として作用するが、0.002%超では脱酸効果が飽和するため、0.0002〜0.002%とした。精錬コストや耐食性を考慮すると0.0005〜0.001%以下が望ましい。
【0027】
Vは、0.01%以上の添加により窒化物を生成し、加工性を向上させるが、1.0%超では熱間加工性の低下をもたらすために、0.01〜1.0%とした。更に、製造性を考慮すると、0.1〜0.5%が望ましい。
【0028】
Bは、オーステナイト/フェライト変態を促進し軟質化するため、熱間加工性を向上させる元素であり、0.0005%以上の添加により効果が生じるが、0.005%超の添加では逆に加工性や耐食性を劣化させるため、0.0005〜0.005%とした。更に、コストや耐食性を考慮すると、0.0007〜0.002%が望ましい。
【0029】
Tiは、0.01%以上の添加により窒化物TiNや炭化物TiCを形成し、加工性を向上させるが、0.3%超では逆に延性が低下するため、0.01〜0.3%とした。更に、製造コストや鋳造性などを考慮すると、0.05〜0.1%以下が望ましい。
【0030】
Nbは、Tiと同様に0.01%以上の添加により窒化物NbNや炭化物NbCを形成し、加工性を向上させるが、0.3%超では逆に延性が低下するため、0.01〜0.3%とした。更に、製造コストや鋳造性などを考慮すると、0.05〜0.1%以下が望ましい。
【0031】
【実施例】
表1〜表4示す成分組成の2相ステンレス鋼を溶製し、250mm厚のスラブに鋳造した。その後、スラブを熱間圧延して5.0mm厚熱延板とし、続いて熱延板を焼鈍し、続いて1.5mm板厚に冷間圧延し、冷延板を1080℃で焼鈍して板厚1.5mmの製品板を得た。伸びは、JISZ2201に規定された方法により、JIS13号B試験片を圧延方向に平行に採取して引張試験を実施して評価した。
【0032】
【表1】
【0033】
【表2】
【0034】
【表3】
【0035】
【表4】
【0036】
試験結果を表1〜表4に示すように、板厚中心領域のフェライト相X線強度比{100}/{111}が2以下の2相ステンレス鋼板は伸びが25%以上と良好である。
【0037】
また、本発明による成分、スラブ加熱温度、熱延板焼鈍温度によって製造された2相ステンレス鋼板は従来材よりも伸びが向上している。よって、本発明により、加工性に優れた2相ステンレス鋼板の製造が可能である。
【0038】
尚、本発明の効果は、冷間圧延−焼鈍を2回繰り返す2回冷延法においても有効である。また、研磨仕上げなどの各種表面仕上材に対しても有効である。
【0039】
【発明の効果】
以上の説明から明らかなように、本発明によれば加工性特に伸びが高い2相ステンレス鋼板を特別な新規設備を必要とせずに提供することができる。そして、プレス成型時の割れなどが防止でき、加工時にも特別な手段を用いることなく良好なプレス成形性が得られる。
【図面の簡単な説明】
【図1】製品板の{100}/{111}強度比と伸びの関係を示す図である。
【図2】スラブ加熱時のフェライト相比率と製品伸びの関係を示す図である。
【図3】熱延板焼鈍時のフェライト相比率と製品伸びの関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a duplex stainless steel sheet comprising a ferrite phase and an austenite phase excellent in workability.
[0002]
[Prior art]
Duplex stainless steel sheet consisting of ferrite phase and austenite phase has excellent corrosion resistance, high strength and fatigue resistance, so it is widely used in chemical plants, etc., but its ductility is austenitic stainless steel Therefore, cracking may occur during press molding, and improvement in workability is desired.
[0003]
In the duplex stainless steel, the ratio of the ferrite phase to the austenite phase changes depending on the heat treatment temperature, so that the structure control is important. Among prior arts, Japanese Patent Application Laid-Open No. 11-50143 discloses that elongation is improved by heating to a ferrite single-phase region during heating in hot rolling.
[0004]
However, the conventional technique of heating to the ferrite single phase region is not easy to manufacture because the steel sheet is remarkably softened during heating, and the ratio of γ phase precipitated in the cooling process becomes unstable and the product elongation may not improve. there were. Therefore, it has been difficult to provide a duplex stainless steel excellent in workability with the prior art.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to control the texture of the product plate by controlling the α and γ phase ratios during hot rolling slab heating and hot-rolled sheet annealing in order to solve the problems of the prior art. The basic technical idea is to provide a ferritic phase and austenitic duplex stainless steel sheet with excellent workability.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted detailed studies on the improvement of elongation of a duplex stainless steel sheet from the viewpoint of the metal structure and texture.
[0007]
The present invention
(1) In a duplex stainless steel sheet composed of a ferrite phase and an austenite phase, the ferrite phase X-ray intensity ratio {100} / {111} in the center region of the sheet thickness is 2 or less, and the chemical component of the duplex stainless steel sheet is % By mass, C ≦ 0.05%, Si ≦ 1.0%, Mn ≦ 2.0%, P ≦ 0.03%, S ≦ 0.01%, Ni: 5 to 10%, Cr: A duplex stainless steel sheet containing 20 to 30%, N: 0.05 to 0.20%, the balance being Fe and inevitable impurities .
( 2 ) Further, the chemical component of the duplex stainless steel sheet contains one or two or more of Mo: 1.0 to 5.0% and Cu: 0.5 to 3.0% as described in ( 1 ). Phase stainless steel sheet.
( 3 ) Further, the chemical component of the duplex stainless steel sheet is one or two of Al: 0.05 to 0.5%, Ca: 0.001 to 0.005%, Mg: 0.0002 to 0.002%. The duplex stainless steel sheet according to ( 1 ) or ( 2 ), which contains at least seeds.
( 4 ) Further, the chemical components of the duplex stainless steel plate are V: 0.01 to 1.0%, B: 0.0005 to 0.005%, Ti: 0.01 to 0.3%, Nb: 0.00. The duplex stainless steel sheet according to any one of ( 1 ) to ( 3 ), containing one or more of 01 to 0.3%.
( 5 ) The heating temperature of the duplex stainless steel slab is heated to a temperature at which the ferrite phase ratio becomes 70% to 95% and hot-rolled to form a hot-rolled sheet, and then the hot-rolled sheet has a ferrite phase ratio of 70. % To 95% hot-rolled sheet annealing, followed by cold rolling, followed by cold-rolled sheet annealing to obtain the ferrite phase X-ray intensity ratio {100} / {111} in the center region of the sheet thickness. a method of manufacturing a two-phase stainless steel, characterized by 2 or less, the chemical components of the two-phase stainless steel sheet, C ≦ 0.05%, Si ≦ 1.0%, Mn ≦ 2.0% P ≦ 0.03%, S ≦ 0.01%, Ni: 5 to 10%, Cr: 20 to 30%, N: 0.05 to 0.20%, the balance being Fe and inevitable For producing a duplex stainless steel sheet made of mechanical impurities .
( 6 ) Further, the chemical components of the duplex stainless steel sheet contain one or more of Mo: 1.0 to 5.0%, Cu: 0.5 to 3.0%, the balance being Fe and inevitable The method for producing a duplex stainless steel sheet according to ( 5 ), comprising impurities.
( 7 ) Further, the chemical components of the duplex stainless steel sheet are Al: 0.05 to 0.5%, Ca: 0.001 to 0.005%, Mg: 0.0002 to 0.002%, or one or two. The manufacturing method of the duplex stainless steel sheet as described in ( 5 ) or ( 6 ) which contains seed | species or more.
( 8 ) Further, the chemical components of the duplex stainless steel sheet are V: 0.01 to 1.0%, B: 0.0005 to 0.005%, Ti: 0.01 to 0.3%, Nb: 0.00. The manufacturing method of the duplex stainless steel sheet in any one of ( 5 )-( 7 ) which contains 01-0.3% 1 type or 2 types or more, and remainder consists of Fe and an unavoidable impurity.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limitation of the present invention will be described below.
In the present invention, it has been found that the elongation is improved by setting the X-ray integral intensity ratio {100} / {111} in the center region of the plate thickness to 2 or less in the texture of the product plate. The duplex stainless steel sheet develops the rolling orientation of the ferrite phase ({100} <011>, {111} <011>, etc.) during hot rolling. In these rolling orientations, the {100} oriented crystal grains are remarkably easily constricted in the thickness direction, so that the elongation is deteriorated. This crystal orientation is remarkably developed during hot rolling, and hardly changes in orientation even by recrystallization annealing, so that it remains up to the product plate and causes a reduction in the elongation of the product. FIG. 1 shows the relationship between the X-ray integral intensity ratio {100} / {111} and elongation in the center region of the thickness of a product plate having a thickness of 1.5 mm. From this, {100} / {111} is 2 or less and the elongation is 25% or more, which is favorable. As described above, the elongation of the entire steel sheet is improved by reducing the {100} <011> -oriented crystal grains that are easily constricted in the thickness direction and have a low elongation. Here, the X-ray integral intensity is calculated from the intensity ratio with the non-directional sample by measuring the X-ray reflection intensity for each crystal plane in the center region of the thickness of the product plate. In addition, the elongation was evaluated by taking a JIS No. 13 B test piece in parallel with the rolling direction and carrying out a tensile test by the method specified in JISZ2201.
[0009]
Duplex stainless steel has a feature that the ratio of two phases of a ferrite phase and an austenite phase varies depending on the heat treatment temperature. The present invention is characterized in that the ferrite phase ratio is 70 to 95% during slab heating when hot rolling duplex stainless steel. FIG. 2 shows the relationship between the ferrite phase ratio and product elongation during slab heating. Accordingly, when the ferrite phase is precipitated by 70% or more, the elongation becomes 25% or more. This is because by setting the ferrite phase ratio to 70% or more, the ferrite phase becomes coarse, and strain is easily introduced into the ferrite phase during subsequent rolling, thereby promoting recrystallization of the ferrite phase. When the ferrite phase ratio is less than 70%, a large amount of austenite phase is precipitated, so that recrystallization of the ferrite phase is delayed, and the rolling orientation of the ferrite phase ({100} <011>, {111} <011>, etc.) develops. To do. Further, when the ferrite phase becomes 95% or more during slab heating, the ferrite phase becomes extremely soft and deformation of the slab occurs in the heating furnace, so 95% was made the upper limit. Desirably, the ferrite phase ratio during slab heating is 75 to 85%.
[0010]
Here, for the ferrite phase ratio at the time of heating, the steel sheet heated to a specific temperature is cooled by water cooling or air cooling, and the structure of the central region of the plate thickness is revealed by, for example, oxalic acid electrolytic etching, via an optical microscope. By image analysis, the area ratio of the ferrite phase or austenite phase was measured and used as the ratio of each phase. The same applies to the ferrite phase ratio during the following hot-rolled sheet annealing.
[0011]
The two stainless steel hot-rolled sheets are in a two-phase state of a ferrite phase and an austenite phase. The ferrite phase is a stretched structure with a rolled texture developed. The rolling texture developed at the hot-rolled sheet stage causes a reduction in the elongation of the product sheet. Therefore, it is necessary to promote recrystallization in the steps after the hot-rolled sheet annealing, but since these orientations are remarkably stable, it is difficult to reduce at the time of hot-rolled sheet annealing. In this invention, it discovered that the elongation of a product board improved by making the ferrite phase ratio at the time of hot-rolled sheet annealing 70 to 95%. FIG. 3 shows the relationship between the ferrite phase ratio and the elongation of the product plate during hot-rolled sheet annealing. Thus, when 70% or more of the ferrite phase is precipitated, the elongation is good at 25% or more. This is because the ferrite phase becomes coarser by setting the ferrite phase ratio to 70% or more, so that when it is cold-rolled, strain is easily accumulated in the ferrite grains, and it is difficult to recrystallize during cold-rolled sheet annealing. This is because recrystallization of the rolling direction of the phase is promoted. If the ferrite phase becomes 95% or more during hot-rolled sheet annealing, the ferrite phase becomes extremely soft and the steel sheet is deformed in the heating furnace, causing troubles such as sheet breakage, so 95% was made the upper limit. Desirably, the ferrite phase ratio at the time of hot-rolled sheet annealing is 75 to 85%.
[0012]
As described above, in the present invention, in order to obtain an elongation of 25% or more, the slab heating temperature and the hot-rolled sheet annealing temperature are set to temperatures at which the ferrite phase ratio becomes 70 to 95%. In addition, in the case of the said steel component, it is preferable that slab heating temperature shall be 1150-1300 degreeC and hot-rolled sheet annealing temperature shall be 1100-1250 degreeC.
[0013]
Although the steel component of this invention should just be common duplex stainless steel, the said component is especially preferable. The following steel composition will be described.
[0014]
C is an element that deteriorates corrosion resistance and workability, and deteriorates manufacturability. However, excessive reduction leads to an increase in refining costs and it becomes difficult to adjust the phase balance between the ferrite phase and the austenite phase. It was as follows. Preferably, it is 0.02% or less.
[0015]
Si improves oxidation resistance and is also added as a deoxidizing material. However, excessive addition promotes precipitation of intermetallic compounds that degrade manufacturability and causes embrittlement, so it is made 1.0% or less. . Desirably, it is 0.6% or less.
[0016]
Although Mn may be added as a deoxidizing element, it is an element that deteriorates workability and corrosion resistance. Desirably, it is 0.8% or less.
[0017]
P deteriorates corrosion resistance and workability, but excessive reduction leads to an increase in refining cost, so 0.03% or less is preferable. Desirably, it is 0.02% or less.
[0018]
S is not more than 0.01% because it segregates at the grain boundaries to deteriorate the hot workability and the corrosion resistance. Desirably, 0.001% or less is good.
[0019]
Ni is an austenite-generating element in addition to improving oxidation resistance, and needs to be 5% or more. However, if it is 10% or more, the phase ratio cannot be controlled. Therefore, Ni is preferably 5 to 10%, and preferably 6 to 8%.
[0020]
Cr needs to be added in an amount of 20% or more in order to improve corrosion resistance and high-temperature oxidation resistance. However, addition of 30% or more causes deterioration of toughness and deteriorates manufacturability. Therefore, the Cr range is 20-30%. Furthermore, 22 to 28% is desirable from the viewpoint of ensuring corrosion resistance and workability.
[0021]
Mo is an element that contributes to improving the corrosion resistance, and 1.0% or more is necessary. However, if it exceeds 5.0%, the raw material cost is increased and manufacturability is deteriorated. Desirably, the content is 2.0 to 4.0%.
[0022]
Cu is an element that contributes to the improvement of corrosion resistance and needs to be added in an amount of 0.5% or more, but if added over 3.0%, the hot workability deteriorates, so that it is 3.0% or less. did. Desirably, it is 0.8 to 2.0% or less.
[0023]
N is an element that improves the corrosion resistance and is determined by controlling the ferrite phase ratio. However, excessive addition deteriorates the hot workability, so 0.05 to 0.20%. Desirably, 0.08 to 0.12% is good.
[0024]
Al is a deoxidizing element and may be added to improve oxidation resistance and workability. The effect can be obtained at 0.05% or more. The ductility is reduced. Therefore, the Al range is set to 0.05 to 0.5%. Furthermore, if considering manufacturability, 0.07 to 0.2% is desirable.
[0025]
When Ca is added in an amount of 0.001% or more, it combines with S to improve hot ductility, but if it exceeds 0.005%, the effect is saturated and the corrosion resistance deteriorates. Therefore, it was 0.001 to 0.005%. Furthermore, if considering the manufacturability and cost, 0.002 to 0.004% is desirable.
[0026]
Mg acts as a deoxidizing element when added in an amount of 0.0002% or more. However, if over 0.002%, the deoxidation effect is saturated, so the content was made 0.0002 to 0.002%. Considering the refining cost and corrosion resistance, 0.0005 to 0.001% or less is desirable.
[0027]
V increases the workability by generating nitride by adding 0.01% or more, but if it exceeds 1.0%, it causes a decrease in hot workability. did. Furthermore, if considering the manufacturability, 0.1 to 0.5% is desirable.
[0028]
B is an element that improves the hot workability because it promotes austenite / ferrite transformation and softens, and the effect is produced by addition of 0.0005% or more, but conversely if added over 0.005%. In order to deteriorate the properties and corrosion resistance, the content was made 0.0005 to 0.005%. Furthermore, if considering cost and corrosion resistance, 0.0007 to 0.002% is desirable.
[0029]
Ti forms nitride TiN or carbide TiC by addition of 0.01% or more and improves workability. However, if it exceeds 0.3%, ductility decreases conversely, so 0.01 to 0.3% It was. Furthermore, if considering the manufacturing cost and castability, 0.05 to 0.1% or less is desirable.
[0030]
Nb forms nitride NbN and carbide NbC by addition of 0.01% or more as in the case of Ti, and improves the workability. However, if it exceeds 0.3%, the ductility is reduced, so 0.01 to 0.3%. Furthermore, if considering the manufacturing cost and castability, 0.05 to 0.1% or less is desirable.
[0031]
【Example】
Two-phase stainless steels having the component compositions shown in Tables 1 to 4 were melted and cast into 250 mm thick slabs. Thereafter, the slab is hot rolled to form a 5.0 mm thick hot rolled sheet, followed by annealing the hot rolled sheet, followed by cold rolling to a 1.5 mm sheet thickness, and annealing the cold rolled sheet at 1080 ° C. A product plate having a thickness of 1.5 mm was obtained. Elongation was evaluated by taking a JIS No. 13 B test piece in parallel with the rolling direction and carrying out a tensile test by the method defined in JISZ2201.
[0032]
[Table 1]
[0033]
[Table 2]
[0034]
[Table 3]
[0035]
[Table 4]
[0036]
As the test results are shown in Tables 1 to 4, the duplex stainless steel sheet having a ferrite phase X-ray intensity ratio {100} / {111} in the center region of the plate thickness of 2 or less has a good elongation of 25% or more.
[0037]
Moreover, the elongation of the duplex stainless steel sheet produced by the component according to the present invention, the slab heating temperature, and the hot-rolled sheet annealing temperature is improved as compared with the conventional material. Therefore, according to the present invention, it is possible to produce a duplex stainless steel sheet having excellent workability.
[0038]
In addition, the effect of this invention is effective also in the double cold rolling method which repeats cold rolling-annealing twice. It is also effective for various surface finishing materials such as polishing finish.
[0039]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to provide a duplex stainless steel sheet having high workability, particularly high elongation, without requiring special new equipment. And the crack at the time of press molding can be prevented, and favorable press moldability is obtained without using a special means also at the time of processing.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the {100} / {111} strength ratio and elongation of a product plate.
FIG. 2 is a graph showing the relationship between ferrite phase ratio and product elongation during slab heating.
FIG. 3 is a diagram showing the relationship between the ferrite phase ratio and product elongation during hot-rolled sheet annealing.
Claims (8)
該2相ステンレス鋼板の化学成分が、
質量%で、
C≦0.05%、
Si≦1.0%、
Mn≦2.0%、
P≦0.03%、
S≦0.01%であり、
Ni:5〜10%、
Cr:20〜30%、
N:0.05〜0.20%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする2相ステンレス鋼板。In a duplex stainless steel sheet (hereinafter simply referred to as a duplex stainless steel sheet) composed of a ferrite phase and an austenite phase, the ferrite phase X-ray intensity ratio {100} / {111} in the sheet thickness center region is 2 or less ,
The chemical component of the duplex stainless steel sheet is
% By mass
C ≦ 0.05%,
Si ≦ 1.0%,
Mn ≦ 2.0%,
P ≦ 0.03%,
S ≦ 0.01%,
Ni: 5 to 10%
Cr: 20-30%,
N: A duplex stainless steel sheet containing 0.05 to 0.20%, the balance being Fe and inevitable impurities .
Mo:1.0〜5.0%、
Cu:0.5〜3.0%の1種または2種以上含有することを特徴とする請求項1に記載の2相ステンレス鋼板。Furthermore, the chemical composition of the duplex stainless steel sheet
Mo: 1.0-5.0%,
The duplex stainless steel sheet according to claim 1 , containing one or more of Cu: 0.5 to 3.0%.
Al:0.05〜0.5%、
Ca:0.001〜0.005%、
Mg:0.0002〜0.002%の1種または2種以上含有することを特徴とする請求項1又は2に記載の2相ステンレス鋼板。Furthermore, the chemical composition of the duplex stainless steel sheet
Al: 0.05-0.5%
Ca: 0.001 to 0.005%,
The duplex stainless steel sheet according to claim 1 or 2 , characterized by containing one or more of Mg: 0.0002 to 0.002%.
V:0.01〜1.0%、
B:0.0005〜0.005%、
Ti:0.01〜0.3%、
Nb:0.01〜0.3%の1種または2種以上含有することを特徴とする請求項1乃至3いずれかに記載の2相ステンレス鋼板。Furthermore, the chemical composition of the duplex stainless steel sheet
V: 0.01-1.0%
B: 0.0005 to 0.005%,
Ti: 0.01 to 0.3%,
The duplex stainless steel sheet according to any one of claims 1 to 3, wherein Nb is contained in one or more of 0.01 to 0.3%.
該2相ステンレス鋼板の化学成分が、
質量%にて、
C≦0.05%、
Si≦1.0%、
Mn≦2.0%、
P≦0.03%、
S≦0.01%であり、
Ni:5〜10%、
Cr:20〜30%、
N:0.05〜0.20%を含有し、残部がFeおよび不可避的不純物からなる2相ステンレス鋼板の製造方法。The heating temperature of the duplex stainless steel slab is heated to a temperature at which the ferrite phase ratio becomes 70% to 95% and hot-rolled to form a hot rolled sheet, and then the hot rolled sheet has a ferrite phase ratio of 70% to 95%. % Of the ferrite phase X-ray intensity ratio {100} / {111} in the center region of the plate thickness is 2 or less by performing hot-rolled sheet annealing at a temperature of%, followed by cold rolling, followed by cold-rolled sheet annealing. A method for producing a duplex stainless steel sheet, characterized in that
The chemical component of the duplex stainless steel sheet is
In mass%
C ≦ 0.05%,
Si ≦ 1.0%,
Mn ≦ 2.0%,
P ≦ 0.03%,
S ≦ 0.01%,
Ni: 5 to 10%
Cr: 20-30%,
N: A method for producing a duplex stainless steel sheet containing 0.05 to 0.20%, with the balance being Fe and inevitable impurities .
Mo:1.0〜5.0%、
Cu:0.5〜3.0%を1種または2種以上含有することを特徴とする請求項5に記載の2相ステンレス鋼板の製造方法。Furthermore, the chemical composition of the duplex stainless steel sheet
Mo: 1.0-5.0%,
The method for producing a duplex stainless steel sheet according to claim 5 , comprising one or more Cu: 0.5 to 3.0%.
Al:0.05〜0.5%、
Ca:0.001〜0.005%、
Mg:0.0002〜0.002%を1種または2種以上含有することを特徴とする請求項5又は6に記載の2相ステンレス鋼板の製造方法。Furthermore, the chemical composition of the duplex stainless steel sheet
Al: 0.05-0.5%
Ca: 0.001 to 0.005%,
The method for producing a duplex stainless steel sheet according to claim 5 or 6 , wherein Mg: 0.0002 to 0.002% is contained in one kind or two or more kinds.
V:0.01〜1.0%、
B:0.0005〜0.005%、
Ti:0.01〜0.3%、
Nb:0.01〜0.3%を1種または2種以上含有することを特徴とする請求項5乃至7のいずれかに記載の2相ステンレス鋼板の製造方法。Furthermore, the chemical composition of the duplex stainless steel sheet
V: 0.01-1.0%
B: 0.0005 to 0.005%,
Ti: 0.01 to 0.3%,
Nb: 0.01-0.3% of 1 type or 2 types or more are contained, The manufacturing method of the duplex stainless steel plate in any one of the Claims 5 thru | or 7 characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343412A JP3939534B2 (en) | 2001-11-08 | 2001-11-08 | Duplex stainless steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343412A JP3939534B2 (en) | 2001-11-08 | 2001-11-08 | Duplex stainless steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003147489A JP2003147489A (en) | 2003-05-21 |
JP3939534B2 true JP3939534B2 (en) | 2007-07-04 |
Family
ID=19157113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001343412A Expired - Lifetime JP3939534B2 (en) | 2001-11-08 | 2001-11-08 | Duplex stainless steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3939534B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7396421B2 (en) | 2003-08-07 | 2008-07-08 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel and manufacturing method thereof |
CN100427627C (en) * | 2003-08-07 | 2008-10-22 | 住友金属工业株式会社 | Duplex stainless steel and manufacturing method thereof |
JP5072285B2 (en) | 2006-08-08 | 2012-11-14 | 新日鐵住金ステンレス株式会社 | Duplex stainless steel |
EP3693121B8 (en) | 2011-01-27 | 2022-04-13 | NIPPON STEEL Stainless Steel Corporation | Clad steel plate having duplex stainless steel as cladding material therefor, and production method for same |
CN103266281B (en) * | 2013-05-24 | 2015-02-04 | 无锡鑫常钢管有限责任公司 | Super double-phase stainless steel tube and production process thereof |
CN103361564B (en) * | 2013-07-16 | 2015-07-15 | 江苏银环精密钢管有限公司 | Super duplex stainless steel seamless steel tube and preparation method |
CN111742075B (en) * | 2018-02-15 | 2022-07-08 | 山特维克知识产权股份有限公司 | Novel duplex stainless steel |
CN111944973A (en) * | 2019-05-17 | 2020-11-17 | 南京理工大学 | Preparation method of heterogeneous layered structure duplex stainless steel |
JP7499621B2 (en) | 2020-06-23 | 2024-06-14 | 日鉄ステンレス株式会社 | Duplex stainless steel sheet and method for producing the same |
-
2001
- 2001-11-08 JP JP2001343412A patent/JP3939534B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003147489A (en) | 2003-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5457840B2 (en) | High strength cold-rolled steel sheet with excellent elongation and stretch flangeability | |
JPH07138704A (en) | High strength and high ductility dual-phase stainless steel and its production | |
KR20040075981A (en) | Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF | |
EP1083237A2 (en) | Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties, and method of producing the same | |
KR0165151B1 (en) | Steel plate excellent in prevention of brittle crack propagation and low-temperature toughness and process for producing the plate | |
JP6811112B2 (en) | Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method | |
JP4528137B2 (en) | Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability | |
JP4324226B1 (en) | High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability | |
JP3939534B2 (en) | Duplex stainless steel sheet and manufacturing method thereof | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP2010133028A (en) | Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility | |
JP4214671B2 (en) | Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same | |
JP2001262234A (en) | Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JP2011528751A (en) | Method for producing austenitic stainless steel sheet having high mechanical properties and steel sheet thus obtained | |
JPH0741854A (en) | Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness | |
JP2023147504A (en) | Ferritic stainless steel sheet and method of manufacturing the same | |
JP3709709B2 (en) | Ferritic stainless steel with excellent formability and manufacturing method thereof | |
JP3379826B2 (en) | Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same | |
JP2022047341A (en) | Martensitic stainless steel sheet and method for producing martensitic stainless steel sheet | |
JP4114522B2 (en) | Ultra-high strength cold-rolled steel sheet and method for producing the same | |
JPH10130786A (en) | Ferritic stainless steel sheet excellent in formability and ridging resistance, and its production | |
JP2020143309A (en) | Ferritic stainless steel sheet | |
KR101528014B1 (en) | Cold-rolled steel plate and method for producing same | |
JP2007177293A (en) | Ultrahigh-strength steel sheet and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040922 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050216 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070130 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070328 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3939534 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140406 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |