[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3934777B2 - Nickel hydroxide for nickel oxyhydroxide production - Google Patents

Nickel hydroxide for nickel oxyhydroxide production Download PDF

Info

Publication number
JP3934777B2
JP3934777B2 JP4958198A JP4958198A JP3934777B2 JP 3934777 B2 JP3934777 B2 JP 3934777B2 JP 4958198 A JP4958198 A JP 4958198A JP 4958198 A JP4958198 A JP 4958198A JP 3934777 B2 JP3934777 B2 JP 3934777B2
Authority
JP
Japan
Prior art keywords
nickel
nickel oxyhydroxide
hydroxide
nickel hydroxide
oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4958198A
Other languages
Japanese (ja)
Other versions
JPH11246226A (en
Inventor
新太郎 石田
咲子 妙中
晶子 杉元
健三 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4958198A priority Critical patent/JP3934777B2/en
Publication of JPH11246226A publication Critical patent/JPH11246226A/en
Application granted granted Critical
Publication of JP3934777B2 publication Critical patent/JP3934777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はオキシ水酸化ニッケル製造用水酸化ニッケルに関し、詳しくは電池の電極材料として用いた場合に優れた放電特性、特に高い放電電位を示すオキシ水酸化ニッケル製造用水酸化ニッケルに関する。なお、本発明でいう水酸化ニッケルとは、ニッケルの一部が、例えばコバルト、亜鉛、マンガン等によって各々5.0重量%以下置換されたものも包含するものとする。また、本発明でいうオキシ水酸化ニッケルも、ニッケルの一部が、例えばコバルト、亜鉛、マンガン等によって各々5.0重量%以下置換されたものも包含するものとする。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来のアルカリマンガン電池の正極合剤は、電解二酸化マンガンと黒鉛とを良く混合し、これを粉末成形機で成形して円筒形のペレットとすることで使用されている。
【0003】
しかし、このような正極合剤を用いたアルカリ電池においては、高負荷での放電のときに活物質の利用率の急激な低下が見られ、単3電池で1Aの電流を取り出すと20%程度の利用率になってしまう。また、高負荷の場合、電位の低下も急激であり、放電のごく初期に1.1V以下まで下がってしまう。
【0004】
そこで、高負荷での利用率と電位の低下とを防ぐ目的でオキシ水酸化ニッケルを二酸化マンガンに添加することが考えられる。オキシ水酸化ニッケルは、それのみでも正極剤となることができ、二酸化マンガンに比べて高負荷での利用率と電位の低下が小さい。従って、これを二酸化マンガンに添加することで高負荷でも利用率が高く、高電位な正極剤を得ることができる。従来よりオキシ水酸化ニッケルの添加は提案されている(例えば特開昭56−155630号公報)が、目的は異なる様である。
【0005】
従来、このオキシ水酸化ニッケルを化学合成する場合、ニッケル塩水溶液に酸化剤を溶解させたアルカリ水溶液を反応させ、ニッケルを酸化させると同時にオキシ水酸化物として沈澱を生成させる方法が主にとられてきた(例えば特開昭56−54759号公報)。しかし、この方法では、オキシ水酸化ニッケルのX線回折パターンで見られる結晶性、配向性を制御するのは困難であり、それらに性能が大きく影響される電池材料としては、このような合成法によって得られるオキシ水酸化ニッケルは使用し難い。
【0006】
オキシ水酸化ニッケルの化学合成の他の方法としては、水溶液中で水酸化ニッケルを酸化することが挙げられる。この方法では、水酸化ニッケルの結晶性、配向性を制御することでオキシ水酸化ニッケルの構造を制御できるため、予め電池材料に適した結晶性、配向性の水酸化ニッケルを合成することで、電池特性の優れた水酸化ニッケルを合成できる。
【0007】
しかし、丸田等(文献名「第37回電池討論会要旨集」P141(1996))は、水酸化ニッケルを室温(20〜30℃)付近で酸化処理しても、オキシ水酸化ニッケルを合成するのは困難であり、温度を5℃以下まで下げて酸化処理を行った場合にのみオキシ水酸化ニッケルが得られるとしている。また、ニッケルの一部をコバルトで15%程度置換した場合に室温でオキシ水酸化ニッケルの単相は得られるとしており、水酸化ニッケルでは室温付近での酸化が困難であった。そして、低温で酸化処理することは工業的に不利であり、またニッケルの一部をコバルトで置換することは、コバルトが高価な故に経済的に不利である。
【0008】
そして、得られたオキシ水酸化ニッケルをアルカリ電池の正極剤として用いる場合、その結晶性と放電容量の関係は、これまで何等論じられていなかった。
【0009】
従って、本発明の目的は、室温付近での酸化処理によって容易にオキシ水酸化ニッケルが得られ、かつ得られたオキシ水酸化ニッケルを電池の電極材料として用いた場合に優れた放電特性を示すオキシ水酸化ニッケル製造用水酸化ニッケルを提供することにある。
また、得られたオキシ水酸化ニッケルをアルカリマンガン乾電池の二酸化マンガンに添加することで、高負荷での利用率と電位の低下を防ぐとともに、低負荷でも利用率の低下を起こさないような、オキシ水酸化ニッケル製造用水酸化ニッケルを提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、検討の結果、厚さ方向と平面方向のアスペクト比が特定範囲にあり、また平面方向が一定の長さにある板状一次粒子からなり、かつX線回折における特定面の半値全幅が一定値以上の水酸化ニッケルが上記目的を達成し得ることを知見した。
【0011】
本発明は、上記知見に基づきなされたもので、厚さ方向に対する平面方向のアスペクト比が3〜60、平面方向の粒径が0.01〜1.0μmの板状一次粒子であり、かつX線回折における半値全幅が(100)>0.3deg.、(001)<(101)、0.25deg.<(001)<4.0deg.、0.3deg.<(101)<4.5deg.、ピーク強度比I(001)/I(101)>1であり、ニッケル塩水溶液と水酸化ナトリウム水溶液とをOH - /Ni比が2より大きい条件で混合し熟成して得られたものであることを特徴とするオキシ水酸化ニッケル製造用水酸化ニッケルを提供するものである。
【0013】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
水酸化ニッケルも、これを酸化して得られるオキシ水酸化ニッケルも、c軸方向に層の積み重なった同じ構造を持つ。そして、酸化剤による水酸化ニッケルの酸化反応、電池にしたときのオキシ水酸化ニッケルの電気化学的な還元反応は、すべてプロトンの固相内での移動をともなう。このとき、プロトンは固相内をc軸に垂直な方向(c面に沿った方向)に移動し、同時にプロトンの脱離・挿入にともない格子定数も変化する。従って本発明者らは、原料の水酸化ニッケルのa軸、c軸方向の一次粒子径や結晶性を規定すれば、酸化しやすく、かつ酸化後のオキシ水酸化ニッケルの電池性能を制御できると考え、原料である水酸化ニッケルの物性、形状を規定したものである。
【0014】
かかる見地から、本発明の水酸化ニッケルは、厚さ方向に対する平面方向のアスペクト比が3〜60、平面方向の粒径が0.01〜1.0μmの板状一次粒子であることが必要である。電池の充電時にはH+ 等がc面に沿った方向に移動するので、粉体粒子のアスペクト比がこれより平面方向に大きくなると(アスペクト比が60を超える)、c面方向への移動距離が大きくなりすぎるので、電池の性能が低下する。アスペクト比がこれより小さいものは(アスペクト比が3未満)、実質的に工業的に製造が困難である。
【0015】
平面方向の粒径が0.01μm未満では、単位胞が数十個程度の粒子なので充放電中に構造が保ちにくい。また平面方向の粒径が1.0μmを超えるとアスペクト比が上記範囲にあったとしても、実際の移動距離が大きくなるので電池性能が低下する。
【0016】
また、本発明の水酸化ニッケルは、X線回折における半値全幅が(100)>0.3deg.である。X線回折における半値全幅が(100)が0.3deg.以下では、水酸化ニッケルを室温で酸化してオキシ水酸化ニッケルとすることができない。
【0017】
また、本発明の水酸化ニッケルは、X線回折における半値全幅が(001)<(101)、0.25deg.<(001)<4.0deg.、0.3deg.<(101)<4.5deg.、ピーク強度比I(001)/I(101)>1である。この範囲において、室温での酸化が容易となり、かつ酸化して得られたオキシ水酸化ニッケルが優れた放電特性を示す。特に低負荷放電で優位性を得るためには、結晶子のa軸方向とc軸方向への成長の度合いの比と結晶性の良さの比に対する要求が激しくなる。即ち、c軸方向に適当な歪みをもっていて、プロトンの出入りに伴い格子定数の変化を受け入れられやすい様な粒子の大きさと結晶性の良さが求められる。従って、ピーク強度比の好ましい範囲として上記のように規定される。
【0018】
ここで半値全幅(001)は、c軸方向の粒子径、構造の歪みの程度を反映し、この値が小さいほどc軸方向の粒子径が大きく構造の歪みが小さい。半値全幅(101)は、a軸・c軸両方向を含む面の粒子径、構造の歪みの程度を反映し、この値が小さいほどa軸・c軸両方向、或いはどちらか一方の粒子径が大きく、構造の歪みが小さい。また、半値全幅が大きい程、その固相内に不純物(ナトリウム塩、カリウム塩や硫酸根、硝酸根、塩化物、アンモニア塩等)を取り込んでいる可能性が高く、これが酸化・還元反応でのプロトンの移動を妨げることがあるので、半値全幅(001)、(101)は大きすぎない方が良い。ピーク強度比I(001)/I(101)は、ここでは粒子の形状に影響され、この値が大きいほどa軸方向に対してc軸方向の粒子径比が小さい板状粒子であることが言える。このような板状粒子はX線回折の測定サンプリング時に配向しやすく、(001)面がX線の反射面に揃いやすいため、(001)面のピーク強度が大きくなる。半値全幅(001)<(101)は、c軸方向に適度な構造の歪みをもち、且つa軸方向の粒径が適度に小さい場合にこの条件を満たし、本発明の材料については、c軸方向の構造の歪みの程度とa軸方向の粒径との比を表わす指標として使える。
【0019】
半値全幅(001)<0.25deg.ではc軸方向の粒子径が大きく、かつ構造の歪みが小さいためにプロトンの出入りにともなう格子定数の変化を受け入れられず、プロトンの脱離・挿入が阻害される。また、4.0deg.<(001)では粒径は小さくなるが構造が歪みすぎているために、または固相内に取り込まれた不純物により、プロトンの移動が阻害される。
【0020】
半値全幅(101)<0.3deg.ではa軸とc軸の両方、或いはどちらか一方の粒子径が大きく、構造の歪みが小さい。c軸の粒子径の場合は(001)の時の説明と同様な理由により、a軸の粒子径の場合はプロトンの移動距離が長くなるために、酸化・還元反応が起こりにくくなる。また、4.5deg.<(101)では粒径は小さくなるが構造が歪み過ぎているために、または固相内に取り込まれた不純物により、プロトンの移動が阻害される。
【0021】
ピーク強度比I(001)/I(101)<1ではX線回折の測定サンプリング時に、(001)面がX線の反射面に揃いにくい形状をしている。即ち、a軸方向に対してc軸方向の粒子径の比が大きく、このような粒子ではプロトンの出入りにともなう格子定数の変化を受け入れられず、プロトンの脱離・挿入が阻害される。
【0022】
半値全幅(001)>(101)では、c軸方向の構造の歪みが小さく、且つa軸方向の粒子径が大きいために、プロトンの脱離・挿入が阻害されるだけでなく、プロトンの移動距離が長くなり、酸化・還元反応が起こりにくくなる。
【0023】
このような物性、性状を有する本発明の水酸化ニッケルは、次のようにして合成される。
すなわち、水酸化ニッケルの合成は、ニッケル塩水溶液とアルカリ水溶液との混合により行い、熟成を行う。熟成温度は室温〜200℃とする。熟成は湯浴、オイルバス、蒸気による熱処理の他に、密閉系での熱処理や100℃以上での熱処理にはオートクレーブ等が用いられる。熟成後、洗浄、濾過、乾燥して目的とする水酸化ニッケルを得る。ニッケル塩としては、硫酸塩、硝酸塩、塩化物等、アルカリとしては水酸化ナトリウムが挙げられる。
【0024】
同じ合成方法ではニッケル塩に硝酸塩を用いるとX線回折ピークが鋭いものが得られ易く、硫酸塩を用いるとブロードなものが得られ易い。これは、硫酸イオンが結晶面に吸着して粒子の成長を阻害するためである。同様に水酸化リチウム、アンモニア水を用いると、水酸化ナトリウム、カリウムを用いた場合よりもX線回折ピークが鋭いものが得られ易い。これもやはり、ナトリウムイオン、カリウムイオンが結晶成長を阻害するためである。原料が同じ場合、X線回折ピークの半値全幅は熟成の有無、温度(室温〜200℃)、OH- /Niを変えることによって調整される。熟成を行わないと、X線回折ピークがブロードになり、構造の歪みが大きい細かい粒子ができる。X線回折ピークは熟成温度が高い程、熟成時間が長いほど、OH- /Ni比が大きいほど鋭くなる。また、OH- /Ni比が2より大きくなるとピーク強度比I(001)/I(101)が1よりも大きく、且つ半値全幅(001)<(101)となる。
【0025】
なお、電池材料用水酸化ニッケルとしては球状粉が一般的であるが、これは板状一次粒子が凝集して球状形成するため、このような水酸化ニッケルも本発明に包含される。また、上記のようにして得られた水酸化ニッケルは、通常不純物又は添加剤としてコバルト、亜鉛、マンガン等を各々5.0重量%以下含まれる。
【0026】
次に、オキシ水酸化ニッケルの製造方法について述べる。
上記のようにして得られた水酸化ニッケルを、酸化剤を溶解させたアルカリ水溶液中に分散し、5時間以上撹拌する。アルカリの濃度については、酸化反応において水酸化ニッケルからプロトンが放出されるので、このプロトンを中和できるアルカリ量以上の濃度であればよい。また、反応が5時間以下だと酸化不十分により水酸化ニッケルが残ってしまう。この時の温度は30℃以下、好ましくは20℃以下になるように調整する。酸化剤としては、アルカリ領域で働く酸化剤、例えば、過硫酸ナトリウム、過硫酸カリウム、次亜塩素酸ナトリウム等が用いられる。しかし、次亜鉛塩素酸ナトリウムは、塩素を発生するため、工業的にはあまり用いない方が好ましい。その後、粉末を洗浄、濾過、乾燥して、目的とするオキシ水酸化ニッケルを得る。
【0027】
このようにして製造されたオキシ水酸化ニッケルは、電池の正極活物質として用いられる。また、このオキシ水酸化ニッケル1〜99重量%と二酸化マンガン99〜1重量%とを正極活物質とするアルカリ電池は、二酸化マンガンのみの場合よりも優れた放電性能を示す。
【0028】
【実施例】
以下、実施例等に基づき本発明を具体的に説明する。
【0029】
〔実施例1〕
1mol/lの硫酸ニッケル水溶液1リットルと、3mol/lの水酸化ナトリウム水溶液1リットルを混合し、オートクレーブ100℃で12時間熟成する。この後、粉末を純水で洗浄、濾過、70℃で乾燥し、水酸化ニッケルを得た。この水酸化ニッケルのX線回折パターンを図1に示す。
【0030】
得られた水酸化ニッケル30gを、過硫酸カリウム57.6gを溶解させた1mol/l水酸化ナトリウム水溶液1.8リットル中に分散させ、20℃で12時間撹拌して、オキシ水酸化ニッケルを得た。このオキシ水酸化ニッケルのX線回折パターンを図1に示す。また、この酸化前の水酸化ニッケルの物性、性状は下記の通りであった。
【0031】

Figure 0003934777
【0035】
〔比較例1〕
1.7mol/lの硫酸ニッケル水溶液1.5リットルに、NH3/Ni=3(モル比)となるようにアンモニア水を混合し、80℃で8時間熟成した。この後、粉末を純水で洗浄、濾過、70℃で乾燥し、水酸化ニッケルを得た。この水酸化ニッケルのX線回折パターンを図に示す。
【0036】
得られた水酸化ニッケル30gを、過硫酸カリウム57.6gを溶解させた1mol/l水酸化ナトリウム水溶液1.8リットル中に分散させ、20℃で12時間撹拌して、オキシ水酸化ニッケルを得た。このオキシ水酸化ニッケルのX線回折パターンを図に示す。また、この酸化前の水酸化ニッケルの物性、性状は下記の通りであった。
【0037】
Figure 0003934777
【0038】
図1及び2に示されるように、実施例1では、水酸化ニッケルを酸化すると2θ=33度付近の水酸化ニッケルの(100)面に帰属されるピークが消失しており、室温付近での合成でもほぼ完全にオキシ水酸化ニッケルに酸化されていることが分かる。
【0039】
これに対して比較例1では、(100)面のピークが確認でき、未だ酸化されていない水酸化ニッケルが存在していることが判る。この水酸化ニッケルのX線回折パターンは、実施例に比べて(100)面の半値全幅が小さくなっている。このことは比較例1の水酸化ニッケルは実施例1のものに比べて結晶子がa軸方向に厚いことを示している。酸化過程では、固相内をプロトンがc面に沿った方向(a軸方向を含む)に移動し、固相外に取り出されることが考えられる。このため、a軸方向によく成長した水酸化ニッケルでは、プロトンの移動距離が長くなり、十分に酸化できないものと考えられる。
【0040】
実施例1及び比較例1で得られたオキシ水酸化ニッケルを用いて下記の方法で2種類のテストセルを作製し、放電試験を行った。放電試験は、放電時の液温25℃で行った。高負荷放電は30mAで、低負荷放電は5mAでそれぞれ行い、それぞれ参照極に対して−0.2V、−0.4Vまで放電したときの時間を測定した。
【0041】
実際に電池では二酸化マンガンの対極に亜鉛が使われており、一般にこれをモーター等の電源に用いた場合、0.9V付近ではモーターが動かなくなると言われている。ここでの0.9Vは、本発明者らの試験用電池でほぼ−0.4Vに相当し、また、更に高負荷モーター等の用途に用いた場合を考慮し、−0.2V、−0.4Vまでの放電時間を測定することにした。
【0042】
<オキシ水酸化ニッケルを正極活物質とした電池テスト>
オキシ水酸化ニッケル8g、黒鉛0.6g、水9gを混合し、50℃で12時間以上乾燥させた。これから0.4gを坪量し、直径1cm円盤状に1tの一軸圧力をかけて成型し、正極用ペレットとした。対極にはニッケルメッシュ、電解液には25%水酸化カリウム水溶液をそれぞれ用い、参照極はHg/HgO電極とした。結果を表1に示す。
【0043】
【表1】
Figure 0003934777
【0044】
表1の結果から、実施例1で得られたオキシ水酸化ニッケルは、比較例1で得られたオキシ水酸化ニッケルに比べて高い放電容量を示す。
【0046】
比較例1のオキシ水酸化ニッケルは、図に示されるX線回折パターンから酸化が不十分であることが判っており、これがそのまま容量に影響していると考えられる。また、放電反応では酸化反応と逆の反応が起こっており、固相内にプロトンが取り込まれた後、c軸に垂直な方向に移動する。このため、c軸に垂直な方向によく成長した水酸化ニッケルでは、プロトンの移動距離が長くなり、十分に放電できないものと考えられる。
【0047】
<オキシ水酸化ニッケルと二酸化マンガンとを正極活物質とした電池テスト>
オキシ水酸化ニッケルと二酸化マンガンを合わせて8g(オキシ水酸化ニッケル25重量%含有)になるように秤量し、これと黒鉛0.6g、水9gを混合し、50℃で12時間以上乾燥させた。これから0.4gを坪量し、直径1cmの円盤状に1tの一軸圧力をかけて成型し、正極用ペレットとした。対極にはニッケルメッシュ、電解液には25%水酸化カリウム水溶液をそれぞれ用い、参照極はHg/HgO電極とした。なお、オキシ水酸化ニッケルを用いず、二酸化マンガンのみを正極活物質としたものを参考例とした。結果を表2に示すと共に、実施例1及び参考例の低負荷放電の結果を図、高負荷放電の結果を図にそれぞれ示す。
【0048】
【表2】
Figure 0003934777
【0049】
表2に示されるように、30mAでの高負荷放電では実施例1は、二酸化マンガンのみの参考例よりも高い放電容量を示した。高負荷放電では、参考例に比べて放電容量が増加するのは、オキシ水酸化ニッケルは二酸化マンガンに比べて高負荷放電での容量の低下が小さいためであると考えられる
【0050】
比較例1のオキシ水酸化ニッケルを添加した場合、高、低負荷放電の両方で参考例と比べて放電容量が低かった。これも、上記したオキシ水酸化ニッケルのみでの放電の場合と同様の理由が考えられる。即ち、オキシ水酸化ニッケル自身の容量が二酸化マンガンの容量に比べて大きく低下しているため、これを添加しても逆に容量は低下する。
【0051】
3及び4の結果から、実施例1は参考例に比べて、高、低負荷放電の両方で放電時間の全領域における高い電位と高容量が得られることが判り、特に高負荷での用途において、使用時間の長い、ハイ・パワーな電池を供給できる。
【0052】
【発明の効果】
以上説明したように、本発明の水酸化ニッケルによって、室温付近での酸化処理によって容易にオキシ水酸化ニッケルが得られ、かつ得られたオキシ水酸化ニッケルを電池の電極材料として用いた場合に優れた放電特性を示す。
【図面の簡単な説明】
【図1】 実施例1における水酸化ニッケルとオキシ水酸化ニッケルのX線回折図。
【図2】 比較例1における水酸化ニッケルとオキシ水酸化ニッケルのX線回折図。
【図3】 実施例1及び参考例の低負荷放電(5mA)における放電時間と電位の関係を示すグラフ。
【図4】 実施例1及び参考例の高負荷放電(30mA)における放電時間と電位の関係を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to nickel hydroxide for producing nickel oxyhydroxide, and more particularly to nickel hydroxide for producing nickel oxyhydroxide exhibiting excellent discharge characteristics when used as a battery electrode material, particularly a high discharge potential. The nickel hydroxide referred to in the present invention includes those in which a part of nickel is replaced by 5.0% by weight or less with, for example, cobalt, zinc, manganese or the like. In addition, the nickel oxyhydroxide referred to in the present invention includes those in which a part of nickel is substituted by 5.0% by weight or less with, for example, cobalt, zinc, manganese or the like.
[0002]
[Prior art and problems to be solved by the invention]
A positive electrode mixture for a conventional alkaline manganese battery is used by mixing electrolytic manganese dioxide and graphite well and molding the mixture with a powder molding machine to form a cylindrical pellet.
[0003]
However, in an alkaline battery using such a positive electrode mixture, the utilization factor of the active material is drastically reduced during discharge under high load, and about 20% when a current of 1 A is taken out with an AA battery. It will become the utilization rate. Further, in the case of a high load, the potential is rapidly lowered and drops to 1.1 V or less at the very beginning of discharge.
[0004]
Therefore, it is conceivable to add nickel oxyhydroxide to manganese dioxide for the purpose of preventing the utilization factor at high load and the decrease in potential. Nickel oxyhydroxide alone can serve as a positive electrode agent, and the utilization factor and potential decrease under high load are small compared to manganese dioxide. Therefore, by adding this to manganese dioxide, the utilization factor is high even at a high load, and a positive electrode having a high potential can be obtained. Conventionally, the addition of nickel oxyhydroxide has been proposed (for example, JP-A-56-155630), but the purpose seems to be different.
[0005]
Conventionally, when this nickel oxyhydroxide is chemically synthesized, a method in which an alkaline aqueous solution in which an oxidizing agent is dissolved in a nickel salt aqueous solution is reacted to oxidize nickel and at the same time generate a precipitate as an oxyhydroxide. (For example, JP-A-56-54759). However, with this method, it is difficult to control the crystallinity and orientation seen in the X-ray diffraction pattern of nickel oxyhydroxide, and as a battery material whose performance is greatly influenced by these methods, such a synthesis method is used. The nickel oxyhydroxide obtained by is difficult to use.
[0006]
Another method of chemical synthesis of nickel oxyhydroxide includes oxidizing nickel hydroxide in an aqueous solution. In this method, since the structure of nickel oxyhydroxide can be controlled by controlling the crystallinity and orientation of nickel hydroxide, by synthesizing crystalline and oriented nickel hydroxide suitable for battery materials in advance, Nickel hydroxide with excellent battery characteristics can be synthesized.
[0007]
However, Maruta et al. (Literature title “Summary of 37th Battery Discussion Meeting” P141 (1996)) synthesizes nickel oxyhydroxide even when nickel hydroxide is oxidized at room temperature (20-30 ° C.). However, it is said that nickel oxyhydroxide can be obtained only when the temperature is lowered to 5 ° C. or lower and oxidation treatment is performed. In addition, when a part of nickel is substituted with cobalt by about 15%, a single phase of nickel oxyhydroxide is obtained at room temperature, and it is difficult to oxidize near room temperature with nickel hydroxide. And it is industrially disadvantageous to oxidize at a low temperature, and it is economically disadvantageous to replace a part of nickel with cobalt because cobalt is expensive.
[0008]
And when using the obtained nickel oxyhydroxide as a positive electrode agent of an alkaline battery, the relationship between the crystallinity and the discharge capacity has not been discussed so far.
[0009]
Accordingly, an object of the present invention is to obtain nickel oxyhydroxide easily by oxidation treatment near room temperature, and to exhibit excellent discharge characteristics when the obtained nickel oxyhydroxide is used as a battery electrode material. The object is to provide nickel hydroxide for producing nickel hydroxide.
In addition, by adding the obtained nickel oxyhydroxide to manganese dioxide of alkaline manganese dry batteries, it is possible to prevent a decrease in utilization and potential at high loads, and to prevent a decrease in utilization even at low loads. The object is to provide nickel hydroxide for producing nickel hydroxide.
[0010]
[Means for Solving the Problems]
As a result of the study, the inventors have studied that the aspect ratio between the thickness direction and the planar direction is in a specific range, is composed of plate-like primary particles having a certain length in the planar direction, and the specific surface in X-ray diffraction is It has been found that nickel hydroxide having a full width at half maximum of a certain value or more can achieve the above object.
[0011]
The present invention has been made based on the above knowledge, and is a plate-like primary particle having an aspect ratio in the plane direction of 3 to 60 with respect to the thickness direction and a particle size in the plane direction of 0.01 to 1.0 μm, and X The full width at half maximum in line diffraction is (100)> 0.3 deg. , (001) <(101), 0.25 deg. <(001) <4.0 deg. 0.3 deg. <(101) <4.5 deg. The peak intensity ratio is I (001) / I (101)> 1, and is obtained by mixing and aging a nickel salt aqueous solution and a sodium hydroxide aqueous solution under conditions where the OH / Ni ratio is greater than 2. The present invention provides nickel hydroxide for producing nickel oxyhydroxide.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
Nickel hydroxide and nickel oxyhydroxide obtained by oxidizing the same have the same structure in which layers are stacked in the c-axis direction. The oxidation reaction of nickel hydroxide with an oxidant and the electrochemical reduction reaction of nickel oxyhydroxide in a battery are all accompanied by movement of protons in the solid phase. At this time, protons move in the solid phase in the direction perpendicular to the c-axis (direction along the c-plane), and at the same time, the lattice constant changes with proton desorption / insertion. Therefore, the present inventors can easily oxidize and control the battery performance of oxidized nickel oxyhydroxide if the primary particle diameter and crystallinity in the a-axis and c-axis directions of the raw material nickel hydroxide are defined. The physical properties and shape of nickel hydroxide as a raw material are defined.
[0014]
From such a viewpoint, the nickel hydroxide of the present invention needs to be plate-like primary particles having an aspect ratio in the plane direction of 3 to 60 and a particle size in the plane direction of 0.01 to 1.0 μm with respect to the thickness direction. is there. When the battery is charged, H + and the like move in the direction along the c-plane. Therefore, if the aspect ratio of the powder particles becomes larger in the plane direction (the aspect ratio exceeds 60), the movement distance in the c-plane direction becomes longer. Since it becomes too large, the performance of the battery decreases. Those having an aspect ratio smaller than this (the aspect ratio is less than 3) are substantially difficult to produce industrially.
[0015]
If the particle size in the planar direction is less than 0.01 μm, the unit cell is about several tens of particles, so that the structure is difficult to maintain during charging and discharging. On the other hand, when the particle size in the plane direction exceeds 1.0 μm, even if the aspect ratio is within the above range, the actual moving distance is increased, so that the battery performance is deteriorated.
[0016]
The nickel hydroxide of the present invention has a full width at half maximum in X-ray diffraction of (100)> 0.3 deg. It is. In X-ray diffraction, the full width at half maximum (100) is 0.3 deg. In the following, nickel hydroxide cannot be oxidized at room temperature into nickel oxyhydroxide.
[0017]
The nickel hydroxide of the present invention has a full width at half maximum in X-ray diffraction of (001) <(101), 0.25 deg. <(001) <4.0 deg. 0.3 deg. <(101) <4.5 deg. , The peak intensity ratio I (001) / I (101 )> Ru 1 Der. Within this range, oxidation at room temperature becomes easy, and nickel oxyhydroxide obtained by oxidation exhibits excellent discharge characteristics. In particular, in order to obtain superiority with low-load discharge, there is an increasing demand for the ratio of the degree of crystallite growth in the a-axis direction and the c-axis direction and the ratio of good crystallinity. That is, the particle size and the crystallinity are required to have an appropriate strain in the c-axis direction and to easily accept the change in lattice constant as protons enter and exit. Therefore, the preferable range of the peak intensity ratio is defined as described above.
[0018]
Here, the full width at half maximum (001) reflects the particle diameter in the c-axis direction and the degree of structural distortion. The smaller this value, the larger the particle diameter in the c-axis direction and the smaller the structural distortion. The full width at half maximum (101) reflects the particle diameter of the surface including both the a-axis and c-axis directions and the degree of structural distortion. The smaller this value, the larger the particle diameter in either the a-axis or c-axis direction, or either one. Small distortion of the structure. In addition, the larger the full width at half maximum, the higher the possibility that impurities (sodium salt, potassium salt, sulfate radical, nitrate radical, chloride, ammonia salt, etc.) are incorporated in the solid phase, which is the oxidation / reduction reaction. The full width at half maximum (001) and (101) should not be too large because proton movement may be hindered. Here, the peak intensity ratio I (001) / I (101) is influenced by the particle shape, and the larger the value, the smaller the particle diameter ratio in the c-axis direction relative to the a-axis direction. I can say that. Such plate-like particles are easily oriented during X-ray diffraction measurement sampling, and the (001) plane is easily aligned with the X-ray reflecting surface, so that the peak intensity of the (001) plane is increased. The full width at half maximum (001) <(101) satisfies this condition when the structure has an appropriate structural strain in the c-axis direction and the particle size in the a-axis direction is moderately small. It can be used as an index representing the ratio between the degree of strain of the structure in the direction and the grain size in the a-axis direction.
[0019]
Full width at half maximum (001) <0.25 deg. In this case, since the particle diameter in the c-axis direction is large and the structural distortion is small, changes in the lattice constant associated with the entry and exit of protons cannot be accepted, and proton desorption / insertion is hindered. Also, 4.0 deg. <(001) makes the particle size small, but the structure is too distorted, or the movement of protons is inhibited by impurities incorporated into the solid phase.
[0020]
Full width at half maximum (101) <0.3 deg. Then, both the a-axis and the c-axis, or one of them, has a large particle diameter and a small structural distortion. In the case of the c-axis particle size, for the same reason as described in the case of (001), in the case of the a-axis particle size, the proton movement distance becomes long, so that the oxidation / reduction reaction hardly occurs. Also, 4.5 deg. <(101) The particle size is small, but the structure is too distorted, or the movement of protons is inhibited by impurities incorporated in the solid phase.
[0021]
When the peak intensity ratio is I (001) / I (101) <1, the (001) plane is difficult to align with the X-ray reflecting surface during measurement sampling of X-ray diffraction. That is, the ratio of the particle diameter in the c-axis direction to the a-axis direction is large, and such particles cannot accept changes in the lattice constant associated with the entry and exit of protons, thus inhibiting proton desorption / insertion.
[0022]
When the full width at half maximum (001)> (101), the distortion of the structure in the c-axis direction is small and the particle diameter in the a-axis direction is large. The distance becomes longer and the oxidation / reduction reaction hardly occurs.
[0023]
The nickel hydroxide of the present invention having such physical properties and properties is synthesized as follows.
That is, the synthesis of the nickel hydroxide is carried out by mixing with aqueous nickel salt solution and an aqueous alkali solution, performing ripening. The aging temperature is from room temperature to 200 ° C. For aging, in addition to heat treatment using a hot water bath, oil bath, and steam, an autoclave or the like is used for heat treatment in a closed system or heat treatment at 100 ° C. or higher. After aging, washing, filtration and drying yield the desired nickel hydroxide. Examples of the nickel, sulfates, nitrates, chlorides, etc. Examples of the alkali are down hydroxide sodium Mugakyo.
[0024]
In the same synthesis method, when a nitrate is used as the nickel salt, a sharp X-ray diffraction peak is easily obtained, and when a sulfate is used, a broad one is easily obtained. This is because sulfate ions are adsorbed on the crystal plane and inhibit the growth of particles. Similarly, when lithium hydroxide or aqueous ammonia is used, a sharper X-ray diffraction peak can be obtained than when sodium hydroxide or potassium is used. Again, this is because sodium ions and potassium ions inhibit crystal growth. When the raw materials are the same, the full width at half maximum of the X-ray diffraction peak is adjusted by changing the presence / absence of aging, temperature (room temperature to 200 ° C.), and OH / Ni. If aging is not performed, the X-ray diffraction peak becomes broad, and fine particles with large structural distortion are formed. The X-ray diffraction peak becomes sharper as the aging temperature is higher, the aging time is longer, and the OH / Ni ratio is larger. When the OH / Ni ratio is greater than 2, the peak intensity ratio I (001) / I (101) is greater than 1 and the full width at half maximum (001) <(101).
[0025]
In addition, although spherical powder is common as nickel hydroxide for battery materials, since plate-shaped primary particles aggregate and form spherical shape, such nickel hydroxide is also included in the present invention. Further, the nickel hydroxide obtained as described above usually contains 5.0% by weight or less of cobalt, zinc, manganese or the like as impurities or additives.
[0026]
Next, a method for producing nickel oxyhydroxide will be described.
The nickel hydroxide obtained as described above is dispersed in an alkaline aqueous solution in which an oxidizing agent is dissolved, and stirred for 5 hours or more. Regarding the alkali concentration, since protons are released from nickel hydroxide in the oxidation reaction, the alkali concentration may be at least an alkali amount that can neutralize the protons. On the other hand, if the reaction is not longer than 5 hours, nickel hydroxide remains due to insufficient oxidation. The temperature at this time is adjusted to 30 ° C. or less, preferably 20 ° C. or less. As the oxidizing agent, an oxidizing agent that works in the alkaline region, for example, sodium persulfate, potassium persulfate, sodium hypochlorite, or the like is used. However, since sodium hypochlorite generates chlorine, it is preferable not to use it industrially. Thereafter, the powder is washed, filtered and dried to obtain the target nickel oxyhydroxide.
[0027]
The nickel oxyhydroxide thus produced is used as a positive electrode active material for a battery. Moreover, the alkaline battery which uses this nickel oxyhydroxide 1-99 weight% and manganese dioxide 99-1 weight% as a positive electrode active material shows the discharge performance superior to the case of only manganese dioxide.
[0028]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like.
[0029]
[Example 1]
1 liter of 1 mol / l nickel sulfate aqueous solution and 1 liter of 3 mol / l sodium hydroxide aqueous solution are mixed and aged for 12 hours at 100 ° C. in an autoclave. Thereafter, the powder was washed with pure water, filtered, and dried at 70 ° C. to obtain nickel hydroxide. The X-ray diffraction pattern of this nickel hydroxide is shown in FIG.
[0030]
30 g of the obtained nickel hydroxide was dispersed in 1.8 liter of a 1 mol / l aqueous sodium hydroxide solution in which 57.6 g of potassium persulfate was dissolved, and stirred at 20 ° C. for 12 hours to obtain nickel oxyhydroxide. It was. The X-ray diffraction pattern of this nickel oxyhydroxide is shown in FIG. The physical properties and properties of the nickel hydroxide before oxidation were as follows.
[0031]
Figure 0003934777
[0035]
[Comparative Example 1]
Ammonia water was mixed with 1.5 liter of a 1.7 mol / l nickel sulfate aqueous solution so that NH 3 / Ni = 3 (molar ratio) and aged at 80 ° C. for 8 hours. Thereafter, the powder was washed with pure water, filtered, and dried at 70 ° C. to obtain nickel hydroxide. The X-ray diffraction pattern of the nickel hydroxide in Fig.
[0036]
30 g of the obtained nickel hydroxide was dispersed in 1.8 liter of a 1 mol / l aqueous sodium hydroxide solution in which 57.6 g of potassium persulfate was dissolved, and stirred at 20 ° C. for 12 hours to obtain nickel oxyhydroxide. It was. The X-ray diffraction pattern of the nickel oxyhydroxide in FIG. The physical properties and properties of the nickel hydroxide before oxidation were as follows.
[0037]
Figure 0003934777
[0038]
As shown in Figures 1 and 2, in the embodiment 1, and the peak disappears attributed to the (100) plane of nickel hydroxide in the vicinity of 2 [Theta] = 33 degrees when oxidizing the nickel hydroxide, at about room temperature It can be seen that even in the synthesis of, it is almost completely oxidized to nickel oxyhydroxide.
[0039]
On the other hand, in Comparative Example 1, a peak on the (100) plane can be confirmed, and it can be seen that nickel hydroxide that has not yet been oxidized exists. In the X-ray diffraction pattern of nickel hydroxide, the full width at half maximum of the (100) plane is smaller than that in Example 1 . This indicates that the nickel hydroxide of Comparative Example 1 is thicker in the a-axis direction than that of Example 1 . In the oxidation process, it is considered that protons move in the solid phase in the direction along the c-plane (including the a-axis direction) and are taken out of the solid phase. For this reason, it is considered that nickel hydroxide that has grown well in the a-axis direction has a longer proton movement distance and cannot be sufficiently oxidized.
[0040]
Two types of test cell was prepared in the following manner using the nickel oxyhydroxide obtained in Example 1及 beauty Comparative Example 1 were subjected to discharge tests. The discharge test was performed at a liquid temperature of 25 ° C. during discharge. The high load discharge was performed at 30 mA and the low load discharge was performed at 5 mA, and the time when discharging to −0.2 V and −0.4 V with respect to the reference electrode was measured.
[0041]
Actually, zinc is used for the counter electrode of manganese dioxide in the battery, and it is generally said that when this is used for a power source of a motor or the like, the motor stops operating at around 0.9V. 0.9V here corresponds to approximately −0.4V in the test battery of the present inventors, and further considering the case where it is used for applications such as a high load motor, −0.2V, −0 It was decided to measure the discharge time up to 4V.
[0042]
<Battery test using nickel oxyhydroxide as positive electrode active material>
8 g of nickel oxyhydroxide, 0.6 g of graphite and 9 g of water were mixed and dried at 50 ° C. for 12 hours or more. From this, 0.4 g was weighed and formed into a 1 cm diameter disk shape by applying 1 t of uniaxial pressure to obtain a positive electrode pellet. The counter electrode was a nickel mesh, the electrolyte was a 25% aqueous potassium hydroxide solution, and the reference electrode was an Hg / HgO electrode. The results are shown in Table 1.
[0043]
[Table 1]
Figure 0003934777
[0044]
From the results of Table 1, the nickel oxyhydroxide obtained in Example 1 shows a high discharge capacity as compared with the nickel oxyhydroxide obtained in a ratio Comparative Examples 1.
[0046]
The nickel oxyhydroxide of Comparative Example 1 is known to be insufficiently oxidized from the X-ray diffraction pattern shown in FIG. 2 , and this is considered to affect the capacity as it is. In addition, a reverse reaction to the oxidation reaction occurs in the discharge reaction, and after protons are taken into the solid phase, they move in a direction perpendicular to the c-axis. For this reason, it is considered that nickel hydroxide that has grown well in the direction perpendicular to the c-axis has a longer proton movement distance and cannot be fully discharged.
[0047]
<Battery test using nickel oxyhydroxide and manganese dioxide as positive electrode active material>
Nickel oxyhydroxide and manganese dioxide were combined and weighed to 8 g (containing 25 wt% nickel oxyhydroxide), mixed with 0.6 g of graphite and 9 g of water, and dried at 50 ° C. for 12 hours or more. . From this, 0.4 g was weighed and formed into a disk shape having a diameter of 1 cm by applying a uniaxial pressure of 1 t to obtain a positive electrode pellet. The counter electrode was a nickel mesh, the electrolyte was a 25% aqueous potassium hydroxide solution, and the reference electrode was an Hg / HgO electrode. In addition, the thing which did not use nickel oxyhydroxide and used only manganese dioxide as a positive electrode active material was made into the reference example. The results are shown in Table 2, indicates the results of the low-load discharge of Example 1 and Reference Example 3, Figure 4 the results of the high-load discharge.
[0048]
[Table 2]
Figure 0003934777
[0049]
As shown in Table 2, in the high load discharge at 30 mA, Example 1 showed a higher discharge capacity than the reference example of manganese dioxide alone. In high-load discharge, the discharge capacity is increased compared to the reference example because nickel oxyhydroxide has a lower capacity drop in high-load discharge than manganese dioxide .
[0050]
When the nickel oxyhydroxide of Comparative Example 1 was added, the discharge capacity was lower than that of the Reference Example in both high and low load discharges. The reason similar to that in the case of the discharge with only the nickel oxyhydroxide described above can be considered. That is, since the capacity of nickel oxyhydroxide itself is greatly reduced as compared with the capacity of manganese dioxide, the capacity decreases conversely even if this is added.
[0051]
From the results of FIGS. 3 and 4 , it can be seen that Example 1 can obtain a high potential and a high capacity in all regions of the discharge time in both high and low load discharges compared to the reference example. In this case, it is possible to supply a high-power battery having a long use time.
[0052]
【The invention's effect】
As described above, the nickel hydroxide of the present invention can be easily obtained by oxidation treatment near room temperature, and is excellent when the obtained nickel oxyhydroxide is used as a battery electrode material. Shows the discharge characteristics.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of nickel hydroxide and nickel oxyhydroxide in Example 1. FIG.
2 is an X-ray diffraction pattern of nickel hydroxide and nickel oxyhydroxide in Comparative Example 1. FIG.
FIG. 3 is a graph showing the relationship between discharge time and potential in low load discharge (5 mA) of Example 1 and Reference Example.
FIG. 4 is a graph showing the relationship between discharge time and potential in high load discharge (30 mA) of Example 1 and Reference Example.

Claims (6)

厚さ方向に対する平面方向のアスペクト比が3〜60、平面方向の粒径が0.01〜1.0μmの板状一次粒子であり、かつX線回折における半値全幅が(100)>0.3deg.、(001)<(101)、0.25deg.<(001)<4.0deg.、0.3deg.<(101)<4.5deg.、ピーク強度比I(001)/I(101)>1であり、ニッケル塩水溶液と水酸化ナトリウム水溶液とをOH - /Ni比が2より大きい条件で混合し熟成して得られたものであることを特徴とするオキシ水酸化ニッケル製造用水酸化ニッケル。Plate-like primary particles having an aspect ratio in the plane direction with respect to the thickness direction of 3 to 60 and a grain size in the plane direction of 0.01 to 1.0 μm, and the full width at half maximum in X-ray diffraction is (100)> 0.3 deg. . , (001) <(101), 0.25 deg. <(001) <4.0 deg. 0.3 deg. <(101) <4.5 deg. The peak intensity ratio is I (001) / I (101)> 1, and is obtained by mixing and aging a nickel salt aqueous solution and a sodium hydroxide aqueous solution under conditions where the OH / Ni ratio is greater than 2. Nickel hydroxide for producing nickel oxyhydroxide characterized by the above. 請求項1に記載の水酸化ニッケルを20〜30℃で酸化することを特徴とするオキシ水酸化ニッケルの製造方法。A method for producing nickel oxyhydroxide, comprising oxidizing the nickel hydroxide according to claim 1 at 20 to 30 ° C. 請求項により得られるオキシ水酸化ニッケル。Nickel oxyhydroxide obtained according to claim 2 . 請求項に記載のオキシ水酸化ニッケルを正極活物質又は負極活物質として用いた電池。A battery using the nickel oxyhydroxide according to claim 3 as a positive electrode active material or a negative electrode active material. 請求項に記載のオキシ水酸化ニッケル1〜99重量%と二酸化マンガン99〜1重量%とからなるアルカリ電池用正極活物質。A positive electrode active material for an alkaline battery comprising 1 to 99% by weight of nickel oxyhydroxide according to claim 3 and 99 to 1% by weight of manganese dioxide. 請求項に記載の正極活物質を用いたアルカリ電池。An alkaline battery using the positive electrode active material according to claim 5 .
JP4958198A 1998-03-02 1998-03-02 Nickel hydroxide for nickel oxyhydroxide production Expired - Fee Related JP3934777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4958198A JP3934777B2 (en) 1998-03-02 1998-03-02 Nickel hydroxide for nickel oxyhydroxide production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4958198A JP3934777B2 (en) 1998-03-02 1998-03-02 Nickel hydroxide for nickel oxyhydroxide production

Publications (2)

Publication Number Publication Date
JPH11246226A JPH11246226A (en) 1999-09-14
JP3934777B2 true JP3934777B2 (en) 2007-06-20

Family

ID=12835195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4958198A Expired - Fee Related JP3934777B2 (en) 1998-03-02 1998-03-02 Nickel hydroxide for nickel oxyhydroxide production

Country Status (1)

Country Link
JP (1) JP3934777B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017747B2 (en) * 2001-04-23 2012-09-05 株式会社豊田中央研究所 Cobalt oxide hydroxide plate-like particles
US6991875B2 (en) 2002-08-28 2006-01-31 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode
EP1681737A4 (en) * 2003-08-06 2010-08-25 Panasonic Corp Alkaline battery
JP2005194156A (en) * 2004-01-09 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing nickel hydroxide powder
JP2006156309A (en) * 2004-12-01 2006-06-15 Fdk Energy Co Ltd Dry battery-type charger for cellular phone
JP2006294288A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Alkaline dry cell
JP4827501B2 (en) * 2005-11-18 2011-11-30 日立マクセルエナジー株式会社 Alkaline battery
KR102606683B1 (en) 2020-03-26 2023-11-28 주식회사 엘지화학 Manufacturing method of positive electrode active material

Also Published As

Publication number Publication date
JPH11246226A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
KR101198489B1 (en) A method for preparing iron source used for preparing lithium ferrous phosphate, and a method for preparing lithium ferrous phosphate
EP2626330B1 (en) Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
US11952287B2 (en) Method for the precipitation of particles of a metal carbonate material without use of a chelating agent
WO2005007577A1 (en) Lithium-nickel-manganese composite oxide, process for producing the same and use thereof
EP2615672A2 (en) Positive electrode active material for a lithium secondary battery, and method for preparing same
JP4997609B2 (en) Method for producing lithium manganese composite oxide
CN111769277A (en) Gradient single crystal high-nickel cathode material and preparation method thereof
CN112624207A (en) Full-concentration gradient-distributed lithium-rich manganese-based lithium cathode material and preparation method and application thereof
JP3934777B2 (en) Nickel hydroxide for nickel oxyhydroxide production
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
WO2005045958A1 (en) Alkaline battery and positive electrode material for alkaline battery
CN111082041B (en) Lithium-rich multi-element positive electrode material, preparation method thereof, positive electrode and lithium ion power battery
JP4457213B2 (en) Method for producing lithium ferrite composite oxide
JP4604237B2 (en) Lithium-iron-manganese composite oxide having a layered rock salt structure, positive electrode material for lithium ion secondary battery, lithium ion secondary battery
JP4423391B2 (en) Lithium ferrite composite oxide and method for producing the same
JP4734672B2 (en) Method for producing lithium-iron-manganese composite oxide
Wang et al. Electrochemical study of nanostructured multiphase nickel hydroxide
CN113629239B (en) Ternary positive electrode material precursor, preparation method thereof, ternary positive electrode material and battery
CN116573680A (en) Lithium cobaltate material and preparation method and application thereof
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
CN115947385A (en) Preparation method of low-cobalt and cobalt-free precursor and lithium-poor low-cobalt and cobalt-free cathode material and product thereof
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
CN118545688B (en) Ferric phosphate material and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Effective date: 20070316

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees