[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3934041B2 - Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor - Google Patents

Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor Download PDF

Info

Publication number
JP3934041B2
JP3934041B2 JP2002350180A JP2002350180A JP3934041B2 JP 3934041 B2 JP3934041 B2 JP 3934041B2 JP 2002350180 A JP2002350180 A JP 2002350180A JP 2002350180 A JP2002350180 A JP 2002350180A JP 3934041 B2 JP3934041 B2 JP 3934041B2
Authority
JP
Japan
Prior art keywords
heat
adhesive tape
lead frame
pressure
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002350180A
Other languages
Japanese (ja)
Other versions
JP2004186323A (en
Inventor
均 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002350180A priority Critical patent/JP3934041B2/en
Publication of JP2004186323A publication Critical patent/JP2004186323A/en
Application granted granted Critical
Publication of JP3934041B2 publication Critical patent/JP3934041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップの搭載及び結線が完了したリードフレームのアウターパッド側に耐熱性粘着テープを貼り合わせた後に、封止樹脂により半導体チップ側を片面封止する封止工程を含む半導体装置の製造方法、並びにこれに用いる耐熱性粘着テープに関する。
【0002】
【従来の技術】
近年、LSIの実装技術において、CSP(Chip Size/ScalePackage)技術が注目されている。この技術のうち、QFN(QuadFlat Non−leaded package)に代表されるリード端子がパッケージ内部に取り込まれた形態のパッケージについては、小型化と高集積の面で特に注目されるパッケージ形態のひとつである。このようなQFNの製造方法のなかでも、近年では複数のQFN用チップをリードフレームのパッケージパターン領域のダイパッド上に整然と配列し、金型のキャビティ内で、封止樹脂にて一括封止したのち、切断によって個別のQFN構造物に切り分けることにより、リードフレーム面積あたりの生産性を飛躍的に向上させるMAPタイプの製造方法が、特に注目されている。
【0003】
このような、複数の半導体チップを一括封止するQFNの製造方法においては、樹脂封止時のモールド金型によってクランプされる領域はパッケージパターン領域より更に外側に広がった樹脂封止領域の外側だけである。従って、パッケージパターン領域、特にその中央部においては、アウターリード面をモールド金型に十分な圧力で押さえることができず、封止樹脂がアウターリード側に漏れ出すことを抑えることが非常に難しく、QFNの端子等が樹脂で被覆されるという問題が生じ易い。
【0004】
このため、上記の如きQFNの製造方法に対しては、リードフレームのアウターリード側に粘着テープを貼り付け、この粘着テープの自着力(マスキング)を利用したシール効果により、樹脂封止時のアウターリード側への樹脂漏れを防ぐ製造方法が提案されている。その際、リードフレーム上に半導体チップを搭載した後、あるいはワイヤボンディングを実施した後から耐熱性粘着テープの貼り合せを行うことは、非常にデリケートな回路が完成された状態のリードフレームにテープを加圧して圧着することとなるため、ハンドリングの面で実質的に困難であると考えられてきた。従って、耐熱性粘着テープは最初の段階でリードフレームのアウターパッド面に貼り合わせられ、その後、半導体チップの搭載工程やワイヤボンディングの工程を経て、封止樹脂による封止工程まで貼り合わせられるといったものであった(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2002−184801号公報(第2頁、図1)。
【0006】
【発明が解決しようとする課題】
しかしながら、耐熱性粘着テープが貼り合わせられた状態でチップの搭載やワイヤボンディングといった工程を経ていくために、粘着剤の弾性によりチップ搭載時の位置ズレやワイヤボンディング操作における結線エネルギーのロスといった支障をきたし易い。このため、上記耐熱性粘着テープとしては、厚みが薄く弾性率の高いものが使用されているが、これにより位置ズレやエネルギーロスをある程度緩和できたとしても、完全に拭い去ることは困難である。
【0007】
また、半導体チップ搭載時の接着キュアやワイヤボンディングの工程は高い加熱条件下で行われるため、耐熱性粘着テープから加熱発生ガスが生じると、これらのガス成分がインナーリード面あるいは半導体チップ等へ付着し表面汚染の原因となるため、モールド樹脂とリードフレームとの界面に樹脂剥離を生じたり、ワイヤボンディング時の接合性が著しく低下するなど、半導体装置としての信頼性そのものを損ねる重大な欠陥につながる可能性もある。
【0008】
そこで、本発明では、あらかじめチップの搭載やワイヤボンディングといった工程を実施した後からでも充分に被着が可能な粘着テープを提供することで、先述の粘着剤の弾性やオフガスによる汚染といった問題を完全に回避する事を目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、耐熱性粘着テープの物性、厚み等について鋭意研究したところ、高温で特定の範囲に限られる貯蔵弾性率を有する粘着材料で、かつ特定の厚さを形成した粘着剤層によって構成される耐熱性粘着テープを用いることにより、ワイヤボンディングなどの結線工程が完了した段階でも貼り付けが可能であることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明の半導体装置の製造方法は、金属製のリードフレームのダイパッド上に半導体チップをボンディングする搭載工程と、前記リードフレームの端子部先端と前記半導体チップ上の電極パッドとをボンディングワイヤで電気的に接続する結線工程と、結線工程の完了したリードフレームのアウターパッド側に耐熱性粘着テープを貼り合わせる貼着工程と、封止樹脂により半導体チップ側を片面封止する封止工程と、封止された構造物を個別の半導体装置に切断する切断工程とを、少なくとも含む半導体装置の製造方法であって、前記耐熱性粘着テープは、175℃における貯蔵弾性率が1.0×103 Pa〜5.0×105 Paであり、前記耐熱性粘着テープをステンレス板に貼り合わせた状態で、175℃にて3分間加熱後の粘着力が5.0N/19mm幅以下である厚さ1〜50μmの粘着剤層を有することを特徴とする。本発明において、貯蔵弾性率などの物性は、具体的には後述の方法で測定される値である。
【0011】
上記において、前記貼着工程は、結線工程の完了したリードフレームを、粘着剤層を上側にした前記耐熱性粘着テープに載置することで貼り合わせを行うことが好ましい。
【0012】
一方、本発明の耐熱性粘着テープは、半導体チップの搭載及び結線が完了したリードフレームのアウターパッド側に、耐熱性粘着テープを貼り合わせた後に、封止樹脂により半導体チップ側を片面封止する封止工程を含む半導体装置の製造方法に用いられる耐熱性粘着テープであって、175℃における貯蔵弾性率が1.0×103 Pa〜5.0×105 Paであり、ステンレス板に貼り合わせた状態で175℃にて3分間加熱後の粘着力が5.0N/19mm幅以下である厚さ1〜50μmの粘着剤層を有することを特徴とする。
【0014】
[作用効果]
リードフレーム上に半導体チップを搭載した後、あるいはワイヤボンディングを実施した後から耐熱性粘着テープの貼り合せを行うことは、非常にデリケートな回路が完成された状態のリードフレームにテープを加圧して圧着することとなるため実質的に困難であると考えられてきたが、本発明によると、特定の弾性率を有し、かつ特定の厚さを有する粘着材料を用いることで、リードフレームを強く圧着しなくとも十分な密着性を得ることができる。そのため、ダイアタッチあるいはワイヤボンディングといった工程に先立って、耐熱性粘着テープ自体を貼り合わせておく必要そのものがなくなる。
【0015】
したがって、先述のような耐熱性粘着テープの弾性によるダイアタッチの位置ズレ、ワイヤボンディング工程での結線エネルギーロス、あるいは耐熱性粘着テープからのオフガスによる汚染などといった問題は、いずれも根本的に原因となっている耐熱性粘着テープそのものが貼りあわせられていないので問題とはならない。
【0016】
また、前記粘着剤層は、175℃における貯蔵弾性率が1.0×103 Pa〜5.0×105 Paであるため、材料自体の弾性率が適切な柔らかさを確保できていることから強い圧着を行わなくとも、粘着剤のもつ濡れ性により十分密着させることが可能となる。したがって、ワイヤボンディングなどの結線工程が完了したデリケートな状態のリードフレームであっても、たとえばテープの粘着面と接触させることにより、粘着剤の持つ濡れ性によりリードフレームとの密着が進みマスキングテープとしての効力を発揮することができる。この場合、175℃というのは一般的なトランスファーモールドにおける代表的な工程温度に値するので、実際のモールド工程で十分なマスキングに要する密着性が得られることになる。
【0017】
上記の場合、粘着剤層の厚みが1μm未満であるとリードフレームの微妙な凹凸等に対する段差吸収効果が乏しくなるため密着性の確保が厳しくなる。したがって、糊厚としては少なくとも1μm以上、好ましくは5μm以上の粘着剤層の厚さがあることがよい。一方、粘着剤層の厚さが増すと密着性は向上していくが、50μmを超えた厚さになるとモールド時のクランプ圧力などにより、変形ひずみなどが生じる恐れがある。したがって50μm以下、好ましくは30μm以下の粘着剤層の厚さであることがよい。
【0018】
本発明では、特に、結線工程の完了したリードフレームを粘着剤層を上側にした前記耐熱性粘着テープに載置するだけでも前記貼着工程を行うことができ、その場合、非常にデリケートな回路が完成された状態のリードフレームに対して、テープを加圧して圧着する必要がなく、回路の破損などの問題が生じにくくなる。また、簡易な工程によって実用的な手段で両者を貼着することで十分な密着性を得ることができる。
【0019】
更に、前記耐熱性粘着テープは、ステンレス板に貼り合わせた状態で175℃にて3分間加熱後の粘着力がJIS Z 0237に準じた測定方法で5.0N/19mm幅以下である場合、封止工程での樹脂漏れ防止に必要な粘着力が得られると共に、封止工程後の引き剥がしが容易になり、封止樹脂の破損も生じなくなる。この場合の175℃にて3分間というのは、トランスファーモールドにおける代表的な工程温度および、リードフレームが金型に搭載されてからモールドが完了するまでの代表的な時間であるので、実際にモールドを実施した後のテープ剥離力に値するものである。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の半導体装置の製造方法の一例の工程図である。
【0021】
本発明の半導体装置の製造方法は、図1(a)〜(f)に示すように、半導体チップ15の搭載工程と、ボンディングワイヤ16による結線工程と、耐熱性粘着テープ20の貼着工程と、封止樹脂17による封止工程と、封止された構造物21を切断する切断工程とを少なくとも含むものである。
【0022】
搭載工程は、図1(a)〜(b)に示すように、金属製のリードフレーム10のダイパッド11c上に半導体チップ15をボンディングする工程である。本発明では、耐熱性粘着テープ20を貼着していない金属製のリードフレーム10を使用する。
【0023】
リードフレーム10とは、例えば銅などの金属を素材としてQFNの端子パターンが刻まれたものであり、その電気接点部分には、銀,ニッケル,パラジウム,金などのなどの素材で被覆(めっき)されている場合もある。リードフレーム10の厚みは、50〜300μmが一般的である。なお、部分的にエッチングなどで薄く加工されている部分はこのかぎりではない。
【0024】
リードフレーム10は、後の切断工程にて切り分けやすいよう、個々のQFNの配置パターンが整然と並べられているものが好ましい。例えば図2に示すように、リードフレーム10上に縦横のマトリックス状に配列された形状などは、マトリックスQFNあるいはMAP−QFNなどと呼ばれ、もっとも好ましいリードフレーム形状のひとつである。とくに近年では、生産性の観点から1枚のリードフレーム中に配列されるパッケージ数を多くするため、これらの個々のパッケージが細密化されるばかりでなく、一つの封止部分で多数のパッケージを封止できるようこれらの配列数も大きく拡大してきている。
【0025】
図2(a)〜(b)に示すように、リードフレーム10のパッケージパターン領域11には、隣接した複数の開口11aに端子部11bを複数配列した、QFNの基板デザインが整然と配列されている。一般的なQFNの場合、各々の基板デザイン(図2(a)の格子で区分された領域)は、開口11aの周囲に配列れさた、アウターリード面を下側に有する端子部11bと、開口11aの中央に配置されるダイパッド11cと、ダイパッド11cを開口11aの4角に支持させるダイバー11dとで構成される。
【0026】
上記のようなリードフレーム10上に、半導体チップ15、すなわち半導体集積回路部分であるシリコンウエハ・チップが搭載される。リードフレーム10上にはこの半導体チップ15を固定するためダイパッド11cと呼ばれる固定エリアが設けられており、このダイパッド11cへのボンディング(固定)の方法は導電性ペースト19を使用したり、接着テープ、接着剤など各種の方法が用いられる。導電性ペーストや熱硬化性の接着剤等を用いてダイボンドする場合、一般的に150〜200℃程度の温度で数分〜2時間程度加熱キュアする。
【0027】
結線工程は、図1(c)に示すように、リードフレーム10の端子部11b(インナーリード)の先端と半導体チップ15上の電極パッド15aとをボンディングワイヤ16で電気的に接続する工程である。ボンディングワイヤ16としては、例えば金線あるいはアルミ線などが用いられる。一般的には120〜250℃に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着エネルギーの併用により結線される。その際、リードフレーム10を真空吸引することで、ヒートブロックなどに確実に固定することができる。
【0028】
貼着工程は、図1(d)に示すように、結線工程の完了したリードフレーム10のアウターパッド側に耐熱性粘着テープ20を貼り合わせるものである。特に結線工程の完了したリードフレーム10を、粘着剤層20bを上側にした耐熱性粘着テープ20に載置することで貼り合わせを行うことが好ましい。つまり、耐熱性粘着テープ20の貼り合わせについては、既にリードフレーム上に半導体チップ15が搭載され結線が施された状態の被着体に貼りあわせられることから、あまりに高い加圧密着をはかろうとするとリードフレーム10の変形や半導体回路の破損を招く恐れがある。したがって、例えば結線工程の完了したリードフレーム10を、粘着剤層20bを上側にした耐熱性粘着テープ20に載置して、その自重により密着性を得るなど、リードフレーム10に対して変形が生じないような貼り合わせ方法を行うことが好ましい。
【0029】
なお、一般的な耐熱性粘着テープでは、この程度の加圧では十分な密着性を確保し難かったが、本発明においては適切な弾性率と適切な厚みを持った粘着剤層20bの耐熱性粘着テープ20を用いることにより、十分な密着性を得ることが可能となり、モールド時の樹脂漏れを好適に防止するマスキング効果を得ることができる。かかる耐熱性粘着テープ20の詳細については、後述する。
【0030】
また、耐熱性粘着テープ20は、例えば少なくともパッケージパターン領域11より外側に貼着され、樹脂封止される樹脂封止領域の外側の全周を含む領域に貼着するのが好ましい。リードフレーム10は、通常、樹脂封止時の位置決めを行うための、ガイドピン用孔13を端辺近傍に有しており、それを塞がない領域に貼着するのが好ましい。また、樹脂封止領域はリードフレーム10の長手方向に複数配置されるため、それらの複数領域を渡るように連続して粘着テープ20を貼着するのが好ましい。
【0031】
封止工程は、図1(e)に示すように、封止樹脂17により半導体チップ側を片面封止する工程である。封止工程は、リードフレーム10に搭載された半導体チップ15やボンディングワイヤ16を保護するために行われ、とくにエポキシ系の樹脂をはじめとした封止樹脂17を用いて金型中で成型されるのが代表的である。その際、図3に示すように、複数のキャビティ12を有する上金型18aと下金型18bからなる金型18を用いて、複数の封止樹脂17にて同時に封止工程が行われるのが一般的である。具体的には、例えば樹脂封止時の加熱温度は170〜180℃であり、この温度で数分間キュアされた後、更に、ポストモールドキュアが数時間行われる。なお、耐熱性粘着テープ20はポストモールドキュアの前に剥離するのが好ましい。
【0032】
切断工程は、図1(f)に示すように、封止された構造物21を個別の半導体装置21aに切断する工程である。一般的にはダイサーなどの回転切断刃を用いて封止樹脂17の切断部17aをカットする切断工程が挙げられる。
【0033】
本発明で使用する耐熱性粘着テープ20は、175℃における貯蔵弾性率が1.0×103 Pa〜5.0×105 Paからなる厚さ1〜50μmの粘着剤層を有することを特徴とする。耐熱性粘着テープ20は、粘着剤層のみで構成されていてもよいが、図1に示すように、基材20aと粘着剤層20bとを備えることが好ましい。
【0034】
粘着テープ20の粘着剤層20bは、モールド時にリードフレームと共に金型中でクランプされることなどから、クランプ圧力に対して大きな変形やひずみが生じないようある程度の高い弾性を確保している方が精度的には期待できる。
【0035】
しかしながら、粘着剤本来の密着機能を確保するためには、弾性が高くいわば硬い素材であることは好ましくなく、とくに十分な加圧による貼り合せが困難な本発明においては、積極的にリードフレームと密着するための柔軟性あるいは濡れ性を確保できている必要がある。そこで、これらの相反する粘着剤層の必要性能を両立するために、本発明では、175℃における粘着剤層の貯蔵弾性率が1.0×103 Pa〜5.0×105 Pa、より好ましくは5.0×103 Pa〜1.0×105 Paとし、さらに粘着剤層の厚みを1〜50μm、より好ましくは5〜30μmとする。これにより、粘着剤層全体としてモールドクランプ時に対する変形やひずみをわずかにとどめることが可能になり、また粘着剤の適度な弾性率によりリードフレームに対して強固な加圧を行わなくても、好適な密着性を得ることができるため、封止工程において十分なシール性を得ることができる。ここで、貯蔵弾性率は粘弾性スペクトロメーターにより、周波数1Hz 、昇温速度5℃/minにて測定された、せん断貯蔵弾性値である。
【0036】
上記のような各物性を有する粘着剤の素材に関しては特に限定されるものではないが、一例として、シリコーン系粘着剤、アクリル系粘着剤、ゴム系粘着剤などが適切な貯蔵弾性率と粘着力を得やすい好適な粘着剤である。とくにシリコーン系粘着剤は、モールド時の加熱履歴に対し十分な耐熱性を確保しやすいことから、加熱後の剥離性に関しても安定した粘着特性を得やすく本発明において最も好適な素材のひとつであるといえる。
【0037】
シリコーン系粘着剤は、例えばオルガノポリシロキサンを主成分とするシリコーンゴムやシリコーンレジンを含有してなり、これを架橋剤を添加してキュアーすることにより粘着剤層を形成することができる。
【0038】
上記のシリコーンゴムとしては、シリコーン系感圧接着剤に使用されている各種のものを特に制限なく使用できる。たとえば、ジメチルシロキサンを主な構成単位とするオルガノポリシロキサンを好ましく使用できる。オルガノポリシロキサンには必要に応じてビニル基、その他の官能基が導入されていてもよい。オルガノポリシロキサンの重量平均分子量は通常18万以上であるが、望ましくは28万から100万、特に50万から90万のものが好適である。
【0039】
シリコーンレジンとしては、シリコーン系感圧接着剤に使用されている各種のものを特に制限なく使用できる。たとえば、M単位(R3 SiO1/2 )と、Q単位(SiO2 )、T単位(RSiO3/2 )およびD単位(R2 SiO)から選ばれるいずれか少なくとも1種の単位(前記単位中、Rは一価炭化水素基または水酸基を示す)を有する共重合体からなるオルガノポリシロキサンを好ましく使用できる。前記共重合体からなるオルガノポリシロキサンは、OH基を有する他に、必要に応じてビニル基等の種々の官能基が導入されていてもよい。導入する官能基は架橋反応を起こすものであってもよい。前記共重合体としてはM単位とQ単位からなるMQレジンが好ましい。M単位と、Q単位、T単位またはD単位の比(モル比)は特に制限されないが、前者:後者=0.3:1〜1.5:1程度、好ましくは0.5:1〜1.3:1程度のものを使用するのが好適である。
【0040】
シリコーンゴムとシリコーンレジンの配合割合(重量比)は、前者:後者=100:100〜100:220程度が好ましく、100:120〜100:180程度のものを使用するのがより好ましい。シリコーンゴムとシリコーンレジンは、単にそれらを配合して使用してもよく、それらの部分縮合物であってもよい。
【0041】
粘着剤層の形成方法としては、基材に粘着剤を、リバースコート法、ファンテンコート法、ディッピング法等の方式で塗工し、それぞれの架橋方式(加熱、UV照射等)によりキュアーさせて形成することができる。
【0042】
また、その他の任意成分として、架橋剤、可塑剤、充填材、顔料、染料、老化防止剤、帯電防止剤などの各種添加剤を添加することもできる。更に、必要に応じて粘着剤の下塗りをはじめとした重ね塗りや、基材背面側に対して背面処理などを施してもよい。
【0043】
また、これら耐熱性粘着テープは先述のような粘着剤層を少なくとも有していることが特徴であることから、粘着剤層だけによって構成される耐熱性粘着テープであったとしても構わないが、粘着テープとしてのハンドリングや対面側への被着性を考慮した場合、適度な強度のある基材層と粘着剤層が組み合わせられている構成がより好ましい。
【0044】
この場合の基材層は、モールド工程における加熱履歴により著しく変形あるいは燃焼しない素材であれば特に限定されるものではないが、一例として、ポリイミドフィルム、ポリエステル系フィルム、ポリオレフイン系フィルムなどのプラスチックフィルムのほか、紙、布、アルミや銅などの金属箔なども挙げられる。
【0045】
この耐熱性粘着テープは、封止工程後の任意の段階ではがされることになるが、あまりに強粘着力をもった粘着テープであっては引き剥がしが困難となるだけでなく、場合によっては引き剥がしのための応力によって、モールドした樹脂の剥離や破損を招く恐れもある。したがって、封止樹脂のはみ出しを抑える粘着力以上に強粘着性であることはむしろ好ましくない。この場合、ステンレス板に貼り合わせた状態で175℃にて3分間加熱後、JIS Z 0237に準じて測定された粘着力が5.0N/19mm幅以下、より好ましくは2.0N/19mm幅以下であることがよい。
【0046】
本発明においては、例えばモノマーの種類を変えたり、材料の分子量変更や、充填材の添加などによって、貯蔵弾性率を所望の範囲に調整することができる。
【0047】
一方、本発明の耐熱性粘着テープは、前述したように、半導体チップの搭載及び結線が完了したリードフレームのアウターパッド側に、耐熱性粘着テープを貼り合わせた後に、封止樹脂により半導体チップ側を片面封止する封止工程を含む半導体装置の製造方法に用いられるものである。この耐熱性粘着テープとしては、本発明の製造方法と同じのものが使用できる。
【0048】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0049】
実施例1
25μm厚のポリイミドフィルム(東レデュポン製:カプトン100H)を基材として、シリコーン系粘着剤(東レデュポン社製・SD4580)を用いて厚さ約25μmの粘着剤層を設けた耐熱性粘着テープを作製した(この粘着剤は、レオメトリック・サイエンティフィック社ARESを用いて、周波数1Hz、昇温速度5℃/min、サンプルサイズφ7.9mmのパラレルプレートによるせん断貯蔵弾性モードにて測定したところ、175℃における貯蔵弾性率が1.5×104 Paであった)。なお、このテープは、ステンレス板に貼り合わせた状態で175℃にて3分加熱後の粘着力が3.5N/19mm幅程度であった。この耐熱性粘着テープの粘着剤層を上向きとして広げておき、一辺が16PinタイプのQFNが4個×4個に配列された銅製のリードフレームに半導体チップを搭載し、金線によってワイヤボンディングを施しておいたものをアウターパット側が密着するよう先のテープへ静かに載せ密着させた。
【0050】
さらにエポキシ系封止樹脂(日東電工製:HC−300Bタイプ)により、これらをモールドマシン(TOWA製Model−Y−serise)を用いて、175℃で、プレヒート設定3秒、インジェクション時間12秒、キュア時間150秒にてモールドした後、耐熱性テープを剥離した。なお、さらに175℃にて3時間ほどポストモールドキュアを行って樹脂を十分に硬化させた後、ダイサーによって切断して、個々のQFNタイプ半導体装置を得た。
【0051】
このようにして得られたQFNは、樹脂のはみ出しがみられない好適な半導体装置を得ることができた。
【0052】
実施例2
厚さ100μmのポリエチレンテレフタレート製フィルム(東レ社製:ルミラーS−10)を基材層として、ブチル(メタ)アクリレートモノマー100重量部に対して(メタ)アクリル酸モノマー5重量部を構成モノマーとしたアクリル系共重合体を用いて、このポリマー100重量部に対してエポキシ系架橋材(三菱ガス化学製:Tetrad−C)を1.0重量部添加したアクリル系粘着剤(実施例1と同じ測定方法による175℃における貯蔵弾性率は9.0×104 Paであった)を用いて5μmの粘着剤層を設けた他は、実施例1と同様に検討を行った。なお、このテープは、ステンレス板に貼り合わせた状態で175℃にて3分加熱後の粘着力が4.5N/19mm幅程度であり、本例によって得られたQFNも実施例1同様に好適な半導体装置が得られていた。
【0053】
比較例1
粘着剤として、実施例2で用いたアクリル系共重合体を用いて、このポリマー100重量部に対してエポキシ系架橋材(三菱ガス化学製:Tetrad−C)を6重量部添加したアクリル系粘着剤(実施例1と同じ測定方法による175℃における貯蔵弾性率が9.0×105 Paであった)を用いた他は、実施例2と同様に検討を行った。しかしながら、テープにリードフレームを載せても十分な密着性を得ることができず、モールド時には樹脂のはみ出しをまったく抑えることができなかった。
【0054】
比較例2
テープの粘着剤層の厚さが80μm、ステンレス板に貼り合わせた状態で175℃にて3分間加熱後の粘着力が6.9N/19mm幅のゴム系粘着剤を粘着剤層とした他は実施例1と同様に検討を行った。その結果、封止時のクランプ圧力によりモールド樹脂の漏れ出しが発生したばかりでなく、テープを剥がそうとした際、その粘着力でリードフレームが変形し、一部の樹脂封止部に剥離破壊を生じてしまった。
【図面の簡単な説明】
【図1】本発明の半導体装置の製造方法の一例を示す工程図
【図2】本発明におけるリードフレームの一例を示す図であり、(a)は正面図、(b)は要部拡大図、(c)は樹脂封止後の状態を示す底面図
【図3】本発明における樹脂封止工程の一例を示す縦断面図
【符号の説明】
10 リードフレーム
11a 開口
11b 端子部
11c ダイパッド
15 半導体チップ
15a 電極パッド
16 ボンディングワイヤ
17 封止樹脂
20 粘着テープ
20a 基材
20b 粘着剤層
21 封止された構造物
21a 半導体装置
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a semiconductor device including a sealing step in which a semiconductor chip side is sealed on one side with a sealing resin after a heat-resistant adhesive tape is bonded to the outer pad side of a lead frame on which mounting and connection of the semiconductor chip are completed. The present invention relates to a production method and a heat-resistant adhesive tape used therefor.
[0002]
[Prior art]
In recent years, CSP (Chip Size / Scale Package) technology has attracted attention in LSI mounting technology. Among these technologies, a package in which a lead terminal represented by a QFN (QuadFlat Non-Leaded package) is incorporated in the package is one of the package forms that are particularly noted in terms of miniaturization and high integration. . Among such QFN manufacturing methods, in recent years, a plurality of QFN chips are regularly arranged on the die pad in the package pattern region of the lead frame, and then collectively sealed with a sealing resin in the mold cavity. In particular, a MAP type manufacturing method that dramatically improves the productivity per lead frame area by cutting into individual QFN structures by cutting has attracted particular attention.
[0003]
In such a QFN manufacturing method that collectively seals a plurality of semiconductor chips, the region clamped by the molding die at the time of resin sealing is only outside the resin sealing region that spreads further outside the package pattern region. It is. Therefore, in the package pattern region, particularly in the center thereof, the outer lead surface cannot be pressed against the mold with sufficient pressure, and it is very difficult to suppress the sealing resin from leaking to the outer lead side. The problem of QFN terminals and the like being covered with resin is likely to occur.
[0004]
For this reason, in the QFN manufacturing method as described above, an adhesive tape is attached to the outer lead side of the lead frame, and the sealing effect using the self-adhesive force (masking) of this adhesive tape allows the outer sealing at the time of resin sealing. A manufacturing method for preventing resin leakage to the lead side has been proposed. At that time, attaching a heat-resistant adhesive tape after mounting a semiconductor chip on the lead frame or after wire bonding is done by attaching the tape to the lead frame in a state where a very delicate circuit is completed. Since pressurization is performed under pressure, it has been considered that handling is substantially difficult. Therefore, the heat-resistant adhesive tape is bonded to the outer pad surface of the lead frame in the first stage, and then bonded to the sealing process with the sealing resin through the semiconductor chip mounting process and wire bonding process. (For example, see Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-184801 (second page, FIG. 1).
[0006]
[Problems to be solved by the invention]
However, since the process of mounting the chip and wire bonding is performed with the heat-resistant adhesive tape attached, problems such as misalignment when mounting the chip and loss of connection energy in the wire bonding operation due to the elasticity of the adhesive. It is easy to come. For this reason, as the heat-resistant adhesive tape, one having a thin thickness and a high elastic modulus is used, but even if the positional deviation and energy loss can be alleviated to some extent by this, it is difficult to wipe off completely. .
[0007]
Also, since the adhesive curing and wire bonding processes when mounting semiconductor chips are performed under high heating conditions, when heat generation gas is generated from the heat-resistant adhesive tape, these gas components adhere to the inner lead surface or semiconductor chip, etc. As a result of surface contamination, it may lead to a serious defect that impairs the reliability of the semiconductor device itself, such as resin peeling at the interface between the mold resin and the lead frame, or a significant decrease in bondability during wire bonding. There is a possibility.
[0008]
Therefore, in the present invention, by providing an adhesive tape that can be sufficiently applied even after the steps such as chip mounting and wire bonding are performed in advance, the problems such as the elasticity of the adhesive and the contamination due to off-gas are completely eliminated. The purpose is to avoid it.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors diligently studied the physical properties, thickness, etc. of the heat-resistant adhesive tape, and found that the adhesive material has a storage elastic modulus limited to a specific range at a high temperature and has a specific thickness. By using a heat-resistant pressure-sensitive adhesive tape composed of a pressure-sensitive adhesive layer on which a wire is formed, it has been found that it can be applied even at the stage where a wire connection process such as wire bonding is completed, and the present invention has been completed.
[0010]
That is, in the method of manufacturing a semiconductor device of the present invention, a mounting step of bonding a semiconductor chip onto a die pad of a metal lead frame, and a lead frame terminal portion tip and an electrode pad on the semiconductor chip are bonded with a bonding wire. A wiring process for electrically connecting; a bonding process for bonding a heat-resistant adhesive tape to the outer pad side of the lead frame after the wiring process; a sealing process for sealing one side of the semiconductor chip with a sealing resin; A method of manufacturing a semiconductor device including at least a cutting step of cutting a sealed structure into individual semiconductor devices, wherein the heat-resistant adhesive tape has a storage elastic modulus at 175 ° C. of 1.0 × 10 6. Three Pa to 5.0 × 10 Five Pa And the adhesive strength after heating at 175 ° C. for 3 minutes is 5.0 N / 19 mm width or less with the heat-resistant adhesive tape bonded to the stainless steel plate. It has an adhesive layer having a thickness of 1 to 50 μm. In the present invention, physical properties such as storage elastic modulus are specifically values measured by the method described below.
[0011]
In the above, the adhering step is preferably performed by placing the lead frame, in which the connecting step is completed, on the heat-resistant adhesive tape with the adhesive layer facing upward.
[0012]
On the other hand, the heat-resistant pressure-sensitive adhesive tape of the present invention seals the semiconductor chip side on one side with a sealing resin after the heat-resistant pressure-sensitive adhesive tape is bonded to the outer pad side of the lead frame where the mounting and connection of the semiconductor chip is completed. A heat-resistant adhesive tape used in a method for manufacturing a semiconductor device including a sealing step, and a storage elastic modulus at 175 ° C. is 1.0 × 10 Three Pa to 5.0 × 10 Five Pa The adhesive strength after heating at 175 ° C. for 3 minutes in a state of being bonded to a stainless steel plate is 5.0 N / 19 mm width or less. It has an adhesive layer having a thickness of 1 to 50 μm.
[0014]
[Function and effect]
After mounting the semiconductor chip on the lead frame or after wire bonding, bonding the heat-resistant adhesive tape is done by pressing the tape on the lead frame in a state where a very delicate circuit is completed. According to the present invention, a lead frame is strengthened by using an adhesive material having a specific elastic modulus and a specific thickness. Sufficient adhesion can be obtained without pressure bonding. Therefore, it is not necessary to attach the heat resistant adhesive tape itself prior to a process such as die attach or wire bonding.
[0015]
Therefore, the problems such as the misalignment of the die attach due to the elasticity of the heat-resistant adhesive tape as described above, the connection energy loss in the wire bonding process, or the contamination by off-gas from the heat-resistant adhesive tape are all caused by the root cause. Since the heat-resistant adhesive tape itself is not pasted, there is no problem.
[0016]
The pressure-sensitive adhesive layer has a storage elastic modulus at 175 ° C. of 1.0 × 10 Three Pa to 5.0 × 10 Five Since it is Pa, since the elasticity of the material itself can ensure appropriate softness, it becomes possible to make it adhere | attach enough by the wettability which an adhesive has, without performing strong crimping | compression-bonding. Therefore, even a lead frame in a delicate state in which a wire bonding process or the like has been completed is brought into close contact with the lead frame due to the wettability of the adhesive by bringing it into contact with the adhesive surface of the tape, for example, as a masking tape. Can be effective. In this case, the temperature of 175 ° C. is equivalent to a typical process temperature in a general transfer mold, so that the adhesion required for sufficient masking can be obtained in the actual molding process.
[0017]
In the above case, if the thickness of the pressure-sensitive adhesive layer is less than 1 μm, the step absorption effect for subtle unevenness of the lead frame becomes poor, so that it is difficult to ensure adhesion. Therefore, the adhesive thickness should be at least 1 μm or more, preferably 5 μm or more. On the other hand, when the thickness of the pressure-sensitive adhesive layer is increased, the adhesion is improved. However, when the thickness exceeds 50 μm, deformation strain or the like may occur due to a clamping pressure at the time of molding. Therefore, the thickness of the pressure-sensitive adhesive layer is 50 μm or less, preferably 30 μm or less.
[0018]
In the present invention, in particular, it is possible to perform the adhering step only by placing the lead frame on which the connecting step has been completed on the heat-resistant adhesive tape with the adhesive layer on the upper side, and in that case, a very delicate circuit. Therefore, it is not necessary to press and press the tape against the lead frame in a state where is completed, and problems such as circuit breakage are less likely to occur. Moreover, sufficient adhesiveness can be obtained by sticking both by a practical means with a simple process.
[0019]
Furthermore, the heat-resistant adhesive tape is sealed when the adhesive strength after heating at 175 ° C. for 3 minutes when bonded to a stainless steel plate is 5.0 N / 19 mm width or less by a measuring method according to JIS Z 0237. Adhesive force necessary for preventing resin leakage in the stopping process can be obtained, peeling off after the sealing process is facilitated, and the sealing resin is not damaged. In this case, 3 minutes at 175 ° C. is a typical process temperature in the transfer mold and a typical time from when the lead frame is mounted to the mold until the mold is completed. It is worth the tape peeling force after carrying out.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process chart of an example of a method for manufacturing a semiconductor device of the present invention.
[0021]
1A to 1F, the semiconductor device manufacturing method of the present invention includes a semiconductor chip 15 mounting step, a bonding step using a bonding wire 16, and a heat-resistant adhesive tape 20 sticking step. And at least a sealing step with the sealing resin 17 and a cutting step for cutting the sealed structure 21.
[0022]
The mounting process is a process of bonding the semiconductor chip 15 on the die pad 11c of the metal lead frame 10 as shown in FIGS. In the present invention, a metal lead frame 10 to which the heat-resistant adhesive tape 20 is not attached is used.
[0023]
The lead frame 10 is made by engraving a terminal pattern of QFN using, for example, a metal such as copper, and the electrical contact portion is coated (plated) with a material such as silver, nickel, palladium, or gold. Sometimes it is. The thickness of the lead frame 10 is generally 50 to 300 μm. However, this does not apply to portions that are partially processed thinly by etching or the like.
[0024]
The lead frame 10 is preferably one in which arrangement patterns of individual QFNs are arranged in an orderly manner so that the lead frame 10 can be easily separated in a subsequent cutting step. For example, as shown in FIG. 2, a shape arranged in a vertical and horizontal matrix on the lead frame 10 is called a matrix QFN or MAP-QFN, and is one of the most preferable lead frame shapes. In particular, in recent years, in order to increase the number of packages arranged in one lead frame from the viewpoint of productivity, not only these individual packages are miniaturized, but a large number of packages can be formed by one sealing portion. The number of these arrays has been greatly expanded so that sealing can be performed.
[0025]
As shown in FIGS. 2A to 2B, the QFN substrate design in which a plurality of terminal portions 11b are arranged in a plurality of adjacent openings 11a is arranged in the package pattern region 11 of the lead frame 10 in an orderly manner. . In the case of a general QFN, each substrate design (region divided by the lattice in FIG. 2A) is arranged around the opening 11a, and has a terminal portion 11b having an outer lead surface on the lower side, The die pad 11c is arranged at the center of the opening 11a, and the diver 11d supports the die pad 11c at the four corners of the opening 11a.
[0026]
On the lead frame 10 as described above, a semiconductor chip 15, that is, a silicon wafer chip which is a semiconductor integrated circuit portion is mounted. A fixing area called a die pad 11c is provided on the lead frame 10 to fix the semiconductor chip 15. A bonding (fixing) method to the die pad 11c uses a conductive paste 19, an adhesive tape, Various methods such as an adhesive are used. When die bonding is performed using a conductive paste, a thermosetting adhesive, or the like, generally heat curing is performed at a temperature of about 150 to 200 ° C. for a few minutes to 2 hours.
[0027]
As shown in FIG. 1C, the connection process is a process of electrically connecting the tips of the terminal portions 11b (inner leads) of the lead frame 10 and the electrode pads 15a on the semiconductor chip 15 with bonding wires 16. . For example, a gold wire or an aluminum wire is used as the bonding wire 16. In general, in a state heated to 120 to 250 ° C., the wire is connected by a combination of vibration energy by ultrasonic waves and pressure energy by applying pressure. At that time, the lead frame 10 can be securely fixed to a heat block or the like by vacuum suction.
[0028]
In the attaching step, as shown in FIG. 1 (d), a heat resistant adhesive tape 20 is attached to the outer pad side of the lead frame 10 in which the connecting step is completed. In particular, it is preferable to perform bonding by placing the lead frame 10 in which the connection process has been completed on the heat-resistant adhesive tape 20 with the adhesive layer 20b facing upward. In other words, the heat-resistant adhesive tape 20 is bonded to the adherend in a state where the semiconductor chip 15 is already mounted on the lead frame and connected, so that an excessively high pressure adhesion is attempted. As a result, the lead frame 10 may be deformed or the semiconductor circuit may be damaged. Therefore, for example, the lead frame 10 in which the wiring process is completed is placed on the heat-resistant adhesive tape 20 with the adhesive layer 20b on the upper side, and the lead frame 10 is deformed, for example, adhesion is obtained by its own weight. It is preferable to perform such a bonding method.
[0029]
In general heat-resistant pressure-sensitive adhesive tapes, it was difficult to ensure sufficient adhesion with this level of pressure, but in the present invention, the heat resistance of the pressure-sensitive adhesive layer 20b having an appropriate elastic modulus and an appropriate thickness. By using the pressure-sensitive adhesive tape 20, it becomes possible to obtain sufficient adhesion, and it is possible to obtain a masking effect that suitably prevents resin leakage during molding. Details of the heat-resistant adhesive tape 20 will be described later.
[0030]
Moreover, it is preferable that the heat-resistant adhesive tape 20 is stuck to the area | region including the perimeter outside the resin sealing area | region which is stuck at least outside the package pattern area | region 11, for example, and is resin-sealed. The lead frame 10 usually has a guide pin hole 13 in the vicinity of the end side for positioning at the time of resin sealing, and it is preferable that the lead frame 10 is adhered to a region where it is not blocked. In addition, since a plurality of resin sealing regions are arranged in the longitudinal direction of the lead frame 10, it is preferable to continuously adhere the adhesive tape 20 across the plurality of regions.
[0031]
The sealing step is a step of sealing one side of the semiconductor chip side with a sealing resin 17 as shown in FIG. The sealing process is performed to protect the semiconductor chip 15 and the bonding wire 16 mounted on the lead frame 10 and is molded in a mold using a sealing resin 17 including an epoxy resin in particular. Is typical. At that time, as shown in FIG. 3, a sealing process is simultaneously performed with a plurality of sealing resins 17 using a mold 18 including an upper mold 18a having a plurality of cavities 12 and a lower mold 18b. Is common. Specifically, for example, the heating temperature at the time of resin sealing is 170 to 180 ° C. After curing at this temperature for several minutes, post mold curing is further performed for several hours. The heat resistant adhesive tape 20 is preferably peeled before post mold curing.
[0032]
The cutting step is a step of cutting the sealed structure 21 into individual semiconductor devices 21a as shown in FIG. Generally, there is a cutting step of cutting the cutting portion 17a of the sealing resin 17 using a rotary cutting blade such as a dicer.
[0033]
The heat-resistant adhesive tape 20 used in the present invention has a storage elastic modulus at 175 ° C. of 1.0 × 10 6. Three Pa to 5.0 × 10 Five It has the adhesive layer of 1-50 micrometers in thickness which consists of Pa, It is characterized by the above-mentioned. Although the heat resistant adhesive tape 20 may be comprised only by the adhesive layer, as shown in FIG. 1, it is preferable to provide the base material 20a and the adhesive layer 20b.
[0034]
Since the pressure-sensitive adhesive layer 20b of the pressure-sensitive adhesive tape 20 is clamped in a mold together with the lead frame at the time of molding, it is preferable to secure a certain degree of elasticity so that large deformation and distortion do not occur with respect to the clamping pressure. It can be expected in accuracy.
[0035]
However, in order to ensure the original adhesive function of the pressure-sensitive adhesive, it is not preferable that the material has a high elasticity, that is, a hard material. It is necessary to ensure flexibility or wettability for adhesion. Therefore, in order to achieve both necessary performances of these conflicting pressure-sensitive adhesive layers, in the present invention, the storage elastic modulus of the pressure-sensitive adhesive layer at 175 ° C. is 1.0 × 10 6. Three Pa to 5.0 × 10 Five Pa, more preferably 5.0 × 10 Three Pa to 1.0 × 10 Five In addition, the thickness of the pressure-sensitive adhesive layer is 1 to 50 μm, more preferably 5 to 30 μm. As a result, it becomes possible to keep the deformation and strain at the time of mold clamping slightly as the entire pressure-sensitive adhesive layer, and it is preferable even if a strong pressure is not applied to the lead frame due to an appropriate elastic modulus of the pressure-sensitive adhesive. Since sufficient adhesion can be obtained, sufficient sealing performance can be obtained in the sealing step. Here, the storage elastic modulus is a shear storage elastic value measured with a viscoelastic spectrometer at a frequency of 1 Hz and a heating rate of 5 ° C./min.
[0036]
The material of the pressure-sensitive adhesive having the above physical properties is not particularly limited, but as an example, a silicone-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, etc. have an appropriate storage elastic modulus and adhesive strength. This is a suitable pressure-sensitive adhesive. In particular, a silicone-based adhesive is one of the most suitable materials in the present invention because it is easy to ensure sufficient heat resistance against heating history during molding, and it is easy to obtain stable adhesive properties with respect to peelability after heating. It can be said.
[0037]
The silicone-based pressure-sensitive adhesive contains, for example, a silicone rubber or a silicone resin containing organopolysiloxane as a main component, and a pressure-sensitive adhesive layer can be formed by curing this by adding a crosslinking agent.
[0038]
As said silicone rubber, the various things currently used for the silicone type pressure sensitive adhesive can be especially used without a restriction | limiting. For example, an organopolysiloxane having dimethylsiloxane as a main constituent unit can be preferably used. A vinyl group or other functional group may be introduced into the organopolysiloxane as necessary. The weight average molecular weight of the organopolysiloxane is usually 180,000 or more, preferably 280,000 to 1,000,000, particularly 500,000 to 900,000.
[0039]
As the silicone resin, various types used for silicone pressure-sensitive adhesives can be used without particular limitation. For example, M units (R Three SiO 1/2 ) And Q units (SiO 2 ), T unit (RSiO 3/2 ) And D units (R 2 An organopolysiloxane composed of a copolymer having at least one unit selected from (SiO) (wherein R represents a monovalent hydrocarbon group or a hydroxyl group) can be preferably used. In addition to the OH group, the organopolysiloxane made of the copolymer may have various functional groups such as a vinyl group introduced as necessary. The functional group to be introduced may cause a crosslinking reaction. The copolymer is preferably an MQ resin comprising M units and Q units. The ratio (molar ratio) of the M unit to the Q unit, the T unit or the D unit is not particularly limited, but the former: the latter = about 0.3: 1 to 1.5: 1, preferably 0.5: 1 to 1. It is preferable to use a product of about 3: 1.
[0040]
The blending ratio (weight ratio) of the silicone rubber and the silicone resin is preferably about the former: the latter = 100: 100 to 100: 220, and more preferably about 100: 120 to 100: 180. The silicone rubber and the silicone resin may be used simply by blending them or may be a partial condensate thereof.
[0041]
As a method for forming the pressure-sensitive adhesive layer, the pressure-sensitive adhesive is applied to the base material by a reverse coating method, a phanten coating method, a dipping method, or the like, and cured by each crosslinking method (heating, UV irradiation, etc.). Can be formed.
[0042]
Further, as other optional components, various additives such as a crosslinking agent, a plasticizer, a filler, a pigment, a dye, an anti-aging agent, and an antistatic agent can be added. Furthermore, you may give the back coat etc. with respect to the base-material back side, such as the undercoat including the primer undercoat, as needed.
[0043]
In addition, since these heat-resistant pressure-sensitive adhesive tapes are characterized by having at least the pressure-sensitive adhesive layer as described above, it may be a heat-resistant pressure-sensitive adhesive tape constituted only by the pressure-sensitive adhesive layer, In consideration of handling as an adhesive tape and adherence to the facing side, a configuration in which a base material layer and an adhesive layer having an appropriate strength are combined is more preferable.
[0044]
The substrate layer in this case is not particularly limited as long as it is a material that does not significantly deform or burn due to the heating history in the molding process, but as an example, a plastic film such as a polyimide film, a polyester film, a polyolefin film, or the like Other examples include paper, cloth, and metal foil such as aluminum and copper.
[0045]
This heat-resistant adhesive tape will be peeled off at any stage after the sealing process, but it is not only difficult to peel off with an adhesive tape with too strong adhesive force, but in some cases The stress for peeling off may cause peeling or breakage of the molded resin. Accordingly, it is rather not preferable that the adhesive strength is higher than the adhesive strength that suppresses the protrusion of the sealing resin. In this case, the adhesive strength measured according to JIS Z 0237 after heating for 3 minutes at 175 ° C. while bonded to a stainless steel plate is 5.0 N / 19 mm width or less, more preferably 2.0 N / 19 mm width or less. It is good that it is.
[0046]
In the present invention, the storage elastic modulus can be adjusted to a desired range by changing the type of monomer, changing the molecular weight of the material, adding a filler, or the like.
[0047]
On the other hand, as described above, the heat-resistant adhesive tape of the present invention is bonded to the outer pad side of the lead frame on which the semiconductor chip has been mounted and connected, and then the semiconductor chip side is sealed with a sealing resin. Is used for a manufacturing method of a semiconductor device including a sealing step of sealing one side. As this heat-resistant adhesive tape, the same one as in the production method of the present invention can be used.
[0048]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0049]
Example 1
Using a 25 μm thick polyimide film (manufactured by Toray DuPont: Kapton 100H) as a base material, a heat resistant adhesive tape provided with an adhesive layer having a thickness of about 25 μm using a silicone adhesive (Toray DuPont, SD4580) is prepared. (This adhesive was measured with a rheometric scientific ARES in a shear storage elastic mode with a parallel plate having a frequency of 1 Hz, a heating rate of 5 ° C./min, and a sample size of φ7.9 mm. Storage elastic modulus at 1.5 ° C. is 1.5 × 10 Four Pa). In addition, this tape had an adhesive strength of about 3.5 N / 19 mm width after being heated at 175 ° C. for 3 minutes while being bonded to a stainless steel plate. The adhesive layer of this heat-resistant adhesive tape is spread upward, and a semiconductor chip is mounted on a copper lead frame in which 4 × 4 16-pin QFNs are arranged on one side, and wire bonding is performed using gold wires. The left pad was gently put on the tape so that the outer pad side was in close contact, and was in close contact.
[0050]
Furthermore, with an epoxy-based sealing resin (Nitto Denko: HC-300B type), using a mold machine (Model-Y-series manufactured by TOWA), preheating setting for 3 seconds, injection time of 12 seconds, curing at 175 ° C. After molding for 150 seconds, the heat-resistant tape was peeled off. Further, after post-curing at 175 ° C. for about 3 hours to sufficiently cure the resin, it was cut with a dicer to obtain individual QFN type semiconductor devices.
[0051]
The QFN obtained in this way was able to obtain a suitable semiconductor device in which no resin protruded.
[0052]
Example 2
A polyethylene terephthalate film having a thickness of 100 μm (Toray Industries, Inc .: Lumirror S-10) was used as a base layer, and 5 parts by weight of (meth) acrylic acid monomer was used as a constituent monomer with respect to 100 parts by weight of butyl (meth) acrylate monomer. Using an acrylic copolymer, an acrylic pressure-sensitive adhesive in which 1.0 part by weight of an epoxy cross-linking material (Mitsubishi Gas Chemical Co., Ltd .: Tetrad-C) is added to 100 parts by weight of this polymer (the same measurement as in Example 1) The storage elastic modulus at 175 ° C. by the method is 9.0 × 10 Four In the same manner as in Example 1, except that a 5 μm pressure-sensitive adhesive layer was provided. This tape has an adhesive strength of about 4.5 N / 19 mm width after being heated at 175 ° C. for 3 minutes in a state of being bonded to a stainless steel plate, and the QFN obtained in this example is also suitable as in Example 1. A semiconductor device has been obtained.
[0053]
Comparative Example 1
As an adhesive, an acrylic adhesive obtained by adding 6 parts by weight of an epoxy cross-linking material (manufactured by Mitsubishi Gas Chemical Co., Ltd .: Tetrad-C) to 100 parts by weight of this polymer using the acrylic copolymer used in Example 2 Agent (the storage elastic modulus at 175 ° C. by the same measuring method as in Example 1 is 9.0 × 10 Five Except using Pa), examination was performed in the same manner as in Example 2. However, even if the lead frame is placed on the tape, sufficient adhesion cannot be obtained, and the protrusion of the resin cannot be suppressed at the time of molding.
[0054]
Comparative Example 2
The pressure-sensitive adhesive layer of the tape is 80 μm, and the adhesive strength after heating at 175 ° C. for 3 minutes is 6.9 N / 19 mm width in the state of being bonded to a stainless steel plate, The examination was performed in the same manner as in Example 1. As a result, not only did the mold resin leak due to the clamping pressure at the time of sealing, but when trying to peel off the tape, the lead frame deformed due to the adhesive force, and part of the resin sealing part was peeled and broken Has resulted.
[Brief description of the drawings]
FIG. 1 is a process chart showing an example of a semiconductor device manufacturing method according to the present invention.
2A and 2B are diagrams showing an example of a lead frame according to the present invention, where FIG. 2A is a front view, FIG. 2B is an enlarged view of a main part, and FIG. 2C is a bottom view showing a state after resin sealing;
FIG. 3 is a longitudinal sectional view showing an example of a resin sealing process in the present invention.
[Explanation of symbols]
10 Lead frame
11a opening
11b Terminal section
11c die pad
15 Semiconductor chip
15a electrode pad
16 Bonding wire
17 Sealing resin
20 Adhesive tape
20a base material
20b Adhesive layer
21 Sealed structure
21a Semiconductor device

Claims (3)

金属製のリードフレームのダイパッド上に半導体チップをボンディングする搭載工程と、前記リードフレームの端子部先端と前記半導体チップ上の電極パッドとをボンディングワイヤで電気的に接続する結線工程と、結線工程の完了したリードフレームのアウターパッド側に耐熱性粘着テープを貼り合わせる貼着工程と、封止樹脂により半導体チップ側を片面封止する封止工程と、封止された構造物を個別の半導体装置に切断する切断工程とを、少なくとも含む半導体装置の製造方法であって、前記耐熱性粘着テープは、175℃における貯蔵弾性率が1.0×103 Pa〜5.0×105 Paであり、前記耐熱性粘着テープをステンレス板に貼り合わせた状態で、175℃にて3分間加熱後の粘着力が5.0N/19mm幅以下である厚さ1〜50μmの粘着剤層を有することを特徴とする半導体装置の製造方法。A mounting step of bonding a semiconductor chip on a die pad of a metal lead frame, a connection step of electrically connecting a terminal portion tip of the lead frame and an electrode pad on the semiconductor chip with a bonding wire, and a connection step A bonding process in which a heat-resistant adhesive tape is bonded to the outer pad side of the completed lead frame, a sealing process in which the semiconductor chip side is sealed on one side with a sealing resin, and the sealed structure in an individual semiconductor device And a cutting step for cutting, wherein the heat resistant adhesive tape has a storage elastic modulus at 175 ° C. of 1.0 × 10 3 Pa to 5.0 × 10 5 Pa , Thickness 1 in which the adhesive strength after heating at 175 ° C. for 3 minutes is 5.0 N / 19 mm width or less with the heat-resistant adhesive tape bonded to a stainless steel plate A method for producing a semiconductor device, comprising a pressure-sensitive adhesive layer of ˜50 μm. 前記貼着工程は、結線工程の完了したリードフレームを、粘着剤層を上側にした前記耐熱性粘着テープに載置することで貼り合わせを行う請求項1記載の半導体装置の製造方法。  The method for manufacturing a semiconductor device according to claim 1, wherein the attaching step is performed by placing the lead frame, in which the connecting step is completed, on the heat-resistant adhesive tape with the adhesive layer facing upward. 半導体チップの搭載及び結線が完了したリードフレームのアウターパッド側に、耐熱性粘着テープを貼り合わせた後に、封止樹脂により半導体チップ側を片面封止する封止工程を含む半導体装置の製造方法に用いられる耐熱性粘着テープであって、175℃における貯蔵弾性率が1.0×103 Pa〜5.0×105 Paであり、ステンレス板に貼り合わせた状態で175℃にて3分間加熱後の粘着力が5.0N/19mm幅以下である厚さ1〜50μmの粘着剤層を有することを特徴とする耐熱性粘着テープ。A semiconductor device manufacturing method including a sealing step in which a semiconductor chip side is sealed on one side with a sealing resin after a heat-resistant adhesive tape is bonded to an outer pad side of a lead frame on which mounting and connection of a semiconductor chip are completed. The heat-resistant adhesive tape used has a storage elastic modulus at 175 ° C. of 1.0 × 10 3 Pa to 5.0 × 10 5 Pa , and is heated at 175 ° C. for 3 minutes while being bonded to a stainless steel plate. A heat-resistant pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer having a thickness of 1 to 50 μm and having a subsequent adhesive strength of 5.0 N / 19 mm or less .
JP2002350180A 2002-12-02 2002-12-02 Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor Expired - Lifetime JP3934041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350180A JP3934041B2 (en) 2002-12-02 2002-12-02 Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350180A JP3934041B2 (en) 2002-12-02 2002-12-02 Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor

Publications (2)

Publication Number Publication Date
JP2004186323A JP2004186323A (en) 2004-07-02
JP3934041B2 true JP3934041B2 (en) 2007-06-20

Family

ID=32752485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350180A Expired - Lifetime JP3934041B2 (en) 2002-12-02 2002-12-02 Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor

Country Status (1)

Country Link
JP (1) JP3934041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660886A2 (en) 2012-05-01 2013-11-06 Nitto Denko Corporation Lead Frame for Optical Semiconductor Device and Optical Semiconductor Device Using the Same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343943B2 (en) * 2006-11-24 2009-10-14 日東電工株式会社 Heat-resistant adhesive tape for semiconductor device manufacturing
JP5366781B2 (en) * 2009-12-14 2013-12-11 日東電工株式会社 Resin-sealing heat-resistant adhesive tape and method for producing resin-sealed semiconductor device using the same
KR20110087547A (en) * 2010-01-26 2011-08-03 도레이첨단소재 주식회사 Manufacturing Method of Semiconductor Device Using Heat-Resistant Adhesive Sheet
JP5552404B2 (en) * 2010-09-14 2014-07-16 日東電工株式会社 A heat-resistant adhesive tape for manufacturing a semiconductor device and a method for manufacturing a semiconductor device using the tape.
JP2012167177A (en) * 2011-02-14 2012-09-06 Nitto Denko Corp Heat-resistant adhesive tape for manufacturing semiconductor device, and method for manufacturing semiconductor chip using the same
KR101218144B1 (en) * 2012-05-01 2013-01-21 도레이첨단소재 주식회사 Manufacturing method of semiconductor device using a heat-resistant adhesive sheet
KR102042471B1 (en) * 2013-06-13 2019-11-08 엘지이노텍 주식회사 Light emitting apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033345A (en) * 2000-07-14 2002-01-31 Dainippon Printing Co Ltd Method for manufacturing resin-sealed semiconductor device
JP2002226797A (en) * 2001-01-29 2002-08-14 Nitto Denko Corp Heat resistant adhesive tape and method for manufacturing semiconductor device
JP4701339B2 (en) * 2001-02-22 2011-06-15 日東電工株式会社 Method for producing breathable adhesive sheet
JP2002343816A (en) * 2001-05-18 2002-11-29 Lintec Corp Resin tie bar, tape for forming the same, lead frame therewith, resin sealing-type semiconductor device and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660886A2 (en) 2012-05-01 2013-11-06 Nitto Denko Corporation Lead Frame for Optical Semiconductor Device and Optical Semiconductor Device Using the Same
US9029894B2 (en) 2012-05-01 2015-05-12 Nitto Denko Corporation Lead frame for optical semiconductor device and optical semiconductor device using the same

Also Published As

Publication number Publication date
JP2004186323A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
TWI505416B (en) Adhesive tape for resin-encapsulating and method of manufacture of resin-encapsulated semiconductor device
JP3849978B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP4343943B2 (en) Heat-resistant adhesive tape for semiconductor device manufacturing
JP5612403B2 (en) Resin-sealing adhesive tape and method for manufacturing resin-sealed semiconductor device
JP4125668B2 (en) Manufacturing method of semiconductor device
JP4566568B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP5548077B2 (en) Resin-sealing adhesive tape and method for manufacturing resin-sealed semiconductor device
JP3934041B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP5366781B2 (en) Resin-sealing heat-resistant adhesive tape and method for producing resin-sealed semiconductor device using the same
JP4357754B2 (en) Manufacturing method of semiconductor device
JP2007242698A (en) Manufacturing method of semiconductor device
JP5588950B2 (en) Heat resistant adhesive tape
CN103305138A (en) Pressure-sensitive adhesive tape for resin sealing and production method for resin sealing type semiconductor device
KR100572191B1 (en) Mask sheet for semiconductor device assembly and semiconductor device assembly method
EP2636712A1 (en) Pressure-sensitive adhesive tape for resin encapsulation and method for producing resin encapsulation type semiconductor device
JP5160575B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
US20130237017A1 (en) Pressure-sensitive adhesive tape for resin encapsulation and method for producing resin encapsulation type semiconductor device
JP2006318999A (en) Adhesive film for manufacturing semiconductor device
JP4507380B2 (en) Manufacturing method of semiconductor device and lead frame laminate used therefor
JP4526714B2 (en) Lead frame laminate and method for manufacturing semiconductor device
JP2012182392A (en) Semiconductor device manufacturing method
JP2009044010A (en) Manufacturing method of semiconductor device
JP5275159B2 (en) Manufacturing method of semiconductor device
JP2002110884A (en) Lead frame laminate
KR20130102292A (en) Pressure-sensitive adhesive tape for resin encapsulation and method for producing resin encapsulation type semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Ref document number: 3934041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160330

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term