[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3932385B2 - Oil separator for refrigerant recovery filling of equipment to be recovered - Google Patents

Oil separator for refrigerant recovery filling of equipment to be recovered Download PDF

Info

Publication number
JP3932385B2
JP3932385B2 JP2003190034A JP2003190034A JP3932385B2 JP 3932385 B2 JP3932385 B2 JP 3932385B2 JP 2003190034 A JP2003190034 A JP 2003190034A JP 2003190034 A JP2003190034 A JP 2003190034A JP 3932385 B2 JP3932385 B2 JP 3932385B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
recovery
oil
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003190034A
Other languages
Japanese (ja)
Other versions
JP2005024167A (en
Inventor
貞夫 樋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengen Co Ltd
Original Assignee
Dengen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengen Co Ltd filed Critical Dengen Co Ltd
Priority to JP2003190034A priority Critical patent/JP3932385B2/en
Publication of JP2005024167A publication Critical patent/JP2005024167A/en
Application granted granted Critical
Publication of JP3932385B2 publication Critical patent/JP3932385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、例えば、家庭用クーラー、エアコン、冷蔵庫、自動車用クーラー等の冷媒ガスを用いた被回収機器等の冷媒を、大気中に放出することなく回収し、また必要に応じて回収した冷媒を直接若しくは再生後に充填する被回収機器の冷媒処理装置において使用するところのオイルセパレーターに関するものである。
【0002】
【従来の技術】
従来においては、冷媒回収と冷媒充填は各別の装置で実施しており、その中でも冷媒充填装置は、回収した回収ボンベ内の冷媒或いは新たな回収ボンベの冷媒を直接的に被回収機器に充填する比較的簡単な構成であることから、冷媒回収装置の改良が発明のターゲットとなり、多くの冷媒回収装置が発明され公知となっている。
【0003】
これら公知の冷媒回収装置の多くは、吸入調整弁を備えた蒸発用配管を通して圧縮機の吸引力により吸引した被回収機器の冷媒とオイルを分離し、気体冷媒については冷却ファンと凝縮器により凝縮液化しこれを凝縮用配管を通して回収ボンベに、オイルはオイル容器にそれぞれ回収することを基本とする冷媒回収装置であり、被回収機器の冷媒とオイルとの分離にはオイルセパレーターを使用している。(例えば、特許文献1参照。)。
【0004】
当該オイルセパレーターを備えた冷媒回収装置は、図22により説明すると、被冷媒回収装置から冷媒とオイルとを、オイルセパレーターを介してコンプレッサーで吸引し、さらにオイルセパレーターからコンプレッサーより吐出される高温・高圧の冷媒により加熱されるオイル回収器から凝縮器に圧送し、上記加熱手段で加熱されて冷媒の分離されたオイルが上記オイル回収器で回収され、凝縮器の吐出側からの冷媒は容器に貯留する。
【0005】
そして冷媒が回収される冷媒回収器において、上記コンプレッサーの吐出側と上記凝縮器の流入側との間にバイパス通路を設けると共に、このバイパス通路を開閉する弁を設け、一部をオイル回収器に通して又は一部をバイパス通路に通して凝縮器へ戻すように配管したことを特徴とするものである。
【0006】
当該特許文献1に係る冷媒回収装置は、特に、前記オイル回収器の加熱手段としてコンプレッサーの吐出側で得られる高圧、高温の冷媒ガスの熱の代わりに、上記コンプレッサーの廃熱を利用することにより電力消費を節約し、また上記コンプレッサーとオイル回収器との間を機械的に連結してコンプレッサーの振動を上記オイル回収器に伝達するようにして、オイルの中から気体冷媒を放出させ、これを液化して回収するものである。
【0007】
【特許文献1】
特許第3015820号
【0008】
【発明が解決しようとする課題】
ところが、上記のように構成された公知発明に係る冷媒回収装置は、配管経路にオイルを回収するための多種の機器を配管した複雑な構成となり、また冷媒を充填させる場合には冷媒回収容器に回収され冷媒を送液するために、別に冷媒充填装置を設けなければならず、非常に不経済である。
【0009】
そして、凝縮器からオイル回収器を経て再び凝縮器に通じる冷媒のオイル回収器内の通路が高圧側となるため、回収終了時には必ず液体冷媒がオイル回収器内に残ることとなり、結局、回収が不充分となり、これが回収ガスの変更時等に大気へ放出されることから問題であった。
【0010】
更に、当該公知発明は、オイル中の液体冷媒を除去することを目的とするものであり、液体冷媒中の水分については、再生回収された液体冷媒中には相当量の水分が混入するため、そのまま液体冷媒を被回収装置に充填すると、該被回収機器Aの冷房機能や機械的耐久性の低下となることから、可能な限り当該冷媒中の水分を除去して充填する必要があった。
【0011】
以上の観点から、本出願人は先に、被回収機器のオイルを含む冷媒から前記オイルを分離して凝縮器により液体冷媒として回収ボンベに回収し、再生した液体冷媒を被回収装置に充填する冷媒回収充填装置に使用するところのオイルと液体冷媒を加熱手段で分離する冷媒回収充填用オイルセパレーターを出願したが、オイルの排出時に、該オイルが霧吹き状に吐出されることとなるとともに、オイルの排出に要する時間が非常に長時間となる欠点があった。
【0012】
本発明は、上記事情に鑑みてなされたものであり、オイルの排出時に、該オイルが霧吹き状に吐出されることを防止し、オイルの排出を速やかなものとし、冷媒ガスの大気放出を招来することなく冷媒を効率的且つ容易に回収でき、既存の冷媒回収充填装置との配管結合によって、被回収機器に対する効率的な冷媒回収及び充填を可能とする優れたオイルセパレーターの提供を課題とする。
【0013】
【課題を解決するための手段】
被回収機器(A)のオイルを含む冷媒から前記オイルを分離して凝縮器により液体冷媒として回収ボンベに回収し、再生した液体冷媒を被回収装置に充填する冷媒回収充填装置に使用するところのオイルと液体冷媒を加熱手段で分離する冷媒回収充填用オイルセパレーターであって、中空胴部の上下を天端板と底端板で閉塞した蒸発用気化室を本体とし、前記天端板の下部に位置し内部周囲及び天端板との間に通路空間を確保して隔壁を設けるとともに、中心管が液体冷媒回収通路となり、外管が冷媒回収時に被回収冷媒を回収する回収通路となる熱交換用二重管を、溜まりを招かないように縦中心周りに螺旋形に形成して蒸発用気化室内に設け、該熱交換用二重管における外管の上端には、該外管の上端を閉塞するとともに中心管が貫通する浮動弁を設け、
前記蒸発用気化室の底端板には、一端が被回収機器との連結側となる通路とオイルドレンへの通路とに分岐する通路に通じ、他端がオイル排出と冷媒流入とを兼ねる導入口として蒸発用気化室内に開口し、且つ該導入口と前記熱交換用二重管の外管で形成される回収通路とのいずれかに流通路を変更する切換機能弁を具備する第一管継手と、前記熱交換用二重管の中心管の下部に配管されて液体冷媒の流出口となる第四管継手を貫設するとともに、底端板の底面には蒸発用気化室を加熱する底部ヒーターと、底部の温度調節手段とを設け、前記蒸発用気化室の上部又は前記天端板には、一端が蒸発用気化室の内部で開口し他端が二方向の選択的な流通路の変更が可能な開閉弁を具備する第二管継手と、一端が前記熱交換用二重管の中心管の上部に配管され他端がニ方向の流通路を具備する第三管継手を設け、前記浮動弁は、外管の上端を開閉可能な弁体と、該弁体を受ける弁受け部材と、前記弁体上に設けられる錘とからなり、弁体の上昇により外管の上端を開放することを特徴とする被回収機器の冷媒回収充填用オイルセパレーター、及び、被回収機器のオイルを含む冷媒を、前記オイルと冷媒に分離して回収し、オイルと分離した冷媒を被回収装置に充填する冷媒回収充填装置に使用するところの冷媒回収充填用オイルセパレーターであって、中空胴部の上下を天端板と底端板で閉塞した蒸発用気化室を本体とし、前記天端板の下部に位置し内部周囲及び天端板との間に通路空間を確保して隔壁を設け、冷媒回収時に被回収冷媒を回収する通路となる回収用直管を蒸発用気化室内に設け、該回収用直管の上端には、該回収用直管の上端を閉塞する浮動弁を設け、前記蒸発用気化室の底端板には、一端が外部へ通じ、他端がオイル排出と冷媒流入とを兼ねる導入口として蒸発用気化室内に開口する第一管継手を貫設するとともに、底端板の底面には蒸発用気化室を加熱する底部ヒーターと、底部の温度調節手段とを設け、前記蒸発用気化室の上部又は前記天端板には、一端が蒸発用気化室の内部で開口し他端が蒸発用気化室の外部へ通じる第二管継手を設けたものとし、前記浮動弁は、管上端開口部を開閉可能な弁体と、該弁体を受ける弁受け部材と、前記弁体上に設けられる錘とからなり、弁体の上昇により管上端開口部を開放することを特徴とする冷媒回収充填用オイルセパレーターを基本として、課題解決の手段とするものである。
【0014】
【発明の効果】
本発明によれば、熱交換用二重管における外管の上端、若しくは回収用直管における管上端開口部には、前記外管の上端若しくは管上端開口部を閉塞する浮動弁を設けたことにより、冷媒充填時においては当該浮動弁が熱交換用二重管の外管若しくは管上端開口部を閉塞して、蒸発用気化室内の空間と、外管若しくは回収用直管内の空間とを仕切ることとなり、当該蒸発用気化室内と外管若しくは回収用直管内との圧力差から生ずるオイルが霧吹き状に吐出される不具合を生じないものとすることができる。
【0015】
また、本発明に係る冷媒の再生回収を行なうオイルセパレーターにおいては、蒸発用気化室の上部又は前記天端板には、一端が蒸発用気化室の内部で開口し他端が二方向の選択的な流通路を変更する開閉弁を具備する第二管継手と、一端が前記熱交換用二重管25Aの中心管の上部に配管され他端が凝縮された液体冷媒の供給管と連結管との選択的な流通路を変更可能な第三管継手を設け、更に前記第二管継手及び第三管継手における外部側の夫々の一端を連結管で連結した構成とした場合には、冷媒回収終了後の蒸発用気化室の真空状態において、冷媒回収後に連結管と第二管継手及び第三管継手とを通気させることにより、回収タンク内の気体冷媒が熱交換用二重管の中心管、連結管を順次経由して蒸発用気化室内へ導入され、当該蒸発用気化室の内圧を上昇させ、底部のオイルドレンバルブを緩めることで、圧力差を利用してオイルを、効率よく排出することができる。
【0016】
更に、本発明に係る上記オイルセパレーターにおいては、第ニ管継手に、外部のエアー供給手段を連結することによって、冷媒の再生回収を行なうか否かにかかわらず、即ち、熱交換用二重管、回収用直管の相違にかかわらず、当該蒸発用気化室の内圧を上昇させ、底部のオイルドレンバルブを緩めることで、圧力差を利用してオイルを、効率よく排出することができる。
【0017】
更に、本発明においては、オイルセパレーターの構成を、隔壁の下部空間に、中心管と外管とからなる二重管を縦方向中心周りに螺旋形に形成した熱交換用二重管を設け、オイルを含む冷媒を前記熱交換用二重管の下方より外管に通し、他方で、上方から凝縮器を経由した液体冷媒を中心管に通すものとしたことで、オイルを含む冷媒を外管へ通す際には、前記凝縮器を経由した液体冷媒で先に加温状態となった熱交換用二重管によって、当該オイルを含む冷媒は加温側へ熱交換されることとなり、また、凝縮器を経由した液体冷媒を中心管へ通す際には、先にオイルを含む冷媒との熱交換によって熱交換用二重管が冷却されているため、当該凝縮器を経由した液体冷媒は、冷却方向に熱交換されることとなり、このように相互に熱交換を行うことで、全体として非常に経済的に熱交換を果たして液体冷媒の収率を向上させることができる。
【0018】
また、当該オイルセパレーターは、前記加熱手段による加熱で残存するオイルを回収するオイル回収経路と、前記分別及び加熱によって得た気体冷媒、及び再生回収後残存若しくは気化により生じた気体冷媒を、凝縮器に通し、前記熱交換用二重管の上方から中心管を通すことにより、液体冷媒として再生して回収ボンベへ回収する冷媒再生回収経路と、気体冷媒から再生して得た液体冷媒を、被回収機器に充填する冷媒充填経路に対応して接続することができ、冷媒再生回収工程と冷媒充填工程を組合せることで、一つの冷媒再生回収充填装置として使用することができる。
【0019】
これに加え、当該構成によって、オイルセパレーター中で分別、加熱により得られる気体冷媒、及び、残存、揮発生成により得られた気体冷媒は、全て冷媒充填経路を通過することとなるため、気体冷媒の大気放出を招来することもない。
【0020】
また、同構成によって、オイルを含む冷媒を、熱交換後、当該オイルセパレーターの底部において、底部ヒーター等の加熱手段により液体冷媒を気化する際、予め前記オイルを含む冷媒熱交換によって加温されていることから、短時間で、経済的に、液体冷媒を気化させ、被回収冷媒の回収、再生、充填を行なうことができる。
【0021】
一方、本発明における冷媒再生を行なうオイルセパレーターにおいては、その蒸発用気化室の底端板に、一端が被回収機器との連結側となる通路とオイルドレンへの通路とに分岐する通路に通じ、他端がオイル排出と冷媒流入とを兼ねる導入口として蒸発用気化室内に開口し、且つ該導入口と前記熱交換用二重管の外管で形成される回収通路とのいずれかに流通路を変更するゴム製の切換機能弁を具備する第一管継手を設けることで、弁の切換えを効率よく行うことができ、残存するオイルの排出や、また被回収機器への再生された液体冷媒の送液を効率よく行うことができる。
【0022】
また本発明に係るオイルセパレーターは、コンプレッサによる高圧、低圧を利用することによって分離したオイル及び冷媒を単に貯留するのではなく、オイルにおいては排出することができ、冷媒に対しては被回収機器に対して充填することができる点において優れたものである。
【0023】
【発明の実施の形態】
図1は本発明の実施例に係る被回収機器の冷媒回収充填用オイルセパレーターにおける液体冷媒回収状態を示す説明図、図2は同実施例に係る被回収機器の冷媒回収充填用オイルセパレーターにおけるオイル排出状態を示す説明図、図3は同実施例に係る被回収機器の冷媒回収充填用オイルセパレーターにおける液体冷媒充填状態を示す説明図、図4は同実施例に係る浮動弁の下降状態を示す説明図、図5は図4に係る浮動弁の上昇状態を示す説明図、図6は同実施例1に係るゴム製の切換機能弁を示す平面図、一部断面とした正面図、及び底面図であり、図7は同実施例に係るゴム製の切換機能弁の閉塞状態を示す断面図、図8は同ゴム製の切換機能弁の開放状態を示す断面図、図9は本発明の実施例に係る冷媒回収充填用オイルセパレーターを冷媒回収充填装置に組込んだ状態における冷媒回収状態を示す説明図、図10は同実施例に係る冷媒回収充填用オイルセパレーターを冷媒回収充填装置に組込んだ状態における液体又は気体冷媒充填状態を示す説明図、図11は同実施例における気体冷媒再生状態を示す説明図、図12は同実施例1に係る冷媒回収充填用オイルセパレーターと既存設備とを連結した状態を示す説明図、図13は本実施例1に係る冷媒回収充填用オイルセパレーターにおいて他のオイル排出手段を備えた状態を示す説明図、図14は本発明の実施例2に係る冷媒回収充填用オイルセパレーターにおける液体冷媒回収状態を示す説明図、図15は同実施例2に係る冷媒回収充填用オイルセパレーターにおける液体冷媒充填状態を示す説明図、図16は同実施例2に係る冷媒回収充填用オイルセパレーターと既存設備とを連結した状態を示す説明図、図17は本発明の実施例3に係る冷媒回収充填用オイルセパレーターを示す説明図、図18は本発明の実施例4に係る冷媒回収充填用オイルセパレーターを示す説明図、図19は本発明の実施例2に係る切換機能弁を示す説明図、図20は同実施例2に係る切換機能弁の回収時における状態を示す説明図、図21は同実施例2に係る切換機能弁の充填時における状態を示す説明図、図22は代表的な公知発明に係る冷媒回収装置の系統図である。
【0024】
(実施例1:オイルセパレーター単体の説明:蒸発用気化室、熱交換用二重管)本発明の実施例1に係るオイルセパレーター17は、図1乃至図3に示すように、中空胴部170の上下を天端板171と底端板172で閉塞した蒸発用気化室20を本体とし、その内部に前記天端板171の下部に位置し周囲及び天端板171との間に通路空間20aを確保して設けた隔壁21と、中心管251が液体冷媒回収通路となり外管250が冷媒回収時に被回収冷媒を回収する回収通路となる熱交換用二重管25Aとを設けている。尚、天端板171の下部には中空胴部と天端板とを固定するための取付けフランジ18を設けており、天端板171と取付けフランジ18とを螺子止め固定している。
【0025】
ここで、本実施例1に係る熱交換用二重管25Aはスパイラル管内に溜まりを招かないように縦中心周りに螺旋形に形成している。一方、天端板171の上部には、把手8を設け、更に、中空胴部の下端側には当該オイルセパレーター17を支えるスタンド7を取付けた構成である。
【0026】
(浮動弁について)
また、実施例1に係る熱交換用二重管25Aにおける外管250の上端には、外管250の上端を閉塞するとともに中心管251が貫通する浮動弁40を設けている。浮動弁40は、図4に示すように、弁受け部材41と、弁体42と、錘43を順次重ね合わせて構成されるものであり、弁受け部材41、弁体42、錘43のいずれとも、中央部に熱交換用二重管の中心管251が貫通する穴が形成されている。図4に示すように、外管下側から被回収冷媒が送液されない状態においては、当該浮動弁40の弁受部材41が外管上端開口部44に当接して、当該外管上端開口部44を閉塞している。
【0027】
そして当該弁体42は、図5に示すように、外管下側から送液された被回収冷媒により僅かに外管250における上端開口部44から浮き上がり、該上端開口部44を経由して弁体42と弁受け部材41との隙間から被回収冷媒を蒸気用気化室20へ通過させる。
【0028】
また、蒸発用気化室20から外管上端への液体、気体(特には、再生された充填用の液体冷媒)の進入に対しては、前記図4に示すように、当該浮動弁40の自重により外管上端開口部を塞ぎ、前記液体、気体の進入を防ぐ。これによって、蒸発用気化室20内と外管250内との圧力差によって生ずる冷媒が霧吹き状に吐出される現象を、防止することができる。
【0029】
(第一管継手、第四管継手、ヒータ、サーモブレーカーについて)
そして前記蒸発用気化室20の底端板172には、一端が被回収機器との連結側となる通路とオイルドレン29への通路とに分岐する通路に通じ、他端がオイル排出と冷媒流入とを兼ねる導入口24aとして蒸発用気化室20内に開口し、且つ該導入口24aと前記熱交換用二重管25Aの外管250で形成される回収通路とのいずれかに流通路を変更するゴム製の切換機能弁24を具備する第一管継手1と、前記熱交換用二重管25Aの中心管251の下部に配管されて液体冷媒の流出口となる第四管継手4を貫設するとともに、底端板172の底面に蒸発用気化室20を加熱する底部ヒーター27と、底端板172における温度上限側の温度調節手段となるサーモブレーカー26を設け、更に底端版172の反対側の面(即ち、蒸発用気化室内の底面)に、蒸発用気化室20内のオイルの排出誘導又は冷媒充填時の冷媒誘導を果たす誘導溝173を設けた構成である。
また、被回収機器との連結側となる通路における吸入量調整弁Vaよりも前記被回収機器側となる位置には、インレットフィルター6を設けている。
【0030】
(ゴム製の切換機能弁について)
上記ゴム製の切換機能弁24は、図6に示すように、中心に通路242を形成する円筒状であり、厚さ1.5mm程度となる薄手の側周壁部に開口側縁部から複数の切込み240を設けてなるものである。また、当該機能切換弁24の上端には内方へ補強のための補強部241を形成している。
【0031】
そして、前記ゴム製の切換機能弁24は、第一管継手1に連続する弁室内に対して嵌合して取付けており、冷媒回収時には、図7に示すように、前記薄手の側周壁部が弁室の壁に当接して、弁室の導入口24aを塞ぎ、回収する冷媒を熱交換用二重管25Aの外管250に通し、また、オイル回収時及び冷媒充填時には、図8に示すように、前記薄手の側周壁部が内側へ傾動することにより、蒸発用気化室20内の底部に滞留したオイルを、開いたオイルドレン弁Vdを通してオイルドレン29からオイル回収容器に、また冷媒充填時には前記オイルドレン弁Vdを閉じ、液体冷媒を吸入量調整弁Vaを通して被回収機器Aへ充填するようになるものである。
【0032】
(第二管継手、第三管継手について)
また前記蒸発用気化室20の上部又は前記天端板171には、一端が蒸発用気化室20の内部で開口し他端側にニ方向の選択的な流通路を変更する開閉弁Viを有する第二管継手と、一端が前記熱交換用二重管25Aの中心管251と配管結合され他端側にニ方向の通路を確保する第三管継手3とを、夫々貫設し、更に、天端板の上部に設けられる前記第二管継手2及び第三管継手3の夫々一方の接続口を連結管5Aで連結した構成である。
【0033】
更に、前記蒸発用気化室20の上部又は前記天端板171には、前記第二管継手2と、前記熱交換用二重管25Aの中心管251と配管結合され他端が第一凝縮液管14に配管される第三管継手3とを貫設した構成としている。
【0034】
(被回収機器の冷媒処理装置に組み込んだ状態におけるオイルセパレーター)本発明の実施例1に係る上記オイルセパレーター17は、冷媒回収充填工程を構成して使用するものであり、当該オイルセパレーターを組込んだ冷媒回収充填装置として使用することができるとともに、既存設備である冷媒回収装置に対して当該オイルセパレーターを連動させる構成を採ることもできる。以下に、先ず上記オイルセパレーター17を、液体冷媒回収充填装置の一部として使用する例を示す。
【0035】
本発明の実施例1に係るオイルセパレーターは、コンプレッサー11により吸引した、被回収機器Aのオイルを含む冷媒を分離し、その後、凝縮器12により液体冷媒として回収ボンベ16に回収する供給側冷媒再生回収経路により、全体としてはこの経路を共通利用するように、オイル回収を行なうためのオイル回収経路と冷媒を再生するための循環側冷媒再生回収経路と被回収機器に対して再生した冷媒を充填するための冷媒充填経路とを形成するように配管接続した状態で使用する。
【0036】
具体的には、オイルセパレーターにおける第一管継手1の一端は第一回収充填通路1aを介して被回収機器Aと連結されており、第二管継手2の一端は第二回収充填通路1bを介してドライフィルター30に連結されており、第三管継手3は第一凝縮液管14を介して凝縮器12から連結されている。また第四管継手4へは逆止弁を経由して回収ボンベへつながる第二凝縮液管15が連結されている。
【0037】
(実施例1に係るオイルセパレーターと冷媒回収充填工程との関係)
そして、図9に示した系統図から明らかなように、冷媒回収充填工程は、被回収機器A、吸入量調整弁Vaを具備させた第一回収充填通路1a、加熱手段(底部ヒーター27)を具備したオイルセパレーター17の蒸発用気化室20、第二管継手2、開閉弁Vi、第二回収充填通路1b、開閉弁Vb、ドライフィルター30、冷却ファン13で冷却するコンプレッサー11、凝縮器12、第一凝縮液管14、オイルセパレーター17の熱交換用二重管25A、回収方向へ通過させる逆止弁31を配管した第二凝縮液管15、開閉弁Vcを具備した回収管16aに至る経路として構成したもので、オイル回収経路と循環側冷媒再生回収経路及び冷媒充填経路とが配管形成されている。この経路においては、蒸発用気化室20に取込まれたオイルを含む冷媒は下方から二重スパイラル管25の外管250を通って熱交換された後、外管の上端に設けられた浮動弁40を僅かに押し上げて、気体冷媒と、液体冷媒及びオイルの混合物とに分離される。
【0038】
オイルを含んだ液体冷媒は、蒸発用気化室20の底部に落下し、更に比重の違いで、オイルが上層、液体冷媒が下層として分離した状態となり、底端板172に設けた底部ヒーター27による加熱によって、下層となった液体冷媒及びオイルは、加熱された当該底端板172に直接触れ、当該液体冷媒、及び液体冷媒中の水分は、速やかに気化される。
【0039】
一方、外管上端から進入した気体冷媒、外管上端から落下した液体冷媒の加熱蒸発により生じた気体冷媒は、ドライフィルター30によって水分を除去した後、コンプレッサー11により凝縮器12に送られて凝縮液化され、これがオイルセパレーター17内の熱交換用二重管25Aの中心管251に圧送されて、ここで前記液体冷媒中に残存する気体冷媒が効率の良い熱交換作用によって冷却され、さらに液体冷媒となって、逆止弁31、開閉弁Vcを通して回収ボンベ16へ効率的に回収する。
【0040】
次に、図10に示した冷媒充填状態を示す図には、説明の都合上、前記オイル回収経路となる流れ方向を示す矢印記号を併記しているが、オイルドレン弁Vdを開としている時には、吸入量調整弁Vaは閉じ、充填時にはその開閉は逆とするものであることを念頭において、オイル回収経路について説明する。
【0041】
オイル回収経路は、前記供給側冷媒再生回収経路において分別されて蒸発用気化室20の底部に落下して比重の違いで下層となった液体冷媒を、気化、除去することによって、分離残留したオイルのみを、前記蒸発用気化室20の底部に設けた底端板172の切換機能弁24を具備する第一管継手1からオイルドレン弁Vdを介してオイル回収容器へ回収する経路である。
【0042】
オイルドレン29からのオイルの回収は、液体冷媒充填と一部共通部分を使用するため、冷媒の充填前の段階に行い、当該段階において蒸発用気化室の真空状態であることから、冷媒回収後に連結管5Aと第二管継手2及び第三管継手3とを通気させることにより、回収タンク内の気体冷媒を熱交換用二重管25Aの中心管251、連結管5Aを順次経由して蒸発用気化室20内へ導入し、当該蒸発用気化室20の内圧を上昇させ、底部のオイルドレンバルブを緩めることで、圧力差を利用してオイルを排出する。
【0043】
冷媒充填経路は、前記回収ボンベ16の回収管16aに延設配管した、液体冷媒充填弁Vfを介在させた液体冷媒充填管16cと、回収ボンベ16に併設した、気体冷媒充填再生弁Veの配管された気体冷媒再生管16bとがバイパス状となったいずれかの通路を、前記供給側冷媒再生回収経路の第二回収充填通路1bに配管接続して、オイルセパレーター17の蒸発用気化室20から第一回収充填通路1aを通して被回収機器Aに通じる経路として構成する。
【0044】
さらに図11に示した循環側冷媒再生回収経路は、前記回収ボンベ16と前記ドライフィルター30を流出側とする開閉弁Vbの流入側とを、気体冷媒充填再生弁Veを備えた気体冷媒再生管16bで配管接続して、再度凝縮器12、第一凝縮液管14、オイルセパレーター17の熱交換用二重管25A、回収方向へ通過させる逆止弁31を配管した第二凝縮液管15、開閉弁Vcを具備した回収管16aに至る経路として構成する。当該経路を使用し、回収ボンベ16内の気体冷媒をコンプレッサー11で吸引して、回収ボンベ16にバイパス状に設けた気体冷媒再生管16bの気体冷媒充填再生弁Veを開いて、ドライフィルター30を流出側とする開閉弁Vbの流入側へ戻し、これを前記ドライフィルター30で吸湿して、コンプレッサー11から凝縮器12に送り込んで凝縮し、オイルセパレーター17内の熱交換用二重管25Aの中心管251に高圧送して熱交換作用により冷却液化して、開閉弁Vcを通して回収ボンベ16へ効率的に再生回収する。
【0045】
尚、本発明において、被回収装置における冷媒の回収、再生、充填の処理を選択的に制御実施する方法としては、手動若しくはタイマー等による切り替え、或いはコンピュータープログラムの利用や各種センサーの設置を含めた自動的なシーケンス制御を利用することもできる。
【0046】
また、上記実施例1のように、被回収機器との連結側となる通路における吸入量調整弁Vaよりも前記被回収機器側となる位置にインレットフィルター6を設けることによって、オイルセパレーター17の蒸発用気化室20内や各管継手等に、塵埃等の不純物が混入することを防止することができる。
【0047】
次に、上記実施例1に係るオイルセパレーターを、既存の液体冷媒回収装置に対して配管結合することによって、当該既存の液体冷媒回収装置と一体として使用する場合の一例について、図12に示すとともに、当該構成について説明する。
【0048】
基本的な被回収冷媒の回収、分離したオイルの排出、再生した液体冷媒の充填については、上記した、被回収機器の冷媒処理装置に組み込んだ状態におけるオイルセパレーターと同様であることから、配管の構成のみについて説明する。
【0049】
一例として図12に示す既存の冷媒回収装置(B)は、専ら冷媒回収と回収した冷媒を気体冷媒として被回収機器Aに充填するようにしたものであって、被回収機器A、配管口a、調整弁Vaxを具備させた回収通路b、コンプレッサー11、冷却用ファン13で冷却する凝縮器12、第一凝縮液管14に開閉弁cを介して形成した凝縮冷媒出口d、開閉弁Vcを備えた回収ボンベ16に順次配管するとともに、回収ボンベ16と前記コンプレッサー11との吸引側とを、被回収機器Aに気体冷媒を充填する場合の、前記回収通路bに配管した充填用通路eを開閉弁fを介して接続した構成である。
【0050】
前記既存の冷媒回収装置(B)と本発明に係る前記オイルセパレーター17との配管結合は、図12に示すように、オイルセパレーター17の第二管継手2から配管される第二回収充填通路1bを既存の冷媒回収装置Bの配管口aに、また既存の冷媒回収装置Bの凝縮冷媒出口dに、オイルセパレーター装置の第三管継手3に通じる第一凝縮液管14を配管して、第三管継手3から熱交換用二重管25Aの中心管251と連通する第四管継手4を介して開閉弁Vcを備えた回収ボンベ16に配管するものである。
【0051】
以上に示すように、本発明に係るオイルセパレーター17は、既存の冷媒回収装置、冷媒充填装置と連結して有効且つ確実に、被回収機器Aからの冷媒の回収、オイルの回収、回収した冷媒の被回収機器Aへの充填を行うことができることから、気化冷媒の大気放出を招来することなく効率的に回収するとともに、オイルの回収、被回収機器Aへの冷媒の充填を行うことができ、しかも、既存の冷媒回収装置を廃棄する不経済も生じさせることがなく当該冷媒回収装置を再活用でき、長期にわたって使用できる。
【0052】
なお図示省略しているが、既存の冷媒回収装置Bの回収ボンベ16から第二回収充填通路1bに配管した回収通路を、前記した被回収機器の冷媒処理装置に形成したのと同様、回収ボンベ16にバイパス状に設けた、開閉弁Vcを具備した回収管16a及び気体冷媒再生管16bから、直接又はドライフィルター30を流出側とする開閉弁Vbの流入側へ戻して、コンプレッサー11から凝縮器12に送り込んで凝縮した後、第一凝縮液管14からオイルセパレーター17内の熱交換用二重管25Aの中心管251に圧送して熱交換作用により冷却し、第四管継手4から逆止弁31を介在させた第二凝縮液管15と開閉弁Vcを通して回収ボンベ16へ回収するように配管した場合には、液体冷媒を高収率で再生回収することができ、これを被回収機器Aに効率良く充填することができる。
【0053】
更に、本実施例1に係るオイルセパレーターは、オイル排出方法を変更することができる。即ち、前記した、前記蒸発用気化室20の上部又は前記天端板171に一端が蒸発用気化室20の内部で開口し他端側にニ方向の選択的な流通路を変更する、開閉弁Viを有する第二管継手と、一端が前記熱交換用二重管25Aの中心管251と配管結合され他端側にニ方向の切換弁を有する第三管継手3とを、夫々貫設し、更に、天端板の上部に設けられる前記第二管継手2及び第三管継手3の夫々一方の接続口を連結管5Aで連結した構成に代えて、図13に示すように、第二管継手とエアー供給手段5Bとを、ソケット90及びプラグアダプター91からなるエアーカプラプラグ9を介して連結し、図示されない外部のエアコンプレッサーを用いて、フレッシュエアを蒸発用気化室20内へ導入し、当該蒸発用気化室20の内圧を上昇させ、底部のオイルドレンバルブを緩めることで、圧力差を利用してオイルを排出する構成とすることができる。
【0054】
尚、本構成を備えたオイルセパレーターの場合、第三管継手3において連結管5Aと連結していた接続口は、連結管5Aを使用しないことに伴い不要であるから、当該接続口を常時閉じた状態としてもよいし、或いは予め当該接続口のない管継手に交換してもよい。
【0055】
次に、本発明の実施例2に係るオイルセパレーターを図14(回収状態)及び図15(充填状態)に示す。前記実施例1に係るオイルセパレーターが冷媒回収充填装置における再生回収に対応するものであるのに対して、当該実施例2に係るオイルセパレーターは、オイルを含有する冷媒を分離し、冷媒の再生を行なわずに充填のみを行なう冷媒回収充填装置に使用するものである。従って、本実施例2に係るオイルセパレーターにおいては、冷媒再生に関する部分は不要であり、従って、実施例1とは異なる構成でありながら、同様に、オイルの排出時に、該オイルが霧吹き状に吐出されることとなるとともに、オイルの排出に要する時間が非常に長時間となる欠点を解消しようとするものである。尚、便宜上、実施例1に係るオイルセパレーターと共通する部分については同一符号を用いて説明するものとする。
【0056】
(実施例2:オイルセパレーター単体の説明:蒸発用気化室、回収用直管)
本発明の実施例2に係るオイルセパレーター17は、図14及び図15に示すように、中空胴部170の上下を天端板171と底端板172で閉塞した蒸発用気化室20を本体とし、その内部に前記天端板171の下部に位置し周囲及び天端板171との間に通路空間20aを確保して設けた隔壁21と、回収冷媒を回収する回収通路となる直線状の回収用直管25Bとを設けている。
【0057】
ここで、本実施例2に係る回収用直管25Bは蒸発用気化室20内における底端板172に対して垂直に設けられており、当該回収用直管25Bの上端外側には螺子溝を形成してなる雄螺子部46を備えた構成である。
【0058】
そして、前記回収用直管25Bの上端に取付けられる浮動弁40は、内部空間を備えるとともに、下部に前記雄螺子部46と螺合する雌螺子部47を、上面及び側面に貫通穴45を、夫々内部空間に通じて設けてなるケース状の弁受け部材41と、該弁受け部材41の内部空間の周壁に対して摺動するとともに管上端開口部44を開閉する円形平板状の弁体42と、該弁体42の上部に当接して設けられる錘43とからなる。
【0059】
上記実施例2に係る浮動弁40の構成によって、図15に示すように、外管下側から被回収冷媒が送液されない状態においては、当該浮動弁40の弁体42が管上端開口部44に当接して、当該外管上端開口部44Bを閉塞している。
【0060】
また当該浮動弁40は、オイルを含む冷媒の回収時には、図14に示すように、回収用直管の下方から送液された被回収冷媒により弁体42と錘43が弁受け部材41内で管上端開口部44から浮き上がり、該管上端開口部44を開放する。これによって、回収用直管25Bと、弁受け部材41の内部空間と、側面の貫通穴45における空間が全て繋がった状態となり、当該被回収冷媒は側面に通じる貫通穴45を経由して蒸気用気化室20へ送られる。尚、弁受け部材41の上面に形成される貫通穴は、空気穴として機能し、弁体42の円滑な開閉を確保するものである。
【0061】
一方、オイル排出時には、蒸発用気化室20内の空間と、回収用直管25B内の空間とを仕切ることとなり、当該蒸発用気化室内と外管若しくは回収用直管内との圧力差から生ずるオイルが霧吹き状に吐出される不具合を生じないものとすることができる。
【0062】
(第一管継手、ヒータ、サーモブレーカーについて)
そして前記蒸発用気化室20の底端板172には、一端が被回収機器の外部へ通じ、他端がオイル排出と冷媒流入とを兼ねる導入口24aとして蒸発用気化室20内に開口し、且つ該導入口24aと前記回収用直管25Bで形成される回収通路とのいずれかに流通路を変更する切換機能弁24を具備する第一管継手1を貫設するとともに、実施例1に係るオイルセパレーターと同様に、底端板172の底面に蒸発用気化室20を加熱する底部ヒーター27と、底端板172の温度上限を調節するサーモブレーカー26を設け、更に底端版172の反対側の面(即ち、蒸発用気化室内の底面)に、蒸発用気化室20内のオイルの排出誘導又は冷媒充填時の冷媒誘導を果たす誘導溝173を設けた構成である。
また、被回収機器との連結側となる通路における開閉弁Vgよりも前記被回収機器側となる位置には、インレットフィルター6を設けている。
【0063】
(切換機能弁について)
本実施例2に係る切換機能弁24は、実施例1のものとは相違し、より耐久性を向上させたものである。具体的には、図19に示すように、金属製の補強部241と中心に通路242を形成する円筒状で、厚さ1.5mm程度となる薄手の側周壁部に開口側縁部から複数の切込み240を設けてなる弁本体243とを嵌合してなるものである。
【0064】
そして、前記切換機能弁24は、第一管継手1に連続する弁室内に対して嵌合して取付けており、冷媒回収時には、図20に示すように、薄手の側周壁部244が弁室の壁に当接して、弁室の導入口24aを塞ぎ、回収する冷媒を熱交換用二重管25Aの外管250に通し、また、オイル排出時及び冷媒充填時には、図21に示すように、前記側周壁部244が内側へ傾動することにより、蒸発用気化室20内の底部に滞留したオイルを開閉弁Vgを通して外部に用意されたオイル回収容器へ排出し、また冷媒充填時には液体冷媒を開閉弁Vgを通して被回収機器Aへ充填するものである。
【0065】
(被回収機器の冷媒処理装置に組み込んだ状態におけるオイルセパレーター)本発明の実施例2に係る上記オイルセパレーター17は、実施例1に係るオイルセパレーターとは異なり、冷媒の再生を行なわない回収充填工程を構成して使用するものである。しかしながら、当該オイルセパレーターを組込んだ冷媒回収充填装置として使用することができるとともに、既存設備である冷媒回収装置に対して当該オイルセパレーターを連動させる構成を採ることもできる点については実施例1に係るオイルセパレーターと同様である。以下に、先ず上記オイルセパレーター17を、液体冷媒回収充填装置の一部として使用する例を示す。
【0066】
本発明の実施例2に係るオイルセパレーターは、コンプレッサー11により吸引した、被回収機器Aのオイルを含む冷媒を分離し、オイルは蒸発用気化室下方から機能切替弁、第一管継手、インレットフィルタを順次介して排出し、冷媒は回収ボンベ16に回収した後、蒸発用気化室内へ導入し、オイルと同様に、蒸発用気化室下方から機能切替弁、第一管継手、インレットフィルタを順次介して被回収機器へ充填するように配管接続したものである。
【0067】
具体的には、図16の系統図に示すように、本実施例2に係るオイルセパレーターにおいては、その第一管継手1は第一回収充填通路1aを介して被回収機器Aと連結し、第二管継手2は第二回収充填通路1bを介してコンプレッサー11に連結した構成である。
【0068】
(実施例2に係るオイルセパレーターと冷媒回収充填工程との関係)
そして、同図16に示したように、冷媒回収充填工程は、冷媒の回収、オイルの回収、オイルの排出、冷媒の充填の各工程を備えたものである。
冷媒の回収は、被回収機器A、に連結し、開閉弁Vgを具備した第一回収充填通路1a、オイルセパレーター17の回収用直管25B、加熱手段(底部ヒーター27)を具備したオイルセパレーター17の蒸発用気化室20、第二管継手2、開閉弁Vi、第二回収充填通路1b、開閉弁Vb、コンプレッサー11、冷却ファン13で冷却する凝縮器、液体冷媒充填弁、回収方向へ通過させる逆止弁31を配管した液体冷媒充填管16c、開閉弁Vcを具備した回収管16a、回収ボンベ16の経路で構成している。即ち、本実施例2において使用する冷媒回収充填工程においては、実施例1において使用する冷媒回収充填工程と比較して、液化した冷媒を回収ボンベへ送る前に、蒸発用気化室を経由させず、冷媒の熱交換を行なわない構成である。
【0069】
また、オイルを含んだ液体冷媒が、蒸発用気化室20の底部に落下してオイルと冷媒に分離される構成及び作用を含め、オイルの回収、排出については、実施例1と基本的に同様である。尚、当然ながら、蒸発用気化室内に導入する経路は、実施例1が熱交換用二重管25Aの外管を使用するのに対して本実施例2は回収用直管25Bを使用する。
【0070】
冷媒の充填については、前記回収ボンベ16から開閉弁Vb、Veを備えた冷媒充填通路16eから第二回収充填通路1bを介して第二管継手2から蒸発用気化室20内へ導入し、更に第一回収充填通路1aを通して被回収機器Aへ充填する。
【0071】
尚、本実施例2に係るオイルセパレーターにおいても、実施例1と同様に、第二管継手2に連結された開閉弁Viとエアー供給手段5Bとを、ソケット90及びプラグアダプター91からなるエアーカプラプラグ9を介して連結し、図示されない外部のエアコンプレッサーを用いて、フレッシュエアを蒸発用気化室20内へ導入し、当該蒸発用気化室20の内圧を上昇させ、底部の開閉弁Vgを緩めることで、圧力差を利用してオイルを排出する構成とすることができる。この際に、第二管継手の形状を、一端が蒸発用気化室20の内部で開口し他端側にニ方向の選択的な流通路を変更する開閉弁Viを有するものとすることにより、フレッシュエアを蒸発用気化室20内へ導入する操作をより簡単なものとすることができる。
【0072】
以上のとおり、本実施例2に係るオイルセパレーターにおいても、充填用の液体冷媒の進入に対して、浮動弁40の自重により外管上端開口部44を塞ぎ蒸発用気化室20内と外管250内との圧力差によって生ずる冷媒が霧吹き状に吐出される現象を、防止することができる。
【0073】
また、上記実施例2に係るオイルセパレーターの構成によれば、実施例1に係るオイルセパレーターにおける複雑な螺旋形状を有する熱交換用二重管を必要とせず、製造コストを大幅に削減することができる。
【0074】
更に、回収用直管の形状を直線状として蒸発用気化室20における占有容積を極めて小さくすることができることから、冷媒の蒸発時には蒸発を阻害することがなく、また、回収用直管の外面への冷媒やオイルの付着も殆ど生じることがなく、処理効率を向上させることができる。
【0075】
(実施例3)
また、本発明に係るオイルセパレーターの他の実施例(実施例3)として、図17に示すように、前記した実施例1に係るオイルセパレーター17に改良を加えたものであり、断熱材230中にコイル状に電熱線を設けてなる外部ヒーター23を、中空胴部に対して巻付けて被覆することができる。また、中空胴部のみならず底部も当該外部ヒーター23で被覆することができる。このように、外部ヒーター23を使用する事で、液体冷媒の気化効率を向上させ、冷媒回収率を高めることができる。
【0076】
(実施例4)
更に、図18に別の実施例(実施例4)として示すように、被回収冷媒の処理量が大きい場合には、シーズヒーター22を設けて、液体冷媒の気化を促すことができる。当該実施例3に係るオイルセパレーターにおいては、天端板から下方へ、熱交換用スパイラル管内を延設する構成であるが、当該シーズヒーター22の設置方法は、設計変更の範囲で自由に設定でき、その本数も二本以上とすることもできる。
【図面の簡単な説明】
【図1】 本発明の実施例1に係る被回収機器の冷媒回収充填用オイルセパレーターにおける液体冷媒回収状態を示す説明図。
【図2】 本発明の実施例1に係る被回収機器の冷媒回収充填用オイルセパレーターにおけるオイル排出状態を示す説明図。
【図3】 本発明の実施例1に係る被回収機器の冷媒回収充填用オイルセパレーターにおける液体冷媒充填状態を示す説明図。
【図4】 本発明の実施例1に係る浮動弁の下降状態を示す説明図。
【図5】 本発明の実施例1に係る浮動弁の上昇状態を示す説明図。
【図6】 本発明の実施例1に係るゴム製の切換機能弁を示す平面図、一部断面とした正面図、及び底面図である。
【図7】 本発明の実施例1に係るゴム製の切換機能弁の閉塞状態を示す断面図。
【図8】 本発明の実施例1に係るゴム製の切換機能弁の開放状態を示す断面図。
【図9】 本発明の実施例1に係る冷媒回収充填用オイルセパレーターを冷媒回収充填装置に組込んだ状態における冷媒回収状態を示す説明図。
【図10】 本発明の実施例1に係る冷媒回収充填用オイルセパレーターを冷媒回収充填装置に組込んだ状態における液体又は気体冷媒充填状態を示す説明図。
【図11】 本発明の実施例1に係る冷媒回収充填用オイルセパレーターにおける気体冷媒再生状態を示す説明図。
【図12】 本発明の実施例1に係る冷媒回収充填用オイルセパレーターと既存設備とを連結した状態を示す説明図。
【図13】 本発明の実施例1に係る冷媒回収充填用オイルセパレーターにおいて他のオイル排出手段を備えた状態を示す説明図である。
【図14】 本発明の実施例2に係る冷媒回収充填用オイルセパレーターにおける液体冷媒回収状態を示す説明図。
【図15】 本発明の実施例2に係る冷媒回収充填用オイルセパレーターにおける液体冷媒充填状態を示す説明図。
【図16】 本発明の実施例2に係る冷媒回収充填用オイルセパレーターと既存設備とを連結した状態を示す説明図。
【図17】 本発明の実施例3に係る冷媒回収充填用オイルセパレーターを示す説明図。
【図18】 本発明の実施例4に係る冷媒回収充填用オイルセパレーターを示す説明図。
【図19】 本発明の実施例2に係る切換機能弁を示す説明図。
【図20】 本発明の実施例2に係る切換機能弁の回収時における状態を示す説明図。
【図21】 本発明の実施例2に係る切換機能弁の充填時における状態を示す説明図。
【図22】 代表的な公知発明に係る冷媒回収装置の系統図。
【符号の説明】
1 第一管継手
1a 第一回収充填通路
1b 第二回収充填通路
2 第二管継手
3 第三管継手
4 第四管継手
5A 連結管
5B エアー供給手段
6 インレットフィルター
7 スタンド
8 把手
9 エアーカプラプラグ
11 コンプレッサー
12 凝縮器
13 冷却用ファン
14 第一凝縮液管
15 第二凝縮液管
16 回収ボンベ
16a 回収管
16b 気体冷媒再生管
16c 液体冷媒充填管
16e 冷媒充填通路
17 オイルセパレーター
18 取付けフランジ
170 中空胴部
171 天端板
172 底端板
173 誘導溝
20 蒸発用気化室
20a 通路空間
21 隔壁
22 シーズヒーター
23 外部ヒーター
230 断熱材
24 切換機能弁
240 切込み
241 補強部
242 通路
243 弁本体
244 側周壁部
24a 導入口
25A 熱交換用二重管
25B 回収用直管
250 外管
251 中心管
26 サーモブレーカー
27 底部ヒーター
29 オイルドレン
30 ドライフィルター
31 逆止弁
40 浮動弁
41 弁受け部材
42 弁体
43 錘
44 外管上端開口部
45 貫通穴
46 雄螺子部
47 雌螺子部
90 ソケット
91 プラグアダプター
A 被回収機器
B 既存の冷媒回収装置
Va 吸入量調整弁
Vb 開閉弁
Vc 開閉弁
Vd オイルドレン弁
Ve 気体冷媒充填再生弁
Vf 液体冷媒充填弁
Vax 調整弁
Vg 開閉弁
Vh 開閉弁
Vi 開閉弁
a 配管口
b 回収通路
c 開閉弁
d 凝縮冷媒出口
e 充填用通路
f 開閉弁
[0001]
[Industrial application fields]
The present invention, for example, collects refrigerants such as household equipment coolers, air conditioners, refrigerators, automobile coolers, etc. using a refrigerant gas without releasing them into the atmosphere, and collects refrigerants as needed. The present invention relates to an oil separator that is used in a refrigerant processing apparatus of a device to be collected that is charged directly or after regeneration.
[0002]
[Prior art]
Conventionally, refrigerant recovery and refrigerant filling are performed by separate devices, and among these, the refrigerant filling device directly fills the equipment to be collected with the refrigerant in the collected recovery cylinder or the refrigerant in the new recovery cylinder. Therefore, the improvement of the refrigerant recovery apparatus becomes the target of the invention, and many refrigerant recovery apparatuses have been invented and are publicly known.
[0003]
Many of these known refrigerant recovery devices separate the refrigerant and oil of the equipment to be recovered sucked by the suction force of the compressor through an evaporation pipe equipped with a suction regulating valve, and the gas refrigerant is condensed by a cooling fan and a condenser. It is a refrigerant recovery device that basically liquefies it and collects it in a recovery cylinder through a condensing pipe and oil in an oil container. An oil separator is used to separate the refrigerant and oil in the equipment to be recovered. . (For example, refer to Patent Document 1).
[0004]
The refrigerant recovery apparatus provided with the oil separator will be described with reference to FIG. 22. The refrigerant and oil are sucked from the refrigerant recovery apparatus through the oil separator by the compressor and then discharged from the oil separator through the compressor. The oil recovered by the refrigerant is pumped from the oil collector to the condenser, the oil separated by the refrigerant heated by the heating means is recovered by the oil collector, and the refrigerant from the discharge side of the condenser is stored in the container. To do.
[0005]
In the refrigerant recovery unit for recovering the refrigerant, a bypass passage is provided between the discharge side of the compressor and the inflow side of the condenser, a valve for opening and closing the bypass passage is provided, and a part of the bypass is provided in the oil recovery unit. It is characterized in that it is piped through or partially through the bypass passage to the condenser.
[0006]
In particular, the refrigerant recovery apparatus according to Patent Document 1 uses the waste heat of the compressor instead of the heat of the high-pressure and high-temperature refrigerant gas obtained on the discharge side of the compressor as the heating means of the oil recovery unit. It saves power consumption and mechanically connects the compressor and oil collector to transmit the compressor vibration to the oil collector so that the gaseous refrigerant is released from the oil. It is liquefied and collected.
[0007]
[Patent Document 1]
Japanese Patent No. 3015820
[0008]
[Problems to be solved by the invention]
However, the refrigerant recovery apparatus according to the known invention configured as described above has a complicated configuration in which various devices for recovering oil are connected to the piping path, and when the refrigerant is filled, the refrigerant recovery container is used. In order to send the recovered refrigerant, a separate refrigerant filling device must be provided, which is very uneconomical.
[0009]
And since the passage in the oil recovery unit of the refrigerant that leads from the condenser to the condenser through the oil recovery unit becomes the high pressure side, the liquid refrigerant always remains in the oil recovery unit at the end of the recovery, and eventually the recovery is This was a problem because it became insufficient, and this was released to the atmosphere when the recovered gas was changed.
[0010]
Furthermore, the known invention is intended to remove the liquid refrigerant in the oil, and with respect to the moisture in the liquid refrigerant, since a considerable amount of moisture is mixed in the regenerated and recovered liquid refrigerant, If the liquid refrigerant is filled in the apparatus to be collected as it is, the cooling function and mechanical durability of the apparatus A to be collected are deteriorated. Therefore, it is necessary to remove and fill the refrigerant as much as possible.
[0011]
From the above viewpoint, the present applicant first separates the oil from the refrigerant containing the oil of the equipment to be collected, collects the oil as a liquid refrigerant in a collection cylinder using a condenser, and fills the apparatus to be collected with the regenerated liquid refrigerant. We have applied for an oil separator for refrigerant recovery and filling that separates the oil and liquid refrigerant used in the refrigerant recovery and charging device with a heating means, but when the oil is discharged, the oil will be ejected in the form of a spray. There is a disadvantage that the time required for discharging the water becomes very long.
[0012]
The present invention has been made in view of the above circumstances, and prevents the oil from being sprayed in the form of a spray when the oil is discharged, thereby promptly discharging the oil and inviting refrigerant gas to the atmosphere. It is an object of the present invention to provide an excellent oil separator that can efficiently and easily recover a refrigerant without performing the process, and that enables efficient refrigerant recovery and filling of a device to be recovered by piping connection with an existing refrigerant recovery and filling device. .
[0013]
[Means for Solving the Problems]
The oil is separated from the refrigerant containing the oil of the equipment to be recovered (A), recovered as a liquid refrigerant in a recovery cylinder by a condenser, and used for a refrigerant recovery and filling apparatus that fills the recovered apparatus with the recovered liquid refrigerant. An oil separator for recovering and filling refrigerant that separates oil and liquid refrigerant by a heating means, comprising an evaporation vaporizing chamber whose upper and lower ends of a hollow body are closed by a top end plate and a bottom end plate, and a lower portion of the top end plate Heat is provided to secure a passage space between the inner periphery and the top end plate and provide a partition wall, the central tube serves as a liquid refrigerant recovery passage, and the outer tube serves as a recovery passage for collecting the refrigerant to be recovered when the refrigerant is recovered. A replacement double pipe is spirally formed around the longitudinal center so as not to cause accumulation, and is provided in the vaporization chamber for evaporation. The upper end of the outer pipe in the double pipe for heat exchange is the upper end of the outer pipe. And the floating through which the central tube penetrates A valve is provided,
The bottom end plate of the vaporizing chamber for evaporation is introduced such that one end leads to a passage branching into a passage connecting to the apparatus to be collected and a passage to the oil drain, and the other end serves as both oil discharge and refrigerant inflow A first pipe having a switching function valve that opens as an outlet into the evaporation vaporization chamber and changes the flow path to either the inlet or the recovery passage formed by the outer pipe of the heat exchange double pipe A joint and a fourth pipe joint that is piped under the central pipe of the double pipe for heat exchange and serves as an outlet for the liquid refrigerant are penetrated, and an evaporation vaporizing chamber is heated on the bottom surface of the bottom end plate. A bottom heater and a bottom temperature control means are provided, and an upper end of the evaporating vaporization chamber or the top end plate has one end opened inside the evaporating vaporization chamber and the other end is a selective flow path in two directions. A second pipe joint having an open / close valve that can be changed, and one end above the center pipe of the double pipe for heat exchange. A third pipe joint having a two-way flow path at the other end, the floating valve including a valve body capable of opening and closing an upper end of the outer pipe, a valve receiving member for receiving the valve body, and the valve An oil separator for collecting and collecting refrigerant of a device to be collected, characterized by comprising a weight provided on the body and opening the upper end of the outer tube by raising the valve body, and a refrigerant containing oil of the device to be collected, An oil separator for refrigerant recovery and filling used in a refrigerant recovery and charging device that separates and recovers the oil and refrigerant and fills the recovery target device with the refrigerant separated from the oil. A vaporization chamber closed by a plate and a bottom end plate is used as the main body, a passage space is provided between the inner periphery and the top end plate at the lower part of the top end plate, and a partition is provided. Vaporization chamber for evaporating a straight pipe for recovery, which is a passage for recovering refrigerant A floating valve for closing the upper end of the recovery straight pipe is provided at the upper end of the recovery straight pipe. One end of the bottom end plate of the evaporation chamber is connected to the outside and the other end is oil. A first pipe joint that opens into the evaporation vaporizing chamber is provided as an inlet for both discharge and refrigerant inflow, and a bottom heater that heats the evaporation vaporizing chamber on the bottom surface of the bottom end plate, and temperature control means for the bottom And the upper end plate of the evaporating vapor chamber or the top end plate is provided with a second pipe joint having one end opened inside the evaporating vaporizing chamber and the other end communicating with the outside of the evaporating vaporizing chamber. The floating valve includes a valve body capable of opening and closing a pipe upper end opening, a valve receiving member for receiving the valve body, and a weight provided on the valve body. Based on the oil separator for refrigerant recovery and filling, which is characterized by To do.
[0014]
【The invention's effect】
According to the present invention, the upper end of the outer tube in the double tube for heat exchange or the upper end opening of the straight pipe for recovery is provided with a floating valve that closes the upper end of the outer tube or the upper end opening of the tube. Thus, when the refrigerant is charged, the floating valve closes the outer tube or the upper end opening of the double tube for heat exchange, and partitions the space in the evaporation vaporizing chamber from the space in the outer tube or the straight recovery tube. Accordingly, it is possible to prevent a problem that the oil generated from the pressure difference between the evaporation vaporizing chamber and the outer pipe or the recovery straight pipe is discharged in a sprayed manner.
[0015]
Further, in the oil separator for regenerating and recovering the refrigerant according to the present invention, one end of the upper part of the evaporation chamber or the top end plate is opened inside the evaporation chamber and the other end is selectively in two directions. A second pipe joint having an open / close valve for changing the flow path, a liquid refrigerant supply pipe and a connecting pipe, one end of which is piped on the upper part of the central pipe of the heat exchange double pipe 25A and the other end is condensed, If the third pipe joint capable of changing the selective flow path is provided, and further, one end of each of the second pipe joint and the third pipe joint on the outside is connected by a connecting pipe, the refrigerant is recovered. In the vacuum state of the evaporation vaporizing chamber after completion, the refrigerant gas is circulated through the connecting pipe, the second pipe joint, and the third pipe joint after the refrigerant is recovered, so that the gas refrigerant in the recovery tank is transferred to the center pipe of the heat exchange double pipe. Are sequentially introduced into the vaporizing chamber for vaporization via the connecting pipe, Chamber pressure is raised to the, by loosening oil drain valve at the bottom, the oil by utilizing a pressure difference, can be efficiently discharged.
[0016]
Furthermore, in the oil separator according to the present invention, the external air supply means is connected to the second pipe joint regardless of whether or not the refrigerant is regenerated and recovered, that is, the double pipe for heat exchange. Regardless of the difference between the recovery straight pipes, the internal pressure of the evaporation vaporizing chamber is increased and the oil drain valve at the bottom is loosened, so that the oil can be efficiently discharged using the pressure difference.
[0017]
Furthermore, in the present invention, the structure of the oil separator is provided in the lower space of the partition wall with a double tube for heat exchange in which a double tube comprising a central tube and an outer tube is formed in a spiral shape around the center in the vertical direction, The refrigerant containing oil is passed from the lower side of the double pipe for heat exchange to the outer pipe, and on the other hand, the liquid refrigerant passing through the condenser is passed from the upper side to the central pipe, so that the refrigerant containing oil is passed through the outer pipe. When passing through the refrigerant, the refrigerant containing the oil is heat-exchanged to the heating side by the heat exchange double pipe that has been heated in the liquid refrigerant that has passed through the condenser. When passing the liquid refrigerant passing through the condenser to the central tube, the heat exchange double pipe is cooled by heat exchange with the refrigerant containing oil first, so the liquid refrigerant passing through the condenser is Heat is exchanged in the cooling direction, and heat exchange is performed in this way. It is, it is possible to improve the yield of liquid refrigerant plays a very economical heat exchanger as a whole.
[0018]
The oil separator also includes an oil recovery path for recovering oil remaining by heating by the heating means, a gas refrigerant obtained by the separation and heating, and a gas refrigerant remaining after regeneration and recovery or vaporization, Through the center pipe from above the double pipe for heat exchange, a refrigerant regeneration path for regenerating as a liquid refrigerant and recovering to a recovery cylinder, and a liquid refrigerant obtained by regenerating from the gas refrigerant The refrigerant can be connected corresponding to the refrigerant charging path for charging the recovery device, and can be used as one refrigerant regeneration recovery and charging device by combining the refrigerant regeneration and recovery process and the refrigerant charging process.
[0019]
In addition to this, the gas refrigerant obtained by separation and heating in the oil separator and the gas refrigerant obtained by remaining and volatilization generation all pass through the refrigerant charging path by this configuration. There will be no air release.
[0020]
In addition, with the same configuration, when the liquid refrigerant is vaporized by heating means such as a bottom heater at the bottom of the oil separator after heat exchange, the refrigerant containing oil is preheated by heat exchange of the refrigerant containing oil. Therefore, the liquid refrigerant can be vaporized in a short time and economically, and the recovered refrigerant can be recovered, regenerated, and filled.
[0021]
On the other hand, in the oil separator that performs refrigerant regeneration in the present invention, the bottom end plate of the evaporation vaporizing chamber communicates with a passage branched at one end into a passage that is connected to the apparatus to be collected and a passage to the oil drain. The other end opens into the evaporation vaporization chamber as an inlet for both oil discharge and refrigerant inflow, and flows through either the inlet or the recovery passage formed by the outer pipe of the heat exchange double pipe By providing the first pipe joint with a rubber switching function valve that changes the path, the valve can be switched efficiently, the remaining oil can be discharged, and the recovered liquid to the equipment to be recovered The refrigerant can be efficiently fed.
[0022]
The oil separator according to the present invention does not simply store the oil and refrigerant separated by using the high pressure and low pressure by the compressor, but can discharge the oil, and the refrigerant is not collected. On the other hand, it is excellent in that it can be filled.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory view showing a liquid refrigerant recovery state in an oil separator for refrigerant recovery and filling of a device to be recovered according to an embodiment of the present invention, and FIG. 2 is an oil in an oil separator for refrigerant recovery and charging of the device to be recovered according to the embodiment. FIG. 3 is an explanatory view showing a discharge state, FIG. 3 is an explanatory view showing a liquid refrigerant filling state in an oil separator for refrigerant collection and filling of a device to be collected according to the embodiment, and FIG. 4 shows a lowered state of the floating valve according to the embodiment. FIG. 5 is an explanatory view showing the rising state of the floating valve according to FIG. 4, FIG. 6 is a plan view showing the rubber switching function valve according to the first embodiment, a front view with a partial cross section, and a bottom view 7 is a sectional view showing a closed state of the rubber switching function valve according to the embodiment, FIG. 8 is a sectional view showing an opened state of the rubber switching function valve, and FIG. Oil separator for refrigerant recovery filling according to embodiment FIG. 10 is an explanatory view showing a refrigerant recovery state in a state in which the refrigerant is incorporated in the refrigerant recovery and charging device, and FIG. 10 is a liquid or gas refrigerant filling in the state in which the refrigerant recovery and filling oil separator according to the same embodiment is incorporated in the refrigerant recovery and charging device. FIG. 11 is an explanatory view showing a state of gas refrigerant regeneration in the same embodiment, FIG. 12 is an explanatory view showing a state in which the refrigerant recovery and filling oil separator according to the first embodiment and the existing equipment are connected, FIG. 13 is an explanatory view showing a state in which another oil discharging means is provided in the refrigerant separator for filling and collecting refrigerant according to the first embodiment, and FIG. 14 is a liquid refrigerant in the oil separator for collecting and filling refrigerant according to the second embodiment of the present invention. FIG. 15 is an explanatory view showing the state of recovery, FIG. 15 is an explanatory view showing the state of liquid refrigerant filling in the oil separator for refrigerant recovery and filling according to the second embodiment, and FIG. FIG. 17 is an explanatory view showing a state in which an oil separator for refrigerant recovery and filling according to Example 2 is connected to existing equipment, FIG. 17 is an explanatory view showing an oil separator for refrigerant recovery and filling according to Example 3 of the present invention, and FIG. FIG. 19 is an explanatory diagram showing a switching function valve according to Example 2 of the present invention, and FIG. 20 is a recovery of the switching function valve according to Example 2 of the present invention. FIG. 21 is an explanatory diagram showing a state when the switching function valve according to the second embodiment is filled, and FIG. 22 is a system diagram of a refrigerant recovery apparatus according to a typical known invention.
[0024]
(Example 1: Description of oil separator alone: vaporizing chamber for evaporation, double tube for heat exchange) As shown in FIGS. 1 to 3, the oil separator 17 according to Example 1 of the present invention has a hollow body 170. The main body is an evaporation vaporizing chamber 20 whose upper and lower sides are closed by a top end plate 171 and a bottom end plate 172, and the passage space 20a is located in the lower portion of the top end plate 171 and between the periphery and the top end plate 171 And a heat exchange double pipe 25A serving as a recovery passage for recovering the refrigerant to be recovered during recovery of the refrigerant. A mounting flange 18 for fixing the hollow body and the top end plate is provided below the top end plate 171, and the top end plate 171 and the mounting flange 18 are fixed by screws.
[0025]
Here, the double tube 25A for heat exchange according to the first embodiment is formed in a spiral shape around the longitudinal center so as not to cause accumulation in the spiral tube. On the other hand, a handle 8 is provided on the top of the top end plate 171, and a stand 7 for supporting the oil separator 17 is attached to the lower end side of the hollow body portion.
[0026]
(About floating valve)
Further, a floating valve 40 that closes the upper end of the outer tube 250 and penetrates the central tube 251 is provided at the upper end of the outer tube 250 in the heat exchange double tube 25A according to the first embodiment. As shown in FIG. 4, the floating valve 40 is configured by sequentially superimposing a valve receiving member 41, a valve body 42, and a weight 43, and any one of the valve receiving member 41, the valve body 42, and the weight 43. In both cases, a hole through which the central tube 251 of the double tube for heat exchange passes is formed at the center. As shown in FIG. 4, in a state where the refrigerant to be collected is not sent from the lower side of the outer pipe, the valve receiving member 41 of the floating valve 40 abuts on the upper end opening 44 of the outer pipe, and the upper end opening of the outer pipe 44 is blocked.
[0027]
Then, as shown in FIG. 5, the valve body 42 is slightly lifted from the upper end opening 44 in the outer pipe 250 by the refrigerant to be collected sent from the lower side of the outer pipe, and passes through the upper end opening 44 to The to-be-recovered refrigerant is passed through the vaporization chamber 20 for vapor through the gap between the body 42 and the valve receiving member 41.
[0028]
Further, with respect to the ingress of liquid or gas (especially, regenerated liquid refrigerant for filling) from the vaporizing chamber 20 to the upper end of the outer pipe, as shown in FIG. This closes the upper end opening of the outer tube and prevents the liquid and gas from entering. As a result, it is possible to prevent a phenomenon in which the refrigerant generated by the pressure difference between the evaporation vaporizing chamber 20 and the outer tube 250 is discharged in a sprayed manner.
[0029]
(About 1st pipe joint, 4th pipe joint, heater, thermo breaker)
One end of the bottom end plate 172 of the vaporizing chamber 20 for vaporization leads to a passage branching into a passage connecting to the equipment to be collected and a passage to the oil drain 29, and the other end is drained of oil and flows into the refrigerant. As an introduction port 24a also serving as an opening, the flow channel is changed to either the introduction port 24a or a recovery passage formed by the outer tube 250 of the heat exchange double tube 25A. Through the first pipe joint 1 having a rubber switching function valve 24 and the fourth pipe joint 4 piped below the central pipe 251 of the heat exchange double pipe 25A and serving as an outlet for liquid refrigerant. And a bottom heater 27 that heats the evaporation vaporizing chamber 20 on the bottom surface of the bottom end plate 172, and a thermobreaker 26 that serves as a temperature adjustment means on the temperature upper limit side of the bottom end plate 172. The opposite surface (that is, the bottom surface of the evaporation chamber) is guided to discharge the oil in the evaporation chamber 20 or to fill the refrigerant. The guide grooves 173 fulfill the refrigerant induced a configuration provided when.
Further, an inlet filter 6 is provided at a position closer to the collected device side than the suction amount adjusting valve Va in a passage on the connection side with the collected device.
[0030]
(About rubber switching function valve)
As shown in FIG. 6, the rubber switching function valve 24 has a cylindrical shape that forms a passage 242 in the center, and has a plurality of cuts from the opening side edge to a thin side peripheral wall portion having a thickness of about 1.5 mm. 240 is provided. Further, a reinforcing portion 241 for reinforcing inward is formed at the upper end of the function switching valve 24.
[0031]
The rubber switching function valve 24 is fitted and attached to a valve chamber continuous with the first pipe joint 1, and when the refrigerant is recovered, as shown in FIG. 8 is in contact with the wall of the valve chamber, closes the inlet 24a of the valve chamber, passes the refrigerant to be recovered through the outer pipe 250 of the heat exchange double pipe 25A, and at the time of oil recovery and refrigerant filling, FIG. As shown in the figure, the thin side peripheral wall portion tilts inward, so that the oil staying at the bottom of the evaporation vaporizing chamber 20 passes from the oil drain 29 to the oil recovery container through the open oil drain valve Vd, and to the refrigerant. At the time of filling, the oil drain valve Vd is closed and the liquid refrigerant is filled into the collection target device A through the suction amount adjusting valve Va.
[0032]
(About 2nd pipe joint and 3rd pipe joint)
In addition, the upper part of the evaporating vaporizing chamber 20 or the top end plate 171 has an opening / closing valve Vi that opens at one end inside the evaporating vaporizing chamber 20 and changes the selective flow path in two directions at the other end. A second pipe joint and a third pipe joint 3 having one end pipe-coupled to the central pipe 251 of the heat exchange double pipe 25A and securing a two-way passage on the other end side, respectively, In this configuration, one connection port of each of the second pipe joint 2 and the third pipe joint 3 provided on the top of the top end plate is connected by a connecting pipe 5A.
[0033]
Further, the upper part of the evaporation vaporizing chamber 20 or the top end plate 171 is pipe-coupled to the second pipe joint 2 and the central pipe 251 of the heat exchange double pipe 25A, and the other end is the first condensate. The third pipe joint 3 that is piped to the pipe 14 is provided so as to penetrate therethrough.
[0034]
(Oil separator in a state of being incorporated in a refrigerant treatment device of a device to be collected) The oil separator 17 according to the first embodiment of the present invention is used to constitute a refrigerant collection and filling step, and the oil separator is incorporated. In addition to being able to be used as a refrigerant recovery and charging device, it is also possible to adopt a configuration in which the oil separator is interlocked with a refrigerant recovery device that is an existing facility. Hereinafter, an example in which the oil separator 17 is first used as a part of the liquid refrigerant recovery and filling apparatus will be described.
[0035]
The oil separator according to the first embodiment of the present invention separates the refrigerant containing the oil of the device to be collected A sucked by the compressor 11, and then recovers the refrigerant in the collection cylinder 16 as a liquid refrigerant by the condenser 12. Depending on the recovery path, this path is commonly used as a whole, and an oil recovery path for recovering oil, a circulation side refrigerant recovery recovery path for regenerating the refrigerant, and a recovered refrigerant for the equipment to be recovered are filled. It is used in a state where it is connected by piping so as to form a refrigerant charging path for the purpose.
[0036]
Specifically, one end of the first pipe joint 1 in the oil separator is connected to the apparatus A to be collected through the first collection and filling passage 1a, and one end of the second pipe joint 2 is connected to the second collection and filling passage 1b. The third pipe joint 3 is connected from the condenser 12 via the first condensate pipe 14. A second condensate pipe 15 connected to the recovery cylinder via a check valve is connected to the fourth pipe joint 4.
[0037]
(Relationship between oil separator and refrigerant recovery and filling step according to Example 1)
As is apparent from the system diagram shown in FIG. 9, the refrigerant recovery and charging step includes the device A to be recovered, the first recovery and charging passage 1a provided with the suction amount adjusting valve Va, and the heating means (bottom heater 27). Evaporation chamber 20 of the oil separator 17 provided, the second pipe joint 2, the on-off valve Vi, the second recovery and filling passage 1b, the on-off valve Vb, the dry filter 30, the compressor 11 cooled by the cooling fan 13, the condenser 12, The path leading to the first condensate pipe 14, the double pipe 25A for heat exchange of the oil separator 17, the second condensate pipe 15 piped with a check valve 31 passing in the collecting direction, and the collecting pipe 16a equipped with the on-off valve Vc The oil recovery path, the circulation side refrigerant regeneration recovery path, and the refrigerant charging path are formed as pipes. In this path, the refrigerant including the oil taken into the evaporation vaporizing chamber 20 is heat-exchanged from below through the outer pipe 250 of the double spiral pipe 25, and then a floating valve provided at the upper end of the outer pipe. 40 is pushed up slightly and separated into a gaseous refrigerant and a mixture of liquid refrigerant and oil.
[0038]
The liquid refrigerant containing the oil falls to the bottom of the evaporation vaporizing chamber 20, and further, due to the difference in specific gravity, the oil is separated into the upper layer and the liquid refrigerant is separated into the lower layer, and by the bottom heater 27 provided on the bottom end plate 172 Due to the heating, the lower layer liquid refrigerant and oil directly touch the heated bottom end plate 172, and the liquid refrigerant and moisture in the liquid refrigerant are quickly vaporized.
[0039]
On the other hand, the gas refrigerant generated by heating and evaporation of the gas refrigerant entering from the upper end of the outer pipe and the liquid refrigerant falling from the upper end of the outer pipe is removed by the dry filter 30 and then sent to the condenser 12 by the compressor 11 to be condensed. This is liquefied and pumped to the central pipe 251 of the heat exchange double pipe 25A in the oil separator 17, where the gaseous refrigerant remaining in the liquid refrigerant is cooled by an efficient heat exchange action, and further the liquid refrigerant Thus, the gas is efficiently recovered to the recovery cylinder 16 through the check valve 31 and the on-off valve Vc.
[0040]
Next, in the figure showing the refrigerant filling state shown in FIG. 10, for convenience of explanation, an arrow symbol indicating the flow direction serving as the oil recovery path is also shown. However, when the oil drain valve Vd is opened. The oil recovery path will be described in view of the fact that the intake amount adjustment valve Va is closed and the opening / closing thereof is reversed during filling.
[0041]
The oil recovery path is separated and left in the supply-side refrigerant regeneration recovery path by evaporating and removing the liquid refrigerant that has fallen to the bottom of the evaporation vaporizing chamber 20 and has become a lower layer due to a difference in specific gravity. This is a path for collecting only the oil from the first pipe joint 1 having the switching function valve 24 of the bottom end plate 172 provided at the bottom of the evaporation vaporizing chamber 20 to the oil collecting container through the oil drain valve Vd.
[0042]
Since oil recovery from the oil drain 29 uses a part common to the liquid refrigerant charging, it is performed in the stage before the refrigerant charging, and since the evaporation vaporization chamber is in the vacuum state at this stage, By ventilating the connecting pipe 5A, the second pipe joint 2 and the third pipe joint 3, the gaseous refrigerant in the recovery tank evaporates sequentially through the central pipe 251 and the connecting pipe 5A of the double pipe 25A for heat exchange. The oil is introduced into the vaporizing chamber 20, the internal pressure of the vaporizing chamber 20 is increased, and the oil drain valve at the bottom is loosened to discharge the oil using the pressure difference.
[0043]
The refrigerant charging path includes a liquid refrigerant charging pipe 16c extending through the recovery pipe 16a of the recovery cylinder 16 with the liquid refrigerant charging valve Vf interposed therebetween, and a pipe for the gas refrigerant charging and regenerating valve Ve adjacent to the recovery cylinder 16. The gas refrigerant regeneration pipe 16b that has been bypassed is connected to the second recovery and filling passage 1b of the supply-side refrigerant regeneration and recovery path by pipe connection, from the evaporation vaporizing chamber 20 of the oil separator 17 It is configured as a path that leads to the device A to be recovered through the first recovery and filling passage 1a.
[0044]
Further, in the circulation side refrigerant regeneration and recovery path shown in FIG. 11, a gas refrigerant regeneration pipe having a gas refrigerant charging regeneration valve Ve is provided between the recovery cylinder 16 and the inflow side of the on-off valve Vb having the dry filter 30 as the outflow side. Pipe connection at 16b, again the condenser 12, the first condensate pipe 14, the double pipe 25A for heat exchange of the oil separator 17, the second condensate pipe 15 piped with a check valve 31 passing in the recovery direction, A path to the recovery pipe 16a having the on-off valve Vc is configured. Using this path, the refrigerant in the recovery cylinder 16 is sucked with the compressor 11, the gas refrigerant regenerative valve Ve of the gas refrigerant regeneration pipe 16b provided in the recovery cylinder 16 in a bypass shape is opened, and the dry filter 30 is removed. Return to the inflow side of the on-off valve Vb, which is the outflow side, absorb the moisture with the dry filter 30, and send it from the compressor 11 to the condenser 12 to condense, and the center of the double pipe 25A for heat exchange in the oil separator 17 High pressure is sent to the pipe 251 to be cooled and liquefied by the heat exchange action, and is efficiently recovered and recovered to the recovery cylinder 16 through the on-off valve Vc.
[0045]
In the present invention, the method of selectively controlling the recovery, regeneration, and filling processes of the refrigerant in the apparatus to be recovered includes manual or timer switching, or use of a computer program and installation of various sensors. Automatic sequence control can also be used.
[0046]
Further, as in the first embodiment, the oil filter 17 is evaporated by providing the inlet filter 6 at a position closer to the recovered device side than the suction amount adjusting valve Va in the passage on the connection side with the recovered device. It is possible to prevent impurities such as dust from entering the vaporizing chamber 20 and each pipe joint.
[0047]
Next, FIG. 12 shows an example of the case where the oil separator according to the first embodiment is used as an integrated unit with the existing liquid refrigerant recovery device by piping connection to the existing liquid refrigerant recovery device. The configuration will be described.
[0048]
Basic recovery of the recovered refrigerant, discharge of the separated oil, and filling of the regenerated liquid refrigerant are the same as the oil separator in the state of being incorporated in the refrigerant processing device of the recovered equipment described above. Only the configuration will be described.
[0049]
As an example, the existing refrigerant recovery device (B) shown in FIG. 12 is configured such that the recovered apparatus A is filled with the recovered refrigerant and the recovered refrigerant as a gaseous refrigerant exclusively. A recovery passage b provided with a regulating valve Vax, a compressor 11, a condenser 12 cooled by a cooling fan 13, a condensed refrigerant outlet d formed on the first condensate pipe 14 via an opening / closing valve c, and an opening / closing valve Vc In addition to sequentially piping the recovery cylinder 16 provided, the suction side of the recovery cylinder 16 and the compressor 11 is provided with a filling passage e that is piped to the recovery passage b when the recovery target device A is filled with gaseous refrigerant. It is the structure connected through the on-off valve f.
[0050]
As shown in FIG. 12, the pipe connection between the existing refrigerant recovery device (B) and the oil separator 17 according to the present invention is the second recovery and filling passage 1b piped from the second pipe joint 2 of the oil separator 17. Pipe the first condensate pipe 14 leading to the third pipe joint 3 of the oil separator device to the piping port a of the existing refrigerant recovery device B and the condensing refrigerant outlet d of the existing refrigerant recovery device B. The pipe is connected to the recovery cylinder 16 provided with the on-off valve Vc through the fourth pipe joint 4 communicating from the three pipe joint 3 to the center pipe 251 of the heat exchange double pipe 25A.
[0051]
As described above, the oil separator 17 according to the present invention is connected to the existing refrigerant recovery device and the refrigerant charging device, and effectively and reliably recovers the refrigerant from the recovered device A, recovers the oil, and collects the recovered refrigerant. Since it is possible to charge the equipment to be recovered A, it is possible to efficiently recover the vaporized refrigerant without causing the air to be released into the atmosphere, and also to collect the oil and charge the refrigerant to the equipment A to be recovered. Moreover, the refrigerant recovery apparatus can be reused and used for a long time without causing the inconvenience of discarding the existing refrigerant recovery apparatus.
[0052]
Although not shown in the drawing, the recovery cylinder connected to the second recovery and filling passage 1b from the recovery cylinder 16 of the existing refrigerant recovery apparatus B is formed in the recovery cylinder in the same manner as in the refrigerant processing apparatus of the apparatus to be recovered. 16 is provided in a bypass shape, and is returned from the recovery pipe 16a and the gas refrigerant regeneration pipe 16b provided with the on-off valve Vc directly or to the inflow side of the on-off valve Vb with the dry filter 30 as the outflow side, and from the compressor 11 to the condenser 12 and condensed, and then pumped from the first condensate pipe 14 to the central pipe 251 of the heat exchange double pipe 25A in the oil separator 17 and cooled by the heat exchange action. When piped to recover to the recovery cylinder 16 through the second condensate pipe 15 with the valve 31 interposed and the on-off valve Vc, the liquid refrigerant can be recovered and recovered in high yield, and this can be recovered. A can be efficiently filled.
[0053]
Furthermore, the oil separator according to the first embodiment can change the oil discharge method. That is, the above-described on-off valve for changing the selective flow path in one direction at the upper end of the evaporating vaporizing chamber 20 or the top end plate 171 with one end opening inside the evaporating vaporizing chamber 20 and the other end side. A second pipe joint having Vi and a third pipe joint 3 having one end pipe-coupled to the center pipe 251 of the heat exchange double pipe 25A and having a two-way switching valve on the other end side are respectively provided therethrough. Furthermore, instead of the configuration in which one connection port of each of the second pipe joint 2 and the third pipe joint 3 provided on the top of the top end plate is connected by a connecting pipe 5A, as shown in FIG. The pipe joint and the air supply means 5B are connected via an air coupler plug 9 including a socket 90 and a plug adapter 91, and fresh air is introduced into the evaporation vaporizing chamber 20 using an external air compressor (not shown). , Raise the internal pressure of the evaporation chamber 20 and loosen the bottom oil drain valve Thus, the oil can be discharged using the pressure difference.
[0054]
In the case of an oil separator having this configuration, the connection port connected to the connection pipe 5A in the third pipe joint 3 is unnecessary because the connection pipe 5A is not used, so the connection port is always closed. It is good also as a state, or you may replace | exchange for the pipe joint without the said connection port beforehand.
[0055]
Next, an oil separator according to Example 2 of the present invention is shown in FIG. 14 (recovered state) and FIG. 15 (filled state). Whereas the oil separator according to the first embodiment corresponds to regeneration and recovery in the refrigerant recovery and charging device, the oil separator according to the second embodiment separates the refrigerant containing oil and regenerates the refrigerant. It is used for a refrigerant recovery and filling device that performs only filling without performing. Therefore, the oil separator according to the second embodiment does not need a portion related to the refrigerant regeneration. Therefore, the oil separator is similarly ejected in a sprayed manner when the oil is discharged, although the configuration is different from that of the first embodiment. It is intended to solve the disadvantage that the time required for oil discharge becomes very long. For convenience, parts common to the oil separator according to the first embodiment will be described using the same reference numerals.
[0056]
(Example 2: Description of oil separator simple substance: vaporization chamber for evaporation, straight pipe for recovery)
As shown in FIGS. 14 and 15, the oil separator 17 according to the second embodiment of the present invention has, as a main body, an evaporation vaporizing chamber 20 in which the upper and lower ends of the hollow body 170 are closed with a top end plate 171 and a bottom end plate 172. A partition wall 21 provided in the lower part of the top end plate 171 and provided with a passage space 20a between the periphery and the top end plate 171; and a linear recovery as a recovery passage for recovering the recovered refrigerant A straight pipe 25B is provided.
[0057]
Here, the recovery straight pipe 25B according to the second embodiment is provided perpendicular to the bottom end plate 172 in the evaporation vaporization chamber 20, and a screw groove is formed on the outer side of the upper end of the recovery straight pipe 25B. The male screw portion 46 is formed.
[0058]
The floating valve 40 attached to the upper end of the recovery straight pipe 25B has an internal space, a lower part with a female screw part 47 screwed to the male screw part 46, and a through hole 45 on the upper surface and side face. A case-like valve receiving member 41 provided through each internal space, and a circular flat plate-shaped valve body 42 that slides on the peripheral wall of the internal space of the valve receiving member 41 and opens and closes the pipe upper end opening 44. And a weight 43 provided in contact with the upper part of the valve body 42.
[0059]
With the configuration of the floating valve 40 according to the second embodiment, as shown in FIG. 15, the valve body 42 of the floating valve 40 is connected to the pipe upper end opening 44 in a state where the refrigerant to be collected is not sent from the lower side of the outer pipe. The outer tube upper end opening 44B is closed.
[0060]
Further, when the refrigerant containing oil is recovered, the floating valve 40 has a valve body 42 and a weight 43 in the valve receiving member 41 by the recovered refrigerant sent from below the straight recovery pipe as shown in FIG. It floats up from the upper end opening 44 of the pipe and opens the upper end opening 44 of the pipe. As a result, the recovery straight pipe 25B, the internal space of the valve receiving member 41, and the space in the side through-hole 45 are all connected, and the refrigerant to be recovered passes through the through-hole 45 that leads to the side surface. It is sent to the vaporization chamber 20. The through hole formed in the upper surface of the valve receiving member 41 functions as an air hole and ensures smooth opening and closing of the valve body 42.
[0061]
On the other hand, when the oil is discharged, the space in the evaporation vaporizing chamber 20 and the space in the recovery straight pipe 25B are partitioned, and oil generated due to a pressure difference between the evaporation vaporizing chamber and the outer pipe or the recovery straight pipe Can be prevented from being discharged in a sprayed manner.
[0062]
(About the first pipe joint, heater, thermo breaker)
The bottom end plate 172 of the evaporation chamber 20 has one end leading to the outside of the equipment to be collected and the other end opened into the evaporation chamber 20 as an inlet 24a that serves both for oil discharge and refrigerant flow. In addition, the first pipe joint 1 having a switching function valve 24 for changing the flow passage is provided in either the introduction port 24a or the recovery passage formed by the recovery straight pipe 25B. As with the oil separator, a bottom heater 27 for heating the evaporation vaporizing chamber 20 and a thermobreaker 26 for adjusting the upper temperature limit of the bottom end plate 172 are provided on the bottom surface of the bottom end plate 172. This is a configuration in which a guide groove 173 is provided on the side surface (that is, the bottom surface in the evaporation vaporizing chamber) to guide the discharge of oil in the evaporation vaporizing chamber 20 or the refrigerant when the refrigerant is charged.
Further, an inlet filter 6 is provided at a position closer to the recovered device side than the on-off valve Vg in the passage on the connection side with the recovered device.
[0063]
(Switching function valve)
The switching function valve 24 according to the second embodiment is different from that according to the first embodiment, and has improved durability. Specifically, as shown in FIG. 19, a metal reinforcing portion 241 and a cylindrical shape that forms a passage 242 in the center, a plurality of thin side peripheral wall portions having a thickness of about 1.5 mm from the opening side edge portion. A valve main body 243 provided with a notch 240 is fitted.
[0064]
The switching function valve 24 is fitted and attached to the valve chamber continuous with the first pipe joint 1, and when the refrigerant is recovered, as shown in FIG. 20, a thin side peripheral wall portion 244 has a valve chamber. As shown in FIG. 21, the refrigerant to be recovered is passed through the outer pipe 250 of the double pipe 25A for heat exchange, and when the oil is discharged and the refrigerant is filled. When the side peripheral wall 244 tilts inward, the oil staying at the bottom in the evaporation vaporizing chamber 20 is discharged to an oil recovery container prepared outside through the on-off valve Vg. The to-be-collected apparatus A is filled through the on-off valve Vg.
[0065]
(Oil separator in a state where it is incorporated in a refrigerant treatment device of a device to be collected) The oil separator 17 according to the second embodiment of the present invention is different from the oil separator according to the first embodiment in that the recovery and filling step does not regenerate the refrigerant. Is used. However, it can be used as a refrigerant recovery and charging device incorporating the oil separator, and the configuration in which the oil separator can be interlocked with a refrigerant recovery device that is an existing facility is described in Example 1. This is the same as the oil separator. Hereinafter, an example in which the oil separator 17 is first used as a part of the liquid refrigerant recovery and filling apparatus will be described.
[0066]
The oil separator according to the second embodiment of the present invention separates the refrigerant including the oil of the apparatus A to be collected, which is sucked by the compressor 11, and the oil is supplied from the lower side of the evaporation chamber for the function switching valve, the first pipe joint, and the inlet filter. The refrigerant is recovered in the recovery cylinder 16 and then introduced into the evaporation vaporization chamber. Like the oil, the refrigerant is sequentially passed through the function switching valve, the first pipe joint, and the inlet filter from below the evaporation vaporization chamber. In this way, pipes are connected so as to fill the equipment to be collected.
[0067]
Specifically, as shown in the system diagram of FIG. 16, in the oil separator according to the second embodiment, the first pipe joint 1 is connected to the device to be collected A via the first collection and filling passage 1a, The second pipe joint 2 is configured to be connected to the compressor 11 via the second recovery and filling passage 1b.
[0068]
(Relationship between oil separator and refrigerant recovery and filling process according to Example 2)
As shown in FIG. 16, the refrigerant recovery and filling step includes the steps of refrigerant recovery, oil recovery, oil discharge, and refrigerant charging.
The refrigerant is recovered by connecting to the apparatus A to be recovered, the first recovery and filling passage 1a provided with the on-off valve Vg, the straight pipe 25B for recovery of the oil separator 17, and the oil separator 17 provided with heating means (bottom heater 27). Vaporizing chamber 20, second pipe joint 2, on-off valve Vi, second recovery filling passage 1b, on-off valve Vb, compressor 11, cooling fan 13 cooled condenser, liquid refrigerant filling valve, passing in the recovery direction A liquid refrigerant charging pipe 16c provided with a check valve 31, a recovery pipe 16a provided with an on-off valve Vc, and a recovery cylinder 16 are provided. That is, in the refrigerant recovery and filling process used in the second embodiment, the liquefied refrigerant is not passed through the evaporation vaporization chamber before being sent to the recovery cylinder as compared with the refrigerant recovery and charging process used in the first embodiment. The configuration does not perform heat exchange of the refrigerant.
[0069]
In addition, the recovery and discharge of oil are basically the same as in the first embodiment, including the configuration and action in which the liquid refrigerant containing oil falls to the bottom of the evaporation vaporization chamber 20 and is separated into oil and refrigerant. It is. Needless to say, the path to be introduced into the evaporation vaporizing chamber uses the outer pipe of the heat exchange double pipe 25A in the first embodiment, whereas the recovery straight pipe 25B is used in the second embodiment.
[0070]
For the charging of the refrigerant, the refrigerant is introduced from the recovery cylinder 16 into the evaporation vaporizing chamber 20 from the second pipe joint 2 through the second recovery charging path 1b from the refrigerant charging path 16e provided with the on-off valves Vb and Ve, The device to be collected A is filled through the first collection and filling passage 1a.
[0071]
In the oil separator according to the second embodiment, as in the first embodiment, the open / close valve Vi connected to the second pipe joint 2 and the air supply means 5B are connected to the air coupler including the socket 90 and the plug adapter 91. Connected via a plug 9 and using an external air compressor (not shown), fresh air is introduced into the evaporation vaporization chamber 20, the internal pressure of the evaporation vaporization chamber 20 is increased, and the on-off valve Vg at the bottom is loosened. Thus, the oil can be discharged using the pressure difference. At this time, the shape of the second pipe joint, having one end opened inside the evaporation vaporizing chamber 20 and having an on-off valve Vi for changing the two-way selective flow path on the other end side, The operation of introducing fresh air into the evaporation vaporizing chamber 20 can be simplified.
[0072]
As described above, also in the oil separator according to the second embodiment, the upper end opening 44 of the outer tube is closed by the dead weight of the floating valve 40 against the ingress of the liquid refrigerant for filling, and the inside of the evaporation vaporizing chamber 20 and the outer tube 250 are closed. It is possible to prevent a phenomenon in which the refrigerant generated due to the pressure difference from the inside is discharged in the form of a spray.
[0073]
Moreover, according to the structure of the oil separator which concerns on the said Example 2, the double pipe | tube for heat exchange which has the complicated spiral shape in the oil separator which concerns on Example 1 is not required, and manufacturing cost can be reduced significantly. it can.
[0074]
Further, since the shape of the recovery straight pipe is linear, and the occupied volume in the evaporation vaporizing chamber 20 can be made extremely small, evaporation is not hindered when the refrigerant evaporates, and the recovery straight pipe is moved to the outer surface. The refrigerant and oil hardly adhere to each other, and the processing efficiency can be improved.
[0075]
(Example 3)
Further, as another example (Example 3) of the oil separator according to the present invention, as shown in FIG. 17, the oil separator 17 according to Example 1 described above is improved, An external heater 23 in which a heating wire is provided in a coil shape can be wound around the hollow body and covered. Further, not only the hollow body portion but also the bottom portion can be covered with the external heater 23. Thus, by using the external heater 23, the vaporization efficiency of the liquid refrigerant can be improved and the refrigerant recovery rate can be increased.
[0076]
Example 4
Further, as shown in FIG. 18 as another embodiment (embodiment 4), when the amount of refrigerant to be recovered is large, a sheathed heater 22 can be provided to promote the vaporization of the liquid refrigerant. The oil separator according to Example 3 has a configuration in which the inside of the heat exchange spiral tube is extended downward from the top end plate, but the installation method of the sheathed heater 22 can be freely set within the range of the design change. The number can also be two or more.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a liquid refrigerant recovery state in an oil separator for refrigerant recovery and filling of an apparatus to be recovered according to Embodiment 1 of the present invention.
FIG. 2 is an explanatory diagram showing an oil discharge state in an oil separator for refrigerant collection and filling of a device to be collected according to Embodiment 1 of the present invention.
FIG. 3 is an explanatory diagram showing a liquid refrigerant filling state in an oil separator for refrigerant collection and filling of a device to be collected according to Embodiment 1 of the present invention.
FIG. 4 is an explanatory diagram showing a lowered state of the floating valve according to the first embodiment of the invention.
FIG. 5 is an explanatory diagram showing a lifted state of the floating valve according to the first embodiment of the invention.
6A is a plan view showing a rubber switching function valve according to the first embodiment of the present invention, FIG.
FIG. 7 is a cross-sectional view showing a closed state of the rubber switching function valve according to the first embodiment of the present invention.
FIG. 8 is a cross-sectional view showing an open state of the rubber switching function valve according to the first embodiment of the present invention.
FIG. 9 is an explanatory diagram showing a refrigerant recovery state in a state in which the refrigerant separator for filling and recovering refrigerant according to the first embodiment of the present invention is incorporated in the refrigerant recovery and charging device.
FIG. 10 is an explanatory diagram showing a liquid or gas refrigerant filling state in a state where the refrigerant separator for filling and collecting refrigerant according to the first embodiment of the present invention is incorporated in the refrigerant collecting and filling apparatus.
FIG. 11 is an explanatory diagram showing a state of gas refrigerant regeneration in the oil separator for refrigerant recovery and filling according to Embodiment 1 of the present invention.
FIG. 12 is an explanatory diagram showing a state where the refrigerant recovery and filling oil separator according to the first embodiment of the present invention is connected to existing equipment.
FIG. 13 is an explanatory view showing a state in which another oil discharging means is provided in the refrigerant separator for filling and collecting refrigerant according to the first embodiment of the present invention.
FIG. 14 is an explanatory diagram showing a liquid refrigerant recovery state in an oil separator for refrigerant recovery and filling according to Embodiment 2 of the present invention.
FIG. 15 is an explanatory diagram showing a liquid refrigerant filling state in an oil separator for refrigerant collection and filling according to Embodiment 2 of the present invention.
FIG. 16 is an explanatory view showing a state in which an oil separator for refrigerant recovery and filling according to a second embodiment of the present invention is connected to existing equipment.
FIG. 17 is an explanatory view showing an oil separator for refrigerant recovery and filling according to Embodiment 3 of the present invention.
FIG. 18 is an explanatory view showing an oil separator for refrigerant recovery and filling according to Embodiment 4 of the present invention.
FIG. 19 is an explanatory view showing a switching function valve according to Embodiment 2 of the present invention.
FIG. 20 is an explanatory diagram showing a state at the time of recovery of the switching function valve according to the second embodiment of the invention.
FIG. 21 is an explanatory diagram showing a state when the switching function valve according to the second embodiment of the present invention is filled.
FIG. 22 is a system diagram of a refrigerant recovery apparatus according to a representative known invention.
[Explanation of symbols]
1 First pipe fitting
1a First collection and filling passage
1b Second collection and filling passage
2 Second pipe fitting
3 Third pipe fitting
4 Fourth pipe fitting
5A connecting pipe
5B Air supply means
6 Inlet filter
7 Stand
8 Handle
9 Air coupler plug
11 Compressor
12 Condenser
13 Cooling fan
14 First condensate tube
15 Second condensate tube
16 Collection cylinder
16a Recovery tube
16b Gas refrigerant regeneration pipe
16c Liquid refrigerant filling tube
16e Refrigerant charging passage
17 Oil separator
18 Mounting flange
170 Hollow body
171 Top plate
172 Bottom end plate
173 Guide groove
20 Evaporation chamber
20a Aisle space
21 Bulkhead
22 Seed heater
23 External heater
230 Insulation
24 Switching function valve
240 depth of cut
241 reinforcement
242 passage
243 Valve body
244 Side wall
24a inlet
25A double tube for heat exchange
25B Straight pipe for recovery
250 outer pipe
251 Central tube
26 Thermobreaker
27 Bottom heater
29 Oil drain
30 Dry filter
31 Check valve
40 Floating valve
41 Valve seat
42 Disc
43 spindles
44 Outer tube top opening
45 Through hole
46 Male thread
47 Female thread
90 socket
91 Plug adapter
A Collected equipment
B Existing refrigerant recovery unit
Va intake adjustment valve
Vb open / close valve
Vc open / close valve
Vd Oil drain valve
Ve Gas refrigerant charging regeneration valve
Vf Liquid refrigerant filling valve
Vax regulating valve
Vg open / close valve
Vh open / close valve
Vi On / off valve
a Piping port
b Collection passage
c On-off valve
d Condensate refrigerant outlet
e Filling passage
f On-off valve

Claims (7)

被回収機器(A)のオイルを含む冷媒から前記オイルを分離して凝縮器により液体冷媒として回収ボンベに回収し、再生した液体冷媒を被回収装置に充填する冷媒回収充填装置に使用するところのオイルと液体冷媒を加熱手段で分離する冷媒回収充填用オイルセパレーターであって、
中空胴部(170)の上下を天端板(171)と底端板(172)で閉塞した蒸発用気化室(20)を本体とし、
前記天端板(171)の下部に位置し内部周囲及び天端板(171)との間に通路空間(20a)を確保して隔壁(21)を設けるとともに、
中心管(251)が液体冷媒回収通路となり、外管(250)が冷媒回収時に被回収冷媒を回収する回収通路となる熱交換用二重管(25A)を、溜まりを招かないように縦中心周りに螺旋形に形成して蒸発用気化室(20)内に設け、
該熱交換用二重管(25A)における外管(250)の上端には、該外管(250)の上端を閉塞するとともに中心管(251)が貫通する浮動弁(40)を設け、
前記蒸発用気化室(20)の底端板(172)には、一端が被回収機器との連結側となる通路とオイルドレン(29)への通路とに分岐する通路に通じ、他端がオイル排出と冷媒流入とを兼ねる導入口(24a)として蒸発用気化室(20)内に開口し、且つ該導入口(24a)と前記熱交換用二重管(25A)の外管(250)で形成される回収通路とのいずれかに流通路を変更する切換機能弁(24)を具備する第一管継手(1)と、
前記熱交換用二重管(25A)の中心管(251)の下部に配管されて液体冷媒の流出口となる第四管継手(4)を貫設するとともに、底端板(172)の底面には蒸発用気化室(20)を加熱する底部ヒーター(27) と、底部の温度調節手段とを設け、
前記蒸発用気化室(20)の上部又は前記天端板(171)には、一端が蒸発用気化室(20)の内部で開口し他端が二方向の選択的な流通路の変更が可能な開閉弁(Vi)を具備する第二管継手(2)と、
一端が前記熱交換用二重管(25A)の中心管(251)の上部に配管され他端がニ方向の流通路を具備する第三管継手(3)を設け、
前記浮動弁(40)は、外管(250)の上端を開閉可能な弁体(42)と、該弁体(42)を受ける弁受け部材(41)と、前記弁体(42)上に設けられる錘(43)とからなり、弁体(42)の上昇により外管(250)の上端を開放することを特徴とする被回収機器の冷媒回収充填用オイルセパレーター。
The oil is separated from the refrigerant containing the oil of the equipment to be recovered (A), recovered as a liquid refrigerant in a recovery cylinder by a condenser, and used for a refrigerant recovery and filling apparatus that fills the recovered apparatus with the recovered liquid refrigerant. An oil separator for refrigerant recovery and filling that separates oil and liquid refrigerant by a heating means,
The evaporation chamber (20) with the top and bottom end plates (171) and bottom end plate (172) closed at the top and bottom of the hollow body (170) is the main body,
Provided a partition wall (21) to secure a passage space (20a) between the inner periphery and the top end plate (171) located under the top end plate (171),
The center pipe (251) serves as a liquid refrigerant recovery passage, and the outer pipe (250) serves as a recovery passage for collecting the refrigerant to be recovered during refrigerant recovery. It is formed in a vaporizing chamber (20) for evaporation formed in a spiral around,
The upper end of the outer pipe (250) in the double pipe for heat exchange (25A) is provided with a floating valve (40) that closes the upper end of the outer pipe (250) and penetrates the central pipe (251),
The bottom end plate (172) of the evaporation vaporizing chamber (20) has one end leading to a passage branching into a passage connecting to the equipment to be collected and a passage leading to the oil drain (29), and the other end. An opening (24a) serving as both an oil discharge and a refrigerant inflow opens into the evaporation vaporizing chamber (20), and the inlet (24a) and the outer pipe (250) of the heat exchange double pipe (25A) A first pipe joint (1) comprising a switching function valve (24) for changing the flow passage to any of the recovery passages formed by
The bottom pipe of the bottom end plate (172) is provided through the fourth pipe joint (4) that is piped under the center pipe (251) of the double pipe for heat exchange (25A) and serves as an outlet for the liquid refrigerant. Is provided with a bottom heater (27) for heating the evaporation chamber (20), and a temperature control means at the bottom,
The upper part of the evaporation chamber (20) or the top end plate (171) has one end opened inside the evaporation chamber (20) and the other end can be selectively changed in two directions. A second pipe joint (2) having a proper on-off valve (Vi),
A third pipe joint (3) having one end piped on top of the central pipe (251) of the double pipe for heat exchange (25A) and the other end having a two-way flow path (3),
The floating valve (40) includes a valve body (42) capable of opening and closing an upper end of the outer pipe (250), a valve receiving member (41) receiving the valve body (42), and the valve body (42). An oil separator for recovering and filling refrigerant in a device to be recovered, comprising a weight (43) provided and opening an upper end of an outer pipe (250) by raising the valve body (42).
第二管継手(2)及び第三管継手(3)における外部側の夫々の一端を連結管(5A)で連結してなることを特徴とする請求項1記載の被回収機器の冷媒回収充填用オイルセパレーター。The refrigerant recovery and filling of the equipment to be recovered according to claim 1, wherein one end on the outside of each of the second pipe joint (2) and the third pipe joint (3) is connected by a connecting pipe (5A). Oil separator. 被回収機器(A)のオイルを含む冷媒を、前記オイルと冷媒に分離して回収し、オイルと分離した冷媒を被回収装置に充填する冷媒回収充填装置に使用するところの冷媒回収充填用オイルセパレーターであって、
中空胴部(170)の上下を天端板(171)と底端板(172)で閉塞した蒸発用気化室(20)を本体とし、
前記天端板(171)の下部に位置し内部周囲及び天端板(171)との間に通路空間(20a)を確保して隔壁(21)を設け、冷媒回収時に被回収冷媒を回収する通路となる回収用直管(25B)を蒸発用気化室(20)内に設け、
該回収用直管(25B)の上端には、該回収用直管(25B)の上端を閉塞する浮動弁(40)を設け、
前記蒸発用気化室(20)の底端板(172)には、一端が外部へ通じ、他端がオイル排出と冷媒流入とを兼ねる導入口(24a)として蒸発用気化室(20)内に開口する第一管継手(1)を貫設するとともに、底端板(172)の底面には蒸発用気化室(20)を加熱する底部ヒーター(27) と、底部の温度調節手段とを設け、
前記蒸発用気化室(20)の上部又は前記天端板(171)には、一端が蒸発用気化室(20)の内部で開口し他端が蒸発用気化室(20)の外部へ通じる第二管継手(2)を設けたものとし、
前記浮動弁(40)は、管上端開口部(44)を開閉可能な弁体(42)と、該弁体(42)を受ける弁受け部材(41)と、前記弁体(42)上に設けられる錘(43)とからなり、弁体(42)の上昇により管上端開口部(44)を開放することを特徴とする冷媒回収充填用オイルセパレーター。
Refrigerant recovery and filling oil for use in a refrigerant recovery and filling device that recovers the refrigerant containing the oil of the equipment to be recovered (A) by separating it into the oil and the refrigerant and filling the recovered device with the refrigerant separated from the oil. A separator,
The evaporation chamber (20) with the top and bottom end plates (171) and bottom end plate (172) closed at the top and bottom of the hollow body (170) is the main body,
A partition wall (21) is provided at the lower part of the top end plate (171) to secure a passage space (20a) between the inner periphery and the top end plate (171), and recovers the refrigerant to be recovered when recovering the refrigerant. A recovery straight pipe (25B) serving as a passage is provided in the vaporization chamber (20),
At the upper end of the recovery straight pipe (25B), a floating valve (40) for closing the upper end of the recovery straight pipe (25B) is provided,
One end of the bottom end plate (172) of the evaporation chamber (20) communicates with the outside and the other end serves as an inlet (24a) for both oil discharge and refrigerant inflow. The first pipe joint (1) that opens is provided, and the bottom end plate (172) is provided with a bottom heater (27) that heats the evaporation vaporizing chamber (20) and a temperature control means for the bottom. ,
The upper part of the evaporation chamber (20) or the top end plate (171) has one end opened inside the evaporation chamber (20) and the other end leading to the outside of the evaporation chamber (20). A two-pipe joint (2) shall be provided.
The floating valve (40) includes a valve body (42) capable of opening and closing a pipe upper end opening (44), a valve receiving member (41) for receiving the valve body (42), and the valve body (42). An oil separator for refrigerant recovery and filling, comprising a weight (43) provided, and opening the upper end opening (44) of the pipe by raising the valve body (42).
第二管継手(2)における外部側の一端に、外部のエアー供給手段(5B)を連結し、外部からエアーを導入することにより、蒸発用気化室(20)内に残留するオイルを排出することを特徴とする請求項1又は3記載の冷媒回収充填用オイルセパレーター。The external air supply means (5B) is connected to one end on the external side of the second pipe joint (2), and the oil remaining in the evaporation vaporizing chamber (20) is discharged by introducing air from the outside. The oil separator for refrigerant recovery filling according to claim 1 or 3. 第一管継手(1)に具備させた流通路を変更する切換機能弁(24)は、当該第一管継手の内面に沿う筒状体とし、当該筒状体の上端には内側へ厚みを増した補強部(241)を形成するとともに、筒状体の側壁から下端縁部にかけて開口する複数の切込み(240)を形成し、各切込み(240)間の側壁が開閉可能な弁機構となるゴム製の切換機能弁(24)としたことを特徴とする請求項1、2、3又は4記載の被回収機器の冷媒回収充填用オイルセパレーター。The switching function valve (24) for changing the flow path provided in the first pipe joint (1) is a cylindrical body along the inner surface of the first pipe joint, and the upper end of the cylindrical body has a thickness inward. In addition to forming an increased reinforcing portion (241), a plurality of cuts (240) opening from the side wall of the cylindrical body to the lower end edge portion are formed, and the side wall between the cuts (240) can be opened and closed. 5. The oil separator for refrigerant collection and filling of a device to be collected according to claim 1, wherein the valve is a rubber switching function valve (24). 断熱材(230)中にコイル状に電熱線を巻着してなる外部ヒーター(23)によって、中空胴部を被覆したことを特徴とする請求項1、2、3、4又は5記載の被回収機器の冷媒回収充填用オイルセパレーター。The covered body according to claim 1, 2, 3, 4, or 5, wherein the hollow body is covered with an external heater (23) formed by winding a heating wire in a coil shape in the heat insulating material (230). Oil separator for refrigerant recovery filling of recovery equipment. 蒸発用気化室内にシーズヒーター(22)を設けたことを特徴とする請求項1、2、3、4、5又は6記載の冷媒回収充填用オイルセパレーター。The oil separator for refrigerant recovery charging according to claim 1, 2, 3, 4, 5 or 6, further comprising a sheathed heater (22) provided in the vaporizing chamber for evaporation.
JP2003190034A 2003-07-02 2003-07-02 Oil separator for refrigerant recovery filling of equipment to be recovered Expired - Fee Related JP3932385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190034A JP3932385B2 (en) 2003-07-02 2003-07-02 Oil separator for refrigerant recovery filling of equipment to be recovered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190034A JP3932385B2 (en) 2003-07-02 2003-07-02 Oil separator for refrigerant recovery filling of equipment to be recovered

Publications (2)

Publication Number Publication Date
JP2005024167A JP2005024167A (en) 2005-01-27
JP3932385B2 true JP3932385B2 (en) 2007-06-20

Family

ID=34188036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190034A Expired - Fee Related JP3932385B2 (en) 2003-07-02 2003-07-02 Oil separator for refrigerant recovery filling of equipment to be recovered

Country Status (1)

Country Link
JP (1) JP3932385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104501485A (en) * 2014-12-23 2015-04-08 西北工业大学 Equipment and method for recycling freon in refrigerators

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006030698B3 (en) * 2006-06-30 2008-03-06 Danfoss A/S Refrigerant exchange arrangement
CN104034103B (en) * 2014-07-01 2016-07-13 吉首大学 Ammonia refrigeration intercooler
JP6491902B2 (en) * 2015-02-17 2019-03-27 デンゲン株式会社 Oil separator for refrigerant recovery filling
CN105258373B (en) * 2015-10-29 2018-02-09 松下冷机系统(大连)有限公司 Injection oil return refrigeration system with oil-liquid separator
AU2019347324B2 (en) * 2018-09-28 2022-07-21 Daikin Industries, Ltd. Refrigerant charging method, heat source unit, and renewed refrigeration cycle apparatus
CN113932502B (en) * 2021-10-27 2023-10-27 霍普(南京)生命科学研究院有限公司 Oil-gas separator for carbon dioxide air source heat pump water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104501485A (en) * 2014-12-23 2015-04-08 西北工业大学 Equipment and method for recycling freon in refrigerators

Also Published As

Publication number Publication date
JP2005024167A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP3903250B2 (en) Refrigerant processing device and oil separator device for equipment to be collected
EP2718130B1 (en) Air conditioner in electric vehicle
CN101263354B (en) Refrigerator and a condensate evaporator therefor
KR20110128138A (en) Device for drying bulk material in at least one storage container
KR20090045372A (en) System and method for managing water content in a fluid
CN107076434B (en) Water-cooling split air-conditioning system
CN107110516B (en) Air-conditioning heat pump system and evaporative cooling system
JP3932385B2 (en) Oil separator for refrigerant recovery filling of equipment to be recovered
KR101275188B1 (en) Water furifier with ice maker
KR101602236B1 (en) Water purifier with a ice making means
KR20150031084A (en) Apparatus for retrieving volatile organic compound
KR102387361B1 (en) Fish Freeze Drying Device
KR101711337B1 (en) Air water system
KR101343462B1 (en) Ice-making and cooling system
KR102160586B1 (en) Cold trap for multi cooling
KR102387373B1 (en) Fish Freeze Drying Device
KR101568115B1 (en) Oil-vapor separator
CN218738753U (en) Base station and cleaning equipment with same
CN107490225B (en) Waterless ice making device, freezing door body and refrigeration equipment
KR101231043B1 (en) Water furifier with ice maker
CN221122691U (en) Refrigerating apparatus
KR102013078B1 (en) Apparatus for Retrieving Volatile Organic Compound
CN215855585U (en) Solution regeneration system of heat source tower
CN220003004U (en) Oil removal system for chemical fiber production waste gas
JP3739986B2 (en) Refrigerant recovery device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Ref document number: 3932385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees