[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3928085B2 - Non-watering snow melting system and method of operating the system - Google Patents

Non-watering snow melting system and method of operating the system Download PDF

Info

Publication number
JP3928085B2
JP3928085B2 JP2004182837A JP2004182837A JP3928085B2 JP 3928085 B2 JP3928085 B2 JP 3928085B2 JP 2004182837 A JP2004182837 A JP 2004182837A JP 2004182837 A JP2004182837 A JP 2004182837A JP 3928085 B2 JP3928085 B2 JP 3928085B2
Authority
JP
Japan
Prior art keywords
heat
temperature
septic tank
snow melting
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004182837A
Other languages
Japanese (ja)
Other versions
JP2006002539A (en
Inventor
輝幸 福原
竜司 守本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui
Original Assignee
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui filed Critical University of Fukui
Priority to JP2004182837A priority Critical patent/JP3928085B2/en
Publication of JP2006002539A publication Critical patent/JP2006002539A/en
Application granted granted Critical
Publication of JP3928085B2 publication Critical patent/JP3928085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Road Paving Structures (AREA)

Description

本発明は無散水融雪システム及びそのシステムの運転方法に関する。さらに詳しくは、融雪エリアに敷設したパイプ内に熱媒を循環させることで融雪を行う無散水融雪システム及びそのシステムの運転方法に関する。なお、本明細書において「融雪エリア」とは、建物の入口付近、駐車場及び歩道等、積雪した雪を溶かしたい領域ないしは範囲のことをいう。   The present invention relates to a non-watering snow melting system and a method for operating the system. More specifically, the present invention relates to a non-sprinkling snow melting system that melts snow by circulating a heat medium in a pipe laid in a snow melting area and an operation method of the system. In the present specification, the “snow melting area” refers to an area or a range in which snow is to be melted, such as the vicinity of the entrance of a building, a parking lot, and a sidewalk.

従来より、寒冷地においては、主として積雪による交通障害を防ぐために種々の融雪システムが採用されており、そのうち比較的狭いエリア、例えば個々の建物の入口付近に積もった雪を溶かすシステムとして、夏期に太陽熱を地中に蓄え、この蓄えた熱を熱媒にのせて融雪エリアに敷設したパイプに供給するものがある(例えば、特許文献1参照)。
この特許文献1に記載されているシステムでは、地表を掘削して所定深さを有する埋設部を設け、この埋設部の周囲に断熱層を形成し、この断熱層で囲まれた空間にステンレス製パイプで形成した採熱管を配管すると共に前記空間に蓄熱部材を充填している。また、前記採熱管と接続される放集熱管を融雪エリアに敷設し、採熱管及び採熱管内に循環液を封入すると共に、この循環液が採熱管から放集熱管を通って放集熱管に戻り再び循環するようにポンプ装置を設けている。
Conventionally, in cold regions, various snow melting systems have been adopted mainly to prevent traffic obstacles due to snow accumulation. Some solar heat is stored in the ground, and the stored heat is put on a heat medium and supplied to a pipe laid in a snow melting area (see, for example, Patent Document 1).
In the system described in Patent Document 1, a buried portion having a predetermined depth is provided by excavating the ground surface, a heat insulating layer is formed around the buried portion, and a space surrounded by the heat insulating layer is made of stainless steel. A heat collecting pipe formed of a pipe is piped and the space is filled with a heat storage member. In addition, a heat collecting tube connected to the heat collecting tube is laid in the snow melting area, and the circulating fluid is sealed in the heat collecting tube and the heat collecting tube, and the circulating fluid passes from the heat collecting tube through the heat collecting tube to the heat collecting tube. A pump device is provided to circulate back again.

特開平7−279114号公報(図1)JP-A-7-279114 (FIG. 1)

しかしながら、前記特許文献1記載のシステムは、蓄熱部材に蓄えた熱を、採熱管を介して循環液に伝達しているため、熱効率が悪いという問題がある。また、蓄熱する部分として、地表を掘削して形成した凹所の底部や壁部に断熱層を形成し、ついで採熱管及び蓄熱部材を前記凹所内に設けており、設置コストが高くつくという問題がある。   However, the system described in Patent Document 1 has a problem that heat efficiency is poor because the heat stored in the heat storage member is transmitted to the circulating fluid through the heat collection pipe. In addition, as a part for storing heat, a heat insulating layer is formed on the bottom and wall of a recess formed by excavating the ground surface, and then a heat collecting pipe and a heat storage member are provided in the recess, which increases the installation cost. There is.

本発明は、このような問題を解決するためになされたものであり、蓄熱した熱の利用効率を高めると共に、構造を簡略化して設置コストを小さくすることができる無散水融雪システム及びそのシステムの運転方法を提供することを目的としている。   The present invention has been made to solve such a problem, and while improving the utilization efficiency of the stored heat, it is possible to simplify the structure and reduce the installation cost, and a non-sprinkling snow melting system of the system. The purpose is to provide driving methods.

本発明の無散水融雪システムは、融雪エリアに敷設され、その内部を熱媒が流れる吸放熱パイプと、排水処理のために地中に埋設された既設の浄化槽であって、前記熱媒を貯蔵し得る浄化槽と、この浄化槽内の熱媒を前記吸放熱パイプの入口部に送ると共に、当該吸放熱パイプの出口部からの熱媒を前記浄化槽内に戻すポンプ部と、前記浄化槽内に貯蔵された熱媒の表面を覆う断熱材層と、を備えたことを特徴としている。 The non-sprinkling snow melting system of the present invention is a heat-absorbing and radiating pipe laid in a snow melting area, in which a heat medium flows, and an existing septic tank buried in the ground for wastewater treatment, and stores the heat medium A septic tank that can be used, a heat medium in the septic tank, and a pump unit that returns the heat medium from the outlet part of the heat radiating and radiating pipe to the septic tank, and is stored in the septic tank. And a heat insulating material layer covering the surface of the heat medium .

前記ポンプ部を、前記吸放熱パイプの入口部と浄化槽内部とを接続する送り管と、前記吸放熱パイプの出口部と浄化槽内部とを接続する戻り管と、前記送り管の管路に配設された循環ポンプとで構成することができる。   The pump section is disposed in a feed pipe that connects the inlet portion of the heat absorbing and radiating pipe and the inside of the septic tank, a return pipe that connects an outlet portion of the heat absorbing and radiating pipe and the inside of the septic tank, and a pipe line of the feed pipe The circulation pump can be configured.

本発明では、浄化槽内に貯蔵した熱媒(水、ブライン等)を、直接にポンプで吸放熱パイプ内を循環させているので、熱媒が有する熱を効率よく利用することができる。   In the present invention, since the heat medium (water, brine, etc.) stored in the septic tank is directly circulated in the heat absorbing / dissipating pipe with a pump, the heat of the heat medium can be used efficiently.

また、本発明では、熱媒を貯蔵する手段として浄化槽を利用している。この浄化槽は、従来より、下水道が整備されていない地域における家庭や小規模事業所から排出されるし尿や生活雑排水を接触ばっ気等により処理した後に河川等に放流するのに用いられているが、近年、水質環境保全の観点から公共下水道や農業集落排水設備が積極的に整備されている。これに伴い、今後は既存の浄化槽が解体又は処分され、大型の産業廃棄物が大量に発生することが考えられるが、本発明はかかる浄化槽を熱媒貯蔵手段として再利用するものであり、システムを構築するためのコストを低く抑えることができると共に、産業廃棄物の発生をなくして環境保全に寄与することもできる。   Moreover, in this invention, the septic tank is utilized as a means to store a heat medium. This septic tank has been conventionally used to discharge human waste and household wastewater discharged from households and small-scale establishments in areas where sewerage is not established, and then discharge them to rivers and the like after contact aeration. However, in recent years, public sewers and agricultural village drainage facilities have been actively developed from the viewpoint of water quality environmental conservation. Along with this, it is considered that the existing septic tank will be dismantled or disposed of in the future, and a large amount of large-scale industrial waste will be generated. However, the present invention reuses such a septic tank as a heat medium storage means. The cost for constructing can be kept low, and the generation of industrial waste can be eliminated, contributing to environmental conservation.

さらに、これまで有効に利用されていなかった浅層地中熱(地表から3m程度の深さまでの地中熱)を、太陽熱と共に利用しており、システムの構造が簡単であることと相俟って維持管理コストを非常に小さくすることができる。こうして、イニシャルコスト及びランニングコストが大幅に削減されたことにより、従来よりコストの点で普及が遅れていた、暖地積雪地域における個人を対象とした融雪システムを広く普及させることが可能になる。   In addition, shallow geothermal heat that has not been used effectively so far (geothermal heat from the surface to a depth of about 3m) is used together with solar heat, coupled with the simplicity of the system structure. Maintenance costs can be greatly reduced. Thus, the initial cost and the running cost have been greatly reduced, so that it is possible to widely disseminate a snow melting system for individuals in a warm snowy area, which has been delayed in cost in comparison with the past.

本発明では、前記浄化槽内に貯蔵された熱媒の表面を覆う断熱材層を設けている。これにより熱媒から地表に熱が逃げたり、又は逆に地表から熱媒に熱が流入するのを抑制して、前記浅層地中熱の利用効率を高めることができる。
また、前記融雪エリア内に設けられた温度センサと、この温度センサからの信号に基づいて前記吸放熱パイプへの熱媒の供給を制御する制御手段と、をさらに備えているのが好ましい。
さらに、本発明の無散水融雪システムの運転方法は、融雪エリアに敷設され、その内部を熱媒が流れる吸放熱パイプと、排水処理のために地中に埋設された既設の浄化槽であって、前記熱媒を貯蔵し得る浄化槽と、この浄化槽内の熱媒を前記吸放熱パイプの入口部に送ると共に、当該吸放熱パイプの出口部からの熱媒を前記浄化槽内に戻すポンプ部と、前記融雪エリア内に設けられた温度センサと、この温度センサからの信号に基づいて前記吸放熱パイプへの熱媒の供給を制御する制御手段と、前記浄化槽内に貯蔵された熱媒の表面を覆う断熱材層と、を備えた無散水融雪システムの運転方法であって、
前記温度センサにより検出された温度が、地中温度より低くかつ氷点より高い第1の温度以下であるときは、前記熱媒を吸放熱パイプに送って前記融雪エリアの温度を昇温させる融雪運転を行い、前記温度が、地中温度より低くかつ第1の温度より高い第2の温度になると融雪運転を停止し、さらに前記温度が、地中温度より高い第3の温度以上であるときは、前記熱媒を吸放熱パイプに送って前記融雪エリアの温度を下降させる冷却運転を行い、前記温度が、地中温度より高くかつ第3の温度より低い第4の温度になると冷却運転を停止することを特徴としている。
このように、融雪運転に加えて冷却運転を行うことにより、夏期等における融雪エリアの温度上昇を抑えて、当該融雪エリア及びその近傍の環境を快適にすることができると共に、冬期においても、日中蓄えておいた熱を融雪運転に利用することで、融雪の効率を高めることができる。
In the present invention, there is provided a heat insulating material layer covering the surface of the heat transfer medium stored in said septic tank. Thereby, heat escape from the heat medium to the ground surface, or conversely, heat from flowing from the ground surface to the heat medium can be suppressed, and the utilization efficiency of the shallow underground heat can be increased.
Moreover, it is preferable to further comprise a temperature sensor provided in the snow melting area, and a control means for controlling the supply of the heat medium to the heat absorbing / dissipating pipe based on a signal from the temperature sensor.
Furthermore, the operation method of the non-sprinkling snow melting system of the present invention is an existing heat-dissipating pipe laid in a snow melting area, in which a heat medium flows, and an existing septic tank buried in the ground for wastewater treatment , A septic tank that can store the heat medium, a pump unit that sends the heat medium in the septic tank to the inlet part of the heat absorbing and radiating pipe, and returning the heat medium from the outlet part of the heat absorbing and radiating pipe into the septic tank, A temperature sensor provided in the snow melting area, a control means for controlling the supply of the heat medium to the heat absorbing and radiating pipe based on a signal from the temperature sensor, and a surface of the heat medium stored in the septic tank An operation method of a non-watering snow melting system comprising a heat insulating material layer ,
When the temperature detected by the temperature sensor is equal to or lower than a first temperature that is lower than the ground temperature and higher than the freezing point, the snow-melting operation is performed to raise the temperature of the snow-melting area by sending the heat medium to the heat absorbing and radiating pipe. When the temperature reaches a second temperature lower than the ground temperature and higher than the first temperature, the snow melting operation is stopped, and when the temperature is equal to or higher than the third temperature higher than the ground temperature. The cooling medium is sent to the heat-absorbing and radiating pipe to lower the temperature of the snow melting area, and the cooling operation is stopped when the temperature reaches a fourth temperature that is higher than the ground temperature and lower than the third temperature. It is characterized by doing.
Thus, by performing the cooling operation in addition to the snow melting operation, it is possible to suppress the temperature rise of the snow melting area in summer and the like, and to make the snow melting area and its surrounding environment comfortable, and even in the winter season, The efficiency of snow melting can be increased by using the heat stored in the snow melting operation.

本発明の無散水融雪システムは、浄化槽内の熱媒を直接吸放熱パイプに送っているので、熱媒が有する熱を効率よく利用することができると共に、既存の浄化槽を熱媒貯蔵手段として再利用するのでイニシャルコストを小さくすることができる。また、これまで有効に利用されていなかった浅層地中熱を利用しており、システムの構造が簡単であることと相俟って維持管理コストを非常に小さくすることができる。
また、本発明の無散水融雪システムの運転方法は、融雪運転と冷却運転とを併用することにより、夏期においては融雪エリアを冷却することができ、また冬期においても、日中蓄えた熱を融雪に利用することができる。
In the non-sprinkling snow melting system of the present invention, the heat medium in the septic tank is directly sent to the heat absorbing and radiating pipe, so that the heat of the heat medium can be used efficiently and the existing septic tank can be reused as the heat medium storage means. Since it is used, the initial cost can be reduced. In addition, it uses shallow geothermal heat, which has not been used effectively so far, and can be combined with the simple structure of the system, so that the maintenance cost can be extremely reduced.
Further, the operation method of the non-sprinkling snow melting system of the present invention can cool the snow melting area in the summer by using both the snow melting operation and the cooling operation, and also the heat accumulated during the day can be melted in the winter. Can be used.

以下、添付図面に基づいて、本発明の無散水融雪システム(以下、単にシステムという)及びその運転方法の実施の形態を詳細に説明する。
図1は、本発明のシステムの一実施の形態の全体説明図であり、このシステムSは、個人住宅の入口付近及び駐車場の積雪を溶かすのに用いられている。前記システムSは、融雪エリアEに敷設された吸放熱パイプ1と、前記住宅の敷地内に埋設された浄化槽2と、前記吸放熱パイプ1内に熱媒Mを循環させるポンプ部3とを備えている。
Hereinafter, based on an accompanying drawing, an embodiment of a non-watering snow melting system (henceforth a system) and its operating method of the present invention are described in detail.
FIG. 1 is an overall explanatory view of an embodiment of the system of the present invention. This system S is used to melt snow near the entrance of a private house and a parking lot. The system S includes a heat absorbing / dissipating pipe 1 laid in a snow melting area E, a septic tank 2 embedded in the site of the house, and a pump unit 3 for circulating a heat medium M in the heat absorbing / dissipating pipe 1. ing.

吸放熱パイプ1は、その内部を水、ブライン等の熱媒Mが流れるものであり、ポリエチレン、テフロン(商品名。デュポン社製ポリテトラフルオロエチレン)等の合成樹脂で作製することができる。吸放熱パイプ1のサイズは、本発明において特に限定されるものではなく、当該吸放熱パイプ1の敷設ピッチや熱媒Mの流量等に応じて適宜選定することができるが、通常12〜16mm(内径)程度のものを用いることができる。また、その敷設ピッチも、積雪量や熱媒Mの温度等の条件に応じて適宜選定されるが、通常は10〜20cm程度である。コスト、取り扱い易さ、耐食性及び施工性の点からは、かかる吸放熱パイプ1として前記ポリエチレン等の合成樹脂製パイプを用いるのが好ましいが、大きい熱伝導率が得られるという点より、ステンレス等の金属製パイプを用いてもよい。   The heat absorbing and radiating pipe 1 has a heat medium M such as water or brine flowing through it, and can be made of a synthetic resin such as polyethylene or Teflon (trade name: polytetrafluoroethylene manufactured by DuPont). The size of the heat absorbing / dissipating pipe 1 is not particularly limited in the present invention, and can be appropriately selected according to the laying pitch of the heat absorbing / dissipating pipe 1, the flow rate of the heating medium M, etc. (Inner diameter) can be used. Further, the laying pitch is also appropriately selected according to conditions such as the amount of snow and the temperature of the heating medium M, but is usually about 10 to 20 cm. From the viewpoint of cost, ease of handling, corrosion resistance, and workability, it is preferable to use a synthetic resin pipe such as polyethylene as the heat-absorbing and radiating pipe 1, but from the point that a large thermal conductivity can be obtained, such as stainless steel. A metal pipe may be used.

前記吸放熱パイプ1は、図1〜2に示されるように、融雪エリアEに所望のパターンで敷設される。本実施の形態における敷設パターンはジグザグ状であるが、融雪エリアEの形状に応じて、渦巻き状等他の敷設パターンを採用することもできる。吸放熱パイプ1は、通常、地表面から3〜8cm程度の深さのところに敷設されるが、その敷設は例えば次のようにして行うことができる。すなわち、まず融雪エリアEを10〜20cmの深さまで掘削し、この掘削した部分全面に5〜10cm程度の厚さの一次コンクリート9を打設し、その上を歩行可能となった時点で一次コンクリート9の表面を粗くするとともに当該一次コンクリート9の上に補強用メッシュ10を敷設し、さらにこの補強用メッシュ10の上に所定のパターンで吸放熱パイプ1を配設する。ついで、その上から5〜10cm程度の厚さの二次コンクリート11を打設し、所定の期間養生をすることで吸放熱パイプ1を敷設することができる。   The heat absorbing / dissipating pipe 1 is laid in a desired pattern in the snow melting area E as shown in FIGS. The laying pattern in the present embodiment is a zigzag shape, but other laying patterns such as a spiral shape may be adopted depending on the shape of the snow melting area E. The heat absorbing / dissipating pipe 1 is usually laid at a depth of about 3 to 8 cm from the ground surface, and the laying can be performed, for example, as follows. That is, first, the snow melting area E is excavated to a depth of 10 to 20 cm, and the primary concrete 9 having a thickness of about 5 to 10 cm is placed on the entire excavated portion. The reinforcing mesh 10 is laid on the primary concrete 9, and the heat absorbing / dissipating pipe 1 is arranged in a predetermined pattern on the reinforcing mesh 10. Next, the heat absorbing and radiating pipe 1 can be laid by placing a secondary concrete 11 having a thickness of about 5 to 10 cm from above and curing it for a predetermined period.

前記浄化槽2としては、不要となった既設の浄化槽を再利用することができ、この場合、熱媒Mを貯蔵しておく設備を新たに構築しなくてもよいので、システムSのイニシャルコストを大幅に抑えることができる。既設の浄化槽の多くは、FRP製又はコンクリート製であり、その容量は5人槽で4m2程度、10人槽で8m2程度が一般的である。この程度の容量があれば、当該浄化槽を設置している住宅等の入口付近及び駐車場の融雪を十分に行うことができる。なお、利用に際し、浄化槽内のろ材や接触材等の部材を撤去すると共に浄化槽内部を洗浄しておくのが好ましい。 As the septic tank 2, an existing septic tank that is no longer needed can be reused. In this case, it is not necessary to construct a new facility for storing the heat medium M, so the initial cost of the system S can be reduced. It can be greatly reduced. Many of the existing septic tanks are made of FRP or concrete, and their capacity is generally about 4 m 2 for a 5-person tank and about 8 m 2 for a 10-person tank. If there is such a capacity, it is possible to sufficiently melt snow in the vicinity of the entrance of the house where the septic tank is installed and in the parking lot. In use, it is preferable to remove members such as the filter medium and contact material in the septic tank and wash the inside of the septic tank.

浄化槽2内には、水中ポンプからなる循環ポンプ4が設けられており、当該浄化槽2に貯蔵されている熱媒Mは前記循環ポンプ4により浄化槽2内から取り出され、融雪エリアEに敷設された吸放熱パイプ1内を通過した後に浄化槽2内に戻される。前記吸放熱パイプ1の入口部1aと浄化槽2の内部とは送り管5で接続されており、一方、前記吸放熱パイプ1の出口部1bと浄化槽2の内部とは戻り管6で接続されている。そして、前記送り管5の管路(本実施の形態では送り管5の端部)に前記循環ポンプ4が配設されている。なお、前記送り管5及び戻り管6の材質としては、前述した吸放熱パイプ1と同様のものを用いることができる。また、本実施の形態では、循環ポンプ4として水中ポンプを用いているが、通常の地上設置型のポンプを浄化槽内の上部空間又は浄化槽外の適宜の箇所に配設することもできる。この場合、循環ポンプ4は送り管5の管路の途中に配設されることになる。   In the septic tank 2, a circulation pump 4 comprising a submersible pump is provided, and the heat medium M stored in the septic tank 2 is taken out from the septic tank 2 by the circulation pump 4 and laid in the snow melting area E. After passing through the heat absorbing / dissipating pipe 1, it is returned to the septic tank 2. The inlet part 1a of the heat absorbing / dissipating pipe 1 and the inside of the septic tank 2 are connected by a feed pipe 5, while the outlet part 1b of the heat absorbing / dissipating pipe 1 and the inside of the septic tank 2 are connected by a return pipe 6. Yes. The circulation pump 4 is disposed in the pipe line of the feed pipe 5 (in this embodiment, the end of the feed pipe 5). In addition, as a material of the said feed pipe 5 and the return pipe 6, the thing similar to the heat absorption / radiation pipe 1 mentioned above can be used. Moreover, in this Embodiment, although the submersible pump is used as the circulation pump 4, a normal ground installation type pump can also be arrange | positioned in the appropriate location outside the septic tank in the upper space in a septic tank. In this case, the circulation pump 4 is disposed in the middle of the pipe line of the feed pipe 5.

本実施の形態では、浄化槽2内に、当該浄化槽2に貯蔵されている熱媒Mの表面を覆う断熱材層7が設けられている。この断熱材層7は、融雪時において、熱媒Mの熱が浄化槽2内上方の空間から地表へ逃げるのを抑制すると共に、後述する冷却時において、地表からの熱が浄化槽2内上方の空間を介して熱媒Mに伝わるのを抑制する役割を果たす。かかる断熱材層7は、例えば発泡スチロール、発泡ポリエチレン、発泡ポリウレタン等の発泡合成樹脂を球状等の適宜の形状に成形したものを,例えば5cm程度の厚さに積層することで得ることができる。なお、図2において、8は浄化槽2のマンホールの蓋であり、浄化槽2内を点検や清掃したりするのに利用される。   In the present embodiment, a heat insulating material layer 7 covering the surface of the heat medium M stored in the septic tank 2 is provided in the septic tank 2. This heat insulating material layer 7 suppresses the heat of the heat medium M from escaping from the space above the septic tank 2 to the ground surface during snow melting, and the heat from the ground surface at the space above the septic tank 2 during cooling described later. It plays the role which suppresses that it is transmitted to the heating medium M via. Such a heat insulating material layer 7 can be obtained, for example, by laminating a foamed synthetic resin such as foamed polystyrene, foamed polyethylene, and foamed polyurethane into an appropriate shape such as a spherical shape, for example, to a thickness of about 5 cm. In FIG. 2, reference numeral 8 denotes a manhole cover of the septic tank 2, which is used for checking and cleaning the inside of the septic tank 2.

本発明では、太陽エネルギーと共に地表付近の地中熱を融雪に利用している。融雪が必要となる冬期の場合、浄化槽が埋設されている付近の地中温度は、地域により異なるが、最も低くなる2月においても6〜8℃程度であり、融雪エリアEの表面下(表面より10mmの深さの部分)の温度よりも相対的に高い。このため、吸放熱パイプ1を通過する過程で冷却された熱媒Mは浄化槽2に流入し、当該浄化槽2内に貯蔵されている熱媒Mの温度を低下させるが、相対的に温度の高い周辺地盤から浄化槽2への熱移動が生じ、熱媒Mは温められる。その後、温められた熱媒Mは、循環ポンプ4により吸放熱パイプ1に送られ、その熱エネルギーを当該吸放熱パイプ1から放出し、融雪エリアEの表面温度の低下を抑制する。そして、この過程で冷却された熱媒Mは再び浄化槽2に戻り、周辺地盤から熱エネルギーの供給をうける(融雪運転)。   In the present invention, the underground heat near the surface of the earth is used for melting snow together with solar energy. In the winter season when snow melting is required, the underground temperature near the septic tank is different depending on the region, but it is about 6-8 ° C even in February when it is the lowest. It is relatively higher than the temperature of the 10 mm deep part). For this reason, the heat medium M cooled in the process of passing through the heat absorbing / dissipating pipe 1 flows into the septic tank 2 and reduces the temperature of the heat medium M stored in the septic tank 2, but the temperature is relatively high. Heat transfer from the surrounding ground to the septic tank 2 occurs, and the heat medium M is warmed. Thereafter, the heated heat medium M is sent to the heat absorbing / dissipating pipe 1 by the circulation pump 4, and its heat energy is released from the heat absorbing / dissipating pipe 1, thereby suppressing a decrease in the surface temperature of the snow melting area E. Then, the heat medium M cooled in this process returns to the septic tank 2 and receives heat energy from the surrounding ground (snow melting operation).

一方、夏期の場合、浄化槽が埋設されている付近の地中温度は、融雪エリアEの表面下の温度よりも相対的に低い。このため、吸放熱パイプ1を通過する過程で昇温された熱媒Mは浄化槽2に流入し、貯蔵されている熱媒Mの温度を上昇させるが、相対的に温度の低い周辺地盤に対して浄化槽2からの熱移動が生じ、熱媒Mは徐々に温度が低下する。その後、冷やされた熱媒Mは循環ポンプ4により吸放熱パイプ1に送られ、当該吸放熱パイプ1から熱エネルギーを吸収し、融雪エリアEの表面温度の上昇を抑制する。そして、この過程で加熱された熱媒Mは再び浄化槽2に戻り、周辺地盤へ熱エネルギーを放出する(冷却運転)。なお、夏期以外の時期、例えば冬期においても、太陽の照射によって融雪エリアEの表面温度が地中温度よりも高くなることがあり、この場合は、融雪エリアEの表面温度の上昇を抑制する冷却運転が行われる。そして、この冷却運転によって浄化槽2内の熱媒Mに蓄えられた熱は融雪に利用されることになり、昇温された分だけより効率よく融雪をすることができる。   On the other hand, in the summer season, the underground temperature in the vicinity of the septic tank is relatively lower than the temperature below the surface of the snow melting area E. For this reason, the heating medium M heated in the process of passing through the heat absorbing / dissipating pipe 1 flows into the septic tank 2 and raises the temperature of the stored heating medium M. Thus, heat transfer from the septic tank 2 occurs, and the temperature of the heat medium M gradually decreases. Thereafter, the cooled heat medium M is sent to the heat absorbing and radiating pipe 1 by the circulation pump 4, absorbs heat energy from the heat absorbing and radiating pipe 1, and suppresses an increase in the surface temperature of the snow melting area E. Then, the heating medium M heated in this process returns to the septic tank 2 again and releases thermal energy to the surrounding ground (cooling operation). It should be noted that the surface temperature of the snow melting area E may become higher than the underground temperature due to the irradiation of the sun even in a period other than summer, for example, in winter, and in this case, cooling that suppresses the increase in the surface temperature of the snow melting area E. Driving is performed. Then, the heat stored in the heat medium M in the septic tank 2 by this cooling operation is used for melting snow, and the snow can be melted more efficiently by the increased temperature.

図3は、本発明のシステムを用いた融雪実験における、吸放熱パイプの入口部及び出口部の水温変化を示している。図3において、実線及び破線はそれぞれ吸放熱パイプの入口部及び出口部の水温T1、T2を示しており、また一点鎖線は融雪エリアの表面下(表面より10mmの深さの部分)の温度T3を示している。この実験では、融雪エリアの温度T3が5℃以下であると融雪運転を行っており、データの採取時から午前10時頃までがそれに該当する。19時頃に強い降雪があった際には融雪エリアEの表面にわずかな残雪が見られたが、その後降雪強度が弱まったこともあり、20時頃には融雪が完了し、23時以降では路面の乾燥が進行した。その間、吸放熱パイプの入口部の水温T1は7℃程度、同じく出口部の水温T2は5℃程度であり、吸放熱パイプにおいて約2℃の熱損失が確認された。前記融雪エリアEの表面下の温度T3は、観測の間常に氷点(0℃)以上にあり、安定した地中熱エネルギーの供給が十分な融雪機能を保証していると考えられる。   FIG. 3 shows changes in the water temperature at the inlet and outlet of the heat absorbing and radiating pipe in a snow melting experiment using the system of the present invention. In FIG. 3, the solid line and the broken line indicate the water temperatures T1 and T2 of the inlet and outlet portions of the heat-absorbing and radiating pipe, respectively, and the alternate long and short dash line indicates the temperature T3 below the surface of the snow melting area (a portion having a depth of 10 mm from the surface). Is shown. In this experiment, the snow melting operation is performed when the temperature T3 of the snow melting area is 5 ° C. or less, and this corresponds to the period from the time of data collection to about 10 am. When there was a strong snowfall around 19:00, a slight amount of remaining snow was seen on the surface of the snowmelt area E, but the snowfall intensity was weakened after that. Then, the road surface dried. Meanwhile, the water temperature T1 at the inlet of the heat absorbing / dissipating pipe was about 7 ° C. and the water temperature T2 at the outlet was about 5 ° C., and a heat loss of about 2 ° C. was confirmed in the heat absorbing / dissipating pipe. The temperature T3 below the surface of the snow melting area E is always above the freezing point (0 ° C.) during the observation, and it is considered that a stable supply of geothermal energy ensures a sufficient snow melting function.

前述した融雪運転と冷却運転の制御は、システムS内に種々のセンサを設け、このセンサからの信号に基づいて、マイクロプロセッサ等の制御手段を用いて行うことができる。例えば、融雪エリアEの表面下(表面より、例えば10mmの深さの部分)に温度センサを設置しておき、この温度センサで検出された温度が地中温度より低くかつ氷点より高い第1の温度以下であるときは、前記熱媒Mを吸放熱パイプ1に送って前記融雪エリアEの温度を昇温させる融雪運転を行い、前記温度が、地中温度より低くかつ第1の温度より高い第2の温度になると融雪運転を停止させることができる。すなわち、地中温度が8℃程度である場合、例えば前記温度が5℃(第1の温度)以下になると融雪運転を開始し、7℃(第2の温度)以上になると融雪運転を停止させることができる。一方、前記温度が、地中温度より高い第3の温度以上であるときは、前記熱媒Mを吸放熱パイプ1に送って前記融雪エリアEの温度を下降させる冷却運転を行い、前記温度が、地中温度より高くかつ第3の温度より低い第4の温度になると冷却運転を停止させることができる。すなわち、前記温度が15℃(第3の温度)以上になると冷却運転を開始し、13℃(第4の温度)以下になると冷却運転を停止するという制御を行うことができる。このように、それぞれについて運転開始及び停止温度を設定して、融雪運転及び冷却運転を行うことにより、夏期等における融雪エリアの温度上昇を抑えて、当該融雪エリア及びその近傍の環境を快適にすることができると共に、冬期においても、日中蓄えておいた熱を融雪運転に利用することで、融雪の効率を高めることができる。
なお、融雪エリアEの近傍に降雪(積雪)センサを設置し、このセンサからの信号に基づいて融雪運転を行うこともできる。また、前述した運転の開始及び停止温度や運転のタイミングを含む制御は、単なる例示に過ぎず、システムSの設置場所や浄化槽2の容量等の条件によって種々変更することができる。
The above-described snow melting operation and cooling operation can be controlled by providing various sensors in the system S and using control means such as a microprocessor based on signals from the sensors. For example, a temperature sensor is installed below the surface of the snow melting area E (for example, a depth of 10 mm from the surface), and the temperature detected by the temperature sensor is lower than the ground temperature and higher than the freezing point. When the temperature is equal to or lower than the temperature, the heat medium M is sent to the heat absorbing and radiating pipe 1 to perform a snow melting operation for raising the temperature of the snow melting area E, and the temperature is lower than the ground temperature and higher than the first temperature. When the temperature reaches the second temperature, the snow melting operation can be stopped. That is, when the underground temperature is about 8 ° C., for example, the snow melting operation is started when the temperature becomes 5 ° C. (first temperature) or lower, and the snow melting operation is stopped when the temperature becomes 7 ° C. (second temperature) or higher. be able to. On the other hand, when the temperature is equal to or higher than a third temperature higher than the underground temperature, a cooling operation is performed to lower the temperature of the snow melting area E by sending the heat medium M to the heat absorbing and radiating pipe 1, and the temperature is The cooling operation can be stopped when the fourth temperature is higher than the ground temperature and lower than the third temperature. That is, it is possible to perform control such that the cooling operation is started when the temperature becomes 15 ° C. (third temperature) or higher, and the cooling operation is stopped when the temperature becomes 13 ° C. (fourth temperature) or lower. In this way, by setting the operation start and stop temperatures for each, and performing the snow melting operation and the cooling operation, the temperature increase in the snow melting area in the summer season or the like is suppressed, and the snow melting area and its surrounding environment are made comfortable. In addition, it is possible to increase the efficiency of snow melting by using the heat stored during the day for snow melting operation even in winter.
It is also possible to install a snowfall (snow accumulation) sensor in the vicinity of the snowmelt area E and perform a snowmelt operation based on a signal from this sensor. The control including the start and stop temperatures and the operation timing described above is merely an example, and can be variously changed depending on conditions such as the installation location of the system S and the capacity of the septic tank 2.

本発明のシステムの一実施の形態の全体説明図である。1 is an overall explanatory diagram of an embodiment of a system of the present invention. 図1に示されるシステムにおける融雪エリア付近の断面説明図である。FIG. 2 is a cross-sectional explanatory view in the vicinity of a snow melting area in the system shown in FIG. 1. 本発明のシステムを用いた融雪実験における、吸放熱パイプの入口部及び出口部の水温変化を示すグラフである。It is a graph which shows the water temperature change of the entrance part and exit part of an absorption-and-radiation pipe in the snow-melting experiment using the system of this invention.

符号の説明Explanation of symbols

1吸放熱パイプ
2浄化槽
3ポンプ部
4循環ポンプ
5送り管
6戻り管
7断熱材層
Sシステム
M熱媒
1 heat-absorbing and radiating pipe 2 septic tank 3 pump section 4 circulation pump 5 feed pipe 6 return pipe 7 heat insulating material layer S system M heat medium

Claims (4)

融雪エリアに敷設され、その内部を熱媒が流れる吸放熱パイプと、排水処理のために地中に埋設された既設の浄化槽であって、前記熱媒を貯蔵し得る浄化槽と、この浄化槽内の熱媒を前記吸放熱パイプの入口部に送ると共に、当該吸放熱パイプの出口部からの熱媒を前記浄化槽内に戻すポンプ部と、前記浄化槽内に貯蔵された熱媒の表面を覆う断熱材層と、を備えたことを特徴とする無散水融雪システム。 A heat absorbing / dissipating pipe laid in the snow melting area and through which a heat medium flows, an existing septic tank buried in the ground for wastewater treatment, a septic tank capable of storing the heat medium, and a septic tank in the septic tank A heat pump that sends the heat medium to the inlet portion of the heat absorbing / dissipating pipe and returning the heat medium from the outlet portion of the heat absorbing / radiating pipe into the septic tank, and a heat insulating material that covers the surface of the heat medium stored in the septic tank No watering snow melting system comprising: the layer, the. 前記ポンプ部が、前記吸放熱パイプの入口部と浄化槽内部とを接続する送り管と、前記吸放熱パイプの出口部と浄化槽内部とを接続する戻り管と、前記送り管の管路に配設された循環ポンプとで構成されている請求項1に記載の無散水融雪システム。 The pump part is disposed in a feed pipe connecting the inlet part of the heat absorbing and radiating pipe and the inside of the septic tank, a return pipe connecting the outlet part of the heat absorbing and radiating pipe and the inside of the septic tank, and a pipe line of the feed pipe The non-sprinkling snow melting system according to claim 1, comprising a circulating pump. 前記融雪エリア内に設けられた温度センサと、この温度センサからの信号に基づいて前記吸放熱パイプへの熱媒の供給を制御する制御手段と、をさらに備えている請求項1〜のいずれかに記載の無散水融雪システム。 The temperature sensor provided in the said snow melting area, and the control means which controls supply of the heat medium to the said heat absorption / radiation pipe based on the signal from this temperature sensor, The further any one of Claims 1-2 Non-sprinkling snow melting system according to crab. 融雪エリアに敷設され、その内部を熱媒が流れる吸放熱パイプと、排水処理のために地中に埋設された既設の浄化槽であって、前記熱媒を貯蔵し得る浄化槽と、この浄化槽内の熱媒を前記吸放熱パイプの入口部に送ると共に、当該吸放熱パイプの出口部からの熱媒を前記浄化槽内に戻すポンプ部と、前記融雪エリア内に設けられた温度センサと、この温度センサからの信号に基づいて前記吸放熱パイプへの熱媒の供給を制御する制御手段と、前記浄化槽内に貯蔵された熱媒の表面を覆う断熱材層と、を備えた無散水融雪システムの運転方法であって、
前記温度センサにより検出された温度が、地中温度より低くかつ氷点より高い第1の温度以下であるときは、前記熱媒を吸放熱パイプに送って前記融雪エリアの温度を昇温させる融雪運転を行い、前記温度が、地中温度より低くかつ第1の温度より高い第2の温度になると融雪運転を停止し、さらに前記温度が、地中温度より高い第3の温度以上であるときは、前記熱媒を吸放熱パイプに送って前記融雪エリアの温度を下降させる冷却運転を行い、前記温度が、地中温度より高くかつ第3の温度より低い第4の温度になると冷却運転を停止することを特徴とする無散水融雪システムの運転方法。
A heat absorbing / dissipating pipe laid in the snow melting area and through which a heat medium flows, an existing septic tank buried in the ground for wastewater treatment, a septic tank capable of storing the heat medium, and a septic tank in the septic tank While sending a heat medium to the inlet part of the said heat absorption / radiation pipe, the pump part which returns the heat medium from the exit part of the said heat absorption / radiation pipe in the said septic tank, the temperature sensor provided in the said snow melting area, and this temperature sensor Operation of a non-sprinkling snow melting system comprising: control means for controlling supply of a heat medium to the heat absorbing / dissipating pipe based on a signal from a heat insulating material layer covering a surface of the heat medium stored in the septic tank A method,
When the temperature detected by the temperature sensor is equal to or lower than a first temperature that is lower than the ground temperature and higher than the freezing point, the snow-melting operation is performed to raise the temperature of the snow-melting area by sending the heat medium to the heat absorbing and radiating pipe. When the temperature reaches a second temperature lower than the ground temperature and higher than the first temperature, the snow melting operation is stopped, and when the temperature is equal to or higher than the third temperature higher than the ground temperature. The cooling medium is sent to the heat-absorbing and radiating pipe to lower the temperature of the snow melting area, and the cooling operation is stopped when the temperature reaches a fourth temperature that is higher than the ground temperature and lower than the third temperature. A method of operating a non-sprinkling snow melting system.
JP2004182837A 2004-06-21 2004-06-21 Non-watering snow melting system and method of operating the system Expired - Fee Related JP3928085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182837A JP3928085B2 (en) 2004-06-21 2004-06-21 Non-watering snow melting system and method of operating the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182837A JP3928085B2 (en) 2004-06-21 2004-06-21 Non-watering snow melting system and method of operating the system

Publications (2)

Publication Number Publication Date
JP2006002539A JP2006002539A (en) 2006-01-05
JP3928085B2 true JP3928085B2 (en) 2007-06-13

Family

ID=35771161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182837A Expired - Fee Related JP3928085B2 (en) 2004-06-21 2004-06-21 Non-watering snow melting system and method of operating the system

Country Status (1)

Country Link
JP (1) JP3928085B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020424A1 (en) 2009-05-08 2010-11-11 Bayerische Motoren Werke Aktiengesellschaft Exhaust gas routing device for an internal combustion engine with a thermoelectric generator
JP5200177B1 (en) * 2012-03-26 2013-05-15 八洲環境保全有限会社 Rainwater circulation device centering on septic tank
JP2021113408A (en) * 2020-01-16 2021-08-05 清水建設株式会社 Road surface anti-freezing system

Also Published As

Publication number Publication date
JP2006002539A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP6109248B2 (en) Solar heat storage snow melting system and control method thereof.
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP5963790B2 (en) Groundwater circulation type geothermal heat collection system and geothermal use air conditioning or hot water supply system
JP2007333295A (en) Heat storage system
JP2007333296A (en) Heat storage system
JP2013137187A (en) Water utilization system
US6412550B1 (en) Method and system for storm water system heat exchange
JP3928085B2 (en) Non-watering snow melting system and method of operating the system
JP2008304141A (en) Heat storage snow melting system using solar heat
KR100991075B1 (en) Temperature control apparatus of road surface using convection of heat transfer medium in dual pipe by subterranean heat
JPH07190503A (en) Method and apparatus for collecting terrestrial heat
JP4360690B1 (en) Rainwater infiltration type underground heat exchange system
KR20190129193A (en) System for preventing road from being frozen by using solar heat
JP2008121960A (en) Direct heat utilization heating apparatus
JP2689400B2 (en) Solar heat storage type road surface snow melting device
JP2001107307A (en) Snow melting antifreezer
JP2012211455A (en) Warming piping system for antifreezing or snow melting
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
JP4528029B2 (en) Underground snow melting tank with hollow tube embedded by rotary press-in method and snow melting equipment equipped with it
JPH05272105A (en) Road snow melting device provided with solar device on slope face
JPH061606Y2 (en) Underground heat exchanger
JP6560706B2 (en) Snow extinguishing equipment and snow extinguishing method
JPH07279114A (en) Solar heat regerative snow-melting device
KR101697616B1 (en) Temperature control system for road using heat storaging tank
JP2016211819A (en) Solar heat utilization system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Ref document number: 3928085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160316

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees