JP3915682B2 - Method for producing bleached pulp - Google Patents
Method for producing bleached pulp Download PDFInfo
- Publication number
- JP3915682B2 JP3915682B2 JP2002352065A JP2002352065A JP3915682B2 JP 3915682 B2 JP3915682 B2 JP 3915682B2 JP 2002352065 A JP2002352065 A JP 2002352065A JP 2002352065 A JP2002352065 A JP 2002352065A JP 3915682 B2 JP3915682 B2 JP 3915682B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- chlorine dioxide
- bleaching
- pulp
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Paper (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、広葉樹を含むリグノセルロース物質の漂白パルプの製造方法に関する。更に詳しく述べれば、本発明は、広葉樹を含むリグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、その後、初段に二酸化塩素漂白段を有する多段漂白工程で処理して漂白パルプを製造する方法に関する。
【0002】
【従来の技術】
広葉樹を含むリグノセルロース物質を蒸解して得られる未漂白パルプを漂白する手順としては、まず、アルカリ酸素漂白し、その後、塩素で処理し、パルプ中に含有されるリグニンを塩素化し、リグニンに可溶性を付加した後、次いで、アルカリを用いて塩素化リグニンを溶解抽出して、パルプ中からリグニンを分離除去し、最後に、次亜塩素酸塩、二酸化塩素等を使用し、残留する少量のリグニンを分解除去する方法が従来から採られてきた。
【0003】
しかしながら、近年、パルプの塩素化段からの漂白排水に含まれる有機塩素化合物(以下、AOXと略す)の環境への影響が懸念され、パルプ漂白に塩素を用いない動きが高まってきている。また、次亜塩素酸塩を用いた場合も、パルプの漂白時にクロロホルムが生成し、環境に悪影響を及ぼす可能性があることから、次亜塩素酸塩をパルプ漂白に使用しない漂白シーケンスが求められてきている。
【0004】
現在、塩素や次亜塩素酸塩の代替として、オゾン、二酸化塩素、過酸化水素及び過酢酸、過硫酸等の過酸の使用が提案されている。しかしながら、実際には、漂白薬品としての実績があり、取り扱いが比較的容易な二酸化塩素及び過酸化水素が塩素と次亜塩素酸塩の代替として使用されるケースが多くなっている。特に、塩素の代替としては二酸化塩素を使用するケースが圧倒的に多くなっている。ところが、二酸化塩素は塩素に比べて薬品単価が高く、経済的に不利であることから、できるだけ少ない使用量で所望の白色度まで漂白したいという要望があった。
【0005】
初段の二酸化塩素漂白段において、硫酸でpHを3に調整した後、二酸化塩素を添加し、95℃で1.5〜3時間処理すれば、酸処理と二酸化塩素処理を同時に行うことができ、通常の条件で二酸化塩素漂白を行った場合と比べて二酸化塩素の使用量を削減できることが知られている(例えば、非特許文献1)。しかしながら、pH3以下の条件で二酸化塩素漂白を行った場合には、一部の二酸化塩素は塩素酸に変換し、十分な漂白効果が得られないという問題があった。
【0006】
初段の二酸化塩素漂白段において、二酸化塩素漂白の添加を二回に分割し、最初の二酸化塩素添加後に、1分間をpH8.5〜10で行い、その後、酸を加えてpH2.5で3時間処理した後、再度二酸化塩素を添加し2分間処理し、所望の白色度まで漂白するのに必要な二酸化塩素の使用量を削減する方法が知られている(非特許文献2)。しかしながら、この方法を実施するには操作が煩雑である上に、二回目の二酸化塩素添加後、極短時間で二酸化塩素漂白段を終えてしまうため、添加した二酸化塩素を十分に活用できないという問題点もあった。
【0007】
後段の二酸化塩素漂白段において、二酸化塩素漂白の開始から5〜15分間をpH5〜10で行い、その後、pH1.7〜4.4で2.5時間、70℃で処理することにより、二酸化塩素の漂白効率を上げる方法も知られている(非特許文献3)。しかしながら、この方法は論文中にも記述されているように、カッパー価が10以上のパルプに対しては効果がなく、初段の二酸化塩素漂白段には適用できないと言う問題点があった。
【0008】
二酸化塩素漂白段にホルマリンなどの還元剤を直接添加し、二酸化塩素から副生する亜塩素酸塩を二酸化塩素に再生し、二酸化塩素の使用量を削減する方法も提案されている(例えば、特許文献1参照)。しかしながら、ホルマリンのような環境への影響を懸念される物質をパルプ漂白に添加することは、環境上好ましいとは言えない。
【0009】
二酸化塩素の使用量を削減するための間接的な方法としては、蒸解時においてできるだけ脱リグニンを進め、未晒パルプのカッパー価を減少させる方法や、アルカリ酸素漂白工程においてできるだけ脱リグニンを進め、多段漂白工程前のパルプのカッパー価を減少させる方法が多数提案されている。また、キシラナーゼ前処理を行う方法なども知られている(例えば、非特許文献4)。しかしながら、これらの方法を用いて二酸化塩素使用量を低減した場合、特に広葉樹を含むリグノセルロースを原料とした場合、ヘキセンウロン酸が多く残留し、漂白パルプのK価が高くなり、退色性が悪化するという問題点があった。
【0010】
【特許文献1】
米国特許6235154号明細書(B1 クレーム1、対応日本特許特表2002−506935号公報 請求項1)
【非特許文献1】
Dominque Lachenalら、1997年ISWPC予稿集、p95−98
【非特許文献2】
S.Juutilainenら、1999 Tappi Pulping Conference 予稿集p645−651
【非特許文献3】
G.E.Segerら、Tappi Journal、75(7)p174−180、1992年
【非特許文献4】
Viikari,Lら、Biotechnology in the Pulp & Paper Industry 第三 回国際会議予稿集 p67−69 (1986)
【0011】
【発明が解決しようとする課題】
本発明の目的は、広葉樹を含むリグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、その後、初段に二酸化塩素漂白段を有する多段漂白工程で処理して漂白パルプを製造する方法において、二酸化塩素使用量を低減し、かつ退色性が改善される漂白パルプの製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、かかる現状に鑑み、広葉樹を含むリグノセルロース物質を原料とし、多段漂白工程の初段で二酸化塩素漂白を行い、かつ漂白パルプの退色性を悪化させないで、二酸化塩素の使用量を低減する方法を見出す方法について鋭意研究した結果、初段二酸化塩素段を二段階に分けて設計することが有効であることを見出した。
【0013】
つまり、初段二酸化塩素段の前半部を“漂白パート”、後半部を“ヘキセンウロン酸分解パート”として考え、以下のような条件に設定することにより実現できることを見出した。まず、初段二酸化塩素漂白段に添加する二酸化塩素の全量を開始時に一括添加し、1〜15分間反応させ、二酸化塩素による漂白作用を最大限に引き出す。その後、洗浄することなく酸を添加してpH2.0〜3.5にすることにより、反応初期で生成したクロライトを活性化させてヘキセンウロン酸を分解させる。さらに高温にし、ヘキセンウロン酸の酸加水分解も同時に行う。このように、初段二酸化塩素漂白段を設計することにより、初段二酸化塩素漂白段において、十分な漂白作用とヘキセンウロン酸の分解の両立が可能となり、本発明を完成するに至った。
【0014】
本発明は、以下の各発明を包含する。
(1)広葉樹材を含むリグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、その後、初段に二酸化塩素漂白段を有する多段漂白工程で処理して漂白パルプを製造する方法において、該二酸化塩素漂白段の開始時に二酸化塩素の全量を一括添加し、80〜100℃の条件で1〜15分間滞留させた後、洗浄することなく酸を添加してpH2.0〜3.5とし、さらに、80〜100℃の条件で60〜240分間処理して二酸化塩素漂白段を行うことを特徴とする漂白パルプの製造方法。
【0015】
(2)前記二酸化塩素漂白段において、酸を添加する直前の反応pHが4.0〜6.5、好ましくはpH4.5〜5.5になるように、二酸化塩素漂白段の開始時に酸又はアルカリを添加することを特徴とする前記(1)項記載の漂白パルプの製造方法。
【0016】
(3)前記多段漂白工程の最終段に二酸化塩素漂白段を有し、かつ該最終段二酸化塩素漂白段の終了時のpHが4.5〜6.5の範囲で行われることを特徴とする前記(1)項又は(2)項に記載の漂白パルプの製造方法。
【0017】
(4)前記最終段二酸化塩素漂白段後の洗浄排水を、初段二酸化塩素漂白段の開始時の希釈水として使用することを特徴とする前記(3)項記載の漂白パルプの製造方法。
【0018】
(5)前記多段漂白工程において、初段の二酸化塩素漂白段に続いて、酸素及び過酸化水素を添加したアルカリ抽出段が行われることを特徴とする前記(1)項〜(4)項のいずれか1項に記載の漂白パルプの製造方法。
【0019】
【発明の実施の形態】
本発明で用いられるリグノセルロース物質は、好適には広葉樹材100%のものであるが、広葉樹材が含まれれば、針葉樹材を含んでいても良く、非木材と呼ばれるものを含んでいても良く、広葉樹材を含むこと以外は特に限定するものではない。本発明に使用されるパルプを得るための蒸解法としては、クラフト蒸解、ポリサルファイド蒸解、ソーダ蒸解、アルカリサルファイト蒸解等の公知の蒸解法を用いることができるが、パルプ品質、エネルギー効率等を考慮すると、クラフト蒸解又はポリサルファイド蒸解が好適に用いられる。
【0020】
例えば、広葉樹材100%のリグノセルロースをクラフト蒸解する場合、クラフト蒸解液の硫化度は5〜75%、好ましくは15〜45%、有効アルカリ添加率は絶乾木材質量当たり5〜30質量%、好ましくは10〜25質量%、蒸解温度は130〜170℃で、蒸解方式は、連続蒸解法或いはバッチ蒸解法のどちらでもよく、連続蒸解釜を用いる場合は、蒸解液を多点で添加する修正蒸解法でもよく、その方式は特に問わない。
【0021】
蒸解に際して、使用する蒸解液に蒸解助剤として、公知の環状ケト化合物、例えば、ベンゾキノン、ナフトキノン、アントラキノン、アントロン、フェナントロキノン及び前記キノン系化合物のアルキル、アミノ等の核置換体、或いは前記キノン系化合物の還元型であるアントラヒドロキノンのようなヒドロキノン系化合物、さらには、ディールスアルダー法によるアントラキノン合成法の中間体として得られる安定な化合物である9,10−ジケトヒドロアントラセン化合物等から選ばれた1種或いは2種以上が添加されてもよく、その添加率は通常の添加率であり、例えば、木材チップの絶乾質量当たり0.001〜1.0質量%である。
【0022】
本発明では、公知の蒸解法により得られた未漂白化学パルプは、洗浄、粗選及び精選工程を経て、公知のアルカリ酸素漂白法により脱リグニンされる。本発明に使用されるアルカリ酸素漂白法は、公知の中濃度法或いは高濃度法がそのまま適用できるが、現在、汎用的に用いられているパルプ濃度が8〜15質量%で行われる中濃度法が好ましい。
【0023】
前記中濃度法によるアルカリ酸素漂白法において、アルカリとしては苛性ソーダ或いは酸化されたクラフト白液を使用することができ、酸素ガスとしては、深冷分離法からの酸素、PSA(Pressure Swing Adsorption)からの酸素、VSA(Vacuum Swing Adsorption)からの酸素等が使用できる。前記酸素ガスとアルカリは中濃度ミキサーにおいて中濃度のパルプスラリーに添加され混合が十分に行われた後、加圧下でパルプ、酸素及びアルカリの混合物を一定時間保持できる反応塔へ送られ、脱リグニンされる。
【0024】
酸素ガスの添加率は、絶乾パルプ質量当たり0.5〜3質量%、アルカリ添加率は0.5〜4質量%、反応温度は80〜120℃、反応時間は15〜100分間、パルプ濃度は8〜15質量%であり、この他の条件は、公知のものが適用できる。本発明では、アルカリ酸素漂白工程において、上記アルカリ酸素漂白を連続して複数回行い、できる限り脱リグニンを進めるのが好ましい実施形態である。アルカリ酸素漂白が施されたパルプは次いで洗浄工程へ送られる。パルプは洗浄後、多段漂白工程へ送られる。
【0025】
本発明の多段漂白処理工程では、必ず初段は二酸化塩素漂白が行われる。本発明の初段二酸化塩素漂白段では、初段二酸化塩素漂白段に添加される二酸化塩素は必ず開始時に全量が一括添加され、処理温度は80〜100℃、好ましくは85〜95℃であり、1〜15分間、好ましくは5〜10分間滞留処理される。その後、洗浄することなく、pH調整用の酸が添加され、pH2.0〜3.5、好ましくはpH2.5〜3.0、80〜100℃、好ましくは85〜95℃の条件で60〜240分間、好ましくは90〜180分間処理して初段二酸化塩素漂白段が行われる。
【0026】
前記pH調整用の酸が添加される前のpHは4.0〜6.5、好ましくはpH4.5〜6.5、さらに好ましくはpH5.0〜6.0であり、必要に応じて、二酸化塩素漂白段開始時にpH調整用のアルカリ、或いは酸が添加される。二酸化塩素の添加率は、絶乾パルプ質量当たり二酸化塩素として0.2〜2.0質量%であり、酸素漂白後パルプの性状や漂白パルプの目標白色度によって決められる。pH調整用のアルカリ及び酸は特に限定されるのもではないが、取り扱いのし易さや経済的な面から、苛性ソーダ及び硫酸、塩酸或いは硝酸が好適に使用される。パルプ濃度に関しては特に限定されるものではないが、操作性の点から好適には8〜15質量%で行われる。
【0027】
本発明では、初段二酸化塩素段の次段以降の漂白段に関しては特に限定されるものではないが、次段はアルカリ抽出段、最終段は二酸化塩素漂白段とするのが好ましい実施形態である。次段をアルカリ抽出段とする場合する場合の条件としては、アルカリ添加率は絶乾パルプ質量当たり0.5〜3質量%、反応温度は60〜120℃、反応時間は15〜120分間、パルプ濃度は8〜15質量%である。好適には、アルカリ抽出段に酸素ガスが添加される。酸素ガスの添加率は、絶乾パルプ質量当たり0.1〜3質量%である。さらに好適には、過酸化水素も添加される。過酸化水素の添加率は、絶乾パルプ質量当たり0.05〜2質量%である。
【0028】
本発明では、初段二酸化塩素漂白段の終了時のpHが3.5以下であるため、初段二酸化塩素漂白段後のパルプ中の重金属含有量が著しく少なくなり、重金属によって誘発される過酸化水素、酸素、オゾンのような酸素系薬品の分解率が低くなるので、より効果的に酸素系薬品を反応させることができるという特徴がある。
【0029】
本発明の多段漂白工程では、最終段は二酸化塩素漂白段とするのが好ましい実施形態である。最終段の二酸化塩素漂白段の条件は、好ましくはpHは4.5〜6.5、さらに好ましくはpH5.0〜6.0であり、反応温度50〜90℃、反応時間30〜240分間、パルプ濃度は8〜15%であり、pHを調整するために、必要に応じて、酸、アルカリが添加される。pH調整用のアルカリ及び酸は特に限定されるのもではないが、取り扱いのし易さや経済的な面から、苛性ソーダ及び硫酸、塩酸或いは硝酸が好適に使用される。二酸化塩素の添加率は、絶乾パルプ質量当たり0.05〜1質量%であり、分割添加することも可能である。
【0030】
本発明においては、最終段を二酸化塩素漂白段とした場合、最終段二酸化塩素漂白段後の洗浄排水を、初段二酸化塩素漂白段の開始時の希釈水として使用することも可能である。前記最終段二酸化塩素漂白段後の洗浄排水を、初段二酸化塩素漂白段の開始時の希釈水として使用するメリットとしては、最終段二酸化塩素段の洗浄排水に含まれるクロライトを有効利用できる点が挙げられる。本発明では、好ましくは、最終二酸化塩素漂白はpH4.5〜6.5の範囲で行われるため、ほとんどの廃二酸化塩素はクロライトの形態で残留している。クロライトは、pH4.5〜6.5の範囲では反応性が乏しいが、pHが低くなるとリグニンやヘキセンウロン酸との反応性が高まるため、初段二酸化塩素段の希釈水としてパルプに添加された洗浄排水中のクロライトは、硫酸添加後、リグニンやヘキセンウロン酸と反応し、有効利用されることになる。
【0031】
【実施例】
以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、勿論本発明はこれらの実施例によって限定されるものではない。以下に示す実施例1〜3と比較例1〜3は、工場製酸素漂白後広葉樹クラフトパルプをD1−E/O−D2シーケンスで漂白したものであり、実施例4と比較例4は、D1−E/OP−D2シーケンスで漂白したものでる。
また、特に示さない限り、カッパー価の測定、過マンガン酸カリウム価(K価)の測定、パルプ白色度の測定、パルプの退色性の評価は、それぞれ以下の方法で行った。なお、実施例及び比較例における薬品の添加率は絶乾パルプ質量当たりの質量%示す。
【0032】
1.パルプのカッパー価の測定
カッパー価の測定は、JIS P 8211に準じて行った。
【0033】
2.パルプの過マンガン酸カリウム価(K価)の測定
過マンガン酸カリウム価の測定は、JIS P 8206に準じて行った。
【0034】
3.パルプ白色度の測定
漂白パルプを離解後、Tappi試験法T205os−71(JIS P 8209)に従って坪量60g/m2のシートを作製し、JIS P 8123に従ってパルプの白色度を測定した。
【0035】
4.パルプの退色性評価
漂白パルプを離解後、硫酸アルミニウムを加え、pH4.5に調整した後、坪量60g/m2のシートを作製し、送風乾燥機にて乾燥させた。このシートを80℃、相対湿度65%の条件下で、24時間退色させ、退色前後の白色度から下式に従いPC価を算出し、評価した。
【0036】
実施例1
工場製酸素漂白後広葉樹クラフトパルプ(材配合;ユーカリ材80%、アカシア材20%配合、白色度;49.5%、カッパー価;12.0)を絶乾質量で70g採取し、プラスチック袋に入れ、イオン交換水を用いてパルプ濃度を10%に調整した後、絶乾パルプ質量当たり二酸化塩素を0.7%を添加し、温度が90℃の恒温水槽に10分間浸漬した。この時のパルプスラリーのpHは4.0であった。その後、洗浄することなく、即座に硫酸を絶乾パルプ質量当たり0.6%添加し、再度、温度が90℃の恒温水槽に180分間浸漬し、D1段の漂白を行った。D1段終了時のパルプスラリーのpHは3.0であった。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。D1段後パルプのK価は、2.5であった。
【0037】
D1段後のパルプにイオン交換水を加えて、パルプ濃度を10%に調整した後、絶乾パルプ質量当たり苛性ソーダを1.0%添加し、ステンレス製2リットル容の間接加熱式オートクレーブに入れ、ゲージ圧力が0.15MPaとなるように純度が99.9%の市販の圧縮酸素ガスで加圧し、70℃で20分間反応させた。その後、パルプスラリーをオートクレーブから取り出し、プラスチック袋に移した後、温度が70℃の恒温水槽に70分間浸漬し、E/O段の抽出を行った。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。
【0038】
続いて、E/O段後のパルプを絶乾質量で60.0g、プラスチック袋に入れ、イオン交換水を用いてパルプ濃度10%に調整した後、絶乾パルプ質量当たり二酸化塩素を0.2%と苛性ソーダを0.05%添加し、温度が70℃の恒温水槽に180分間浸漬し、D2段の漂白を行った。D2段終了時のパルプスラリーのpHは5.5であった。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。得られた漂白パルプの白色度は85.0%、K価は1.0、PC価は1.5であった。
D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0039】
実施例2
実施例1のD1段において、二酸化塩素添加時に同時に苛性ソーダを絶乾パルプ質量当たり0.1%添加し、硫酸の添加率を絶乾パルプ質量当たり0.7%に替えた以外は実施例1と同様の操作を行った。D1段における硫酸添加直前のpHは5.0であり、D1段終了時のpHは3.0であり、D1段後のK価は2.4、漂白パルプの白色度は86.0%、K価は0.9、PC価は1.4であった。
D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0040】
実施例3
実施例2のD1段における希釈水を実施例1で採取したD2段洗浄濾液に替え、苛性ソーダの添加率を絶乾パルプ質量当たり0.15%に替えた以外は実施例2と同様の操作を行った。D1段における硫酸添加直前のpHは5.2であり、D1段終了時のpHは3.0であり、D1段後パルプのK価は2.3、漂白パルプの白色度は86.8%、K価は0.8、PC価は1.3であった。
D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0041】
実施例4
実施例2のE/O段において、過酸化水素を絶乾パルプ質量当たり0.2%添加したこと以外は実施例2と同様の操作を行った。漂白パルプの白色度は88.0%、K価は0.8、PC価は1.2であった。D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0042】
比較例1
実施例1のD1段開始時に同時に硫酸を絶乾パルプ質量当たり0.6%添加し、途中で硫酸を添加しなかった以外は実施例1と同様の操作を行った。D1段開始10分後及びD1段終了時のpHは3.0、D1段後パルプのK価は2.6、漂白パルプの白色度は83.8%、K価は1.1、PC価は2.0であった。
D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0043】
比較例2
実施例1のD1段の途中で硫酸を添加しなかった以外は、実施例1と同様の操作を行った。D1段後パルプのK価は3.5、漂白パルプの白色度は84.1%、K価は2.0、PC価は4.4であった。
D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0044】
比較例3
実施例1のD1段における反応温度を70℃に替えた以外は、実施例1と同様の操作を行った。D1段後パルプのK価は4.1、漂白パルプの白色度は82.8%、K価は2.6、PC価は6.0であった。
D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0045】
比較例4
比較例2のE/O段に絶乾パルプ質量当たり過酸化水素を0.2%を添加したこと以外は比較例2と同様の操作を行った。D1段後パルプのK価は3.5、漂白パルプの白色度は84.9%、K価は2.0、PC価は4.2であった。D1段における二酸化塩素添加率、D1段後パルプのK価、漂白パルプの白色度、K価及びPC価を表1に示した。
【0046】
【表1】
【0047】
表1の実施例1、2と比較例1〜3を比較することから明らかなように、広葉樹材を含むリグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、その後、初段に二酸化塩素漂白段を有する多段漂白工程で処理して漂白パルプを製造する際に、初段二酸化塩素漂白段の開始時に二酸化塩素の全量を一括添加し、80〜100℃の条件で1〜15分間滞留させた後、洗浄することなく酸を添加してpH2.0〜3.5とし、さらに、80〜100℃の条件で60〜240分間処理して二酸化塩素漂白段を行えば、白色度が高く、K価が低く、退色性のよい漂白パルプが得られることが分る。さらに、初段の二酸化塩素漂白段において酸を添加する直前のpHを4.5〜6.0に調整すればさらに効果が高くなることが分る。
【0048】
また、表1の実施例2と3を比較することから明らかなように、最終二酸化塩素漂白段を終pHが4.5〜6.5になる条件で行い、この段の洗浄濾液を初段二酸化塩素漂白段の希釈水として使用すれば漂白効率が向上することが分る。
一方、実施例4と比較例4を比較することから明らかなように、前記条件で初段二酸化塩素漂白段を行った場合には、アルカリ抽出段に酸素及び過酸化水素を添加した際の漂白効率も高くなることもわかる。
【0049】
【発明の効果】
広葉樹材を含むリグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、その後、初段に二酸化塩素漂白段を有する多段漂白工程で処理して漂白パルプを製造する方法において、該二酸化塩素漂白段の開始時に二酸化塩素の全量を一括添加し、80〜100℃の条件で1〜15分間滞留させた後、洗浄することなく酸を添加してpH2.0〜3.5とし、さらに、80〜100℃の条件で60〜240分間処理して二酸化塩素漂白段を行うことにより、効率良く漂白でき、かつ退色性の改善された漂白パルプを製造することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing bleached pulp of lignocellulosic material including hardwood. More specifically, in the present invention, unbleached pulp obtained by digesting lignocellulosic material including hardwood is subjected to alkaline oxygen bleaching, and then treated in a multi-stage bleaching process having a chlorine dioxide bleaching stage in the first stage to produce bleached pulp. It relates to a method of manufacturing.
[0002]
[Prior art]
The procedure for bleaching unbleached pulp obtained by digesting lignocellulosic material including hardwood is first bleached with alkali oxygen, then treated with chlorine, chlorinated lignin contained in the pulp, soluble in lignin Then, chlorinated lignin is dissolved and extracted using alkali to separate and remove lignin from the pulp. Finally, hypochlorite, chlorine dioxide, etc. are used, and a small amount of residual lignin is removed. The method of decomposing and removing has been conventionally employed.
[0003]
However, in recent years, there is concern about the environmental impact of organochlorine compounds (hereinafter abbreviated as AOX) contained in the bleaching effluent from the pulp chlorination stage, and there is an increasing trend of not using chlorine for pulp bleaching. In addition, when hypochlorite is used, chloroform is generated during pulp bleaching, which may adversely affect the environment, so a bleaching sequence that does not use hypochlorite for pulp bleaching is required. It is coming.
[0004]
At present, the use of peracids such as ozone, chlorine dioxide, hydrogen peroxide, peracetic acid and persulfuric acid has been proposed as an alternative to chlorine and hypochlorite. However, in fact, chlorine dioxide and hydrogen peroxide, which have a track record as bleaching chemicals and are relatively easy to handle, are often used as substitutes for chlorine and hypochlorite. In particular, the use of chlorine dioxide as an alternative to chlorine is overwhelmingly increasing. However, since chlorine dioxide has a higher chemical unit price than chlorine and is economically disadvantageous, there has been a demand for bleaching to a desired whiteness with the least amount of use possible.
[0005]
In the first stage of chlorine dioxide bleaching, after adjusting the pH to 3 with sulfuric acid, if chlorine dioxide is added and treated at 95 ° C. for 1.5 to 3 hours, acid treatment and chlorine dioxide treatment can be performed simultaneously, It is known that the amount of chlorine dioxide used can be reduced as compared with the case where chlorine dioxide bleaching is performed under normal conditions (for example, Non-Patent Document 1). However, when chlorine dioxide bleaching is performed under conditions of pH 3 or less, there is a problem that a part of chlorine dioxide is converted into chloric acid and a sufficient bleaching effect cannot be obtained.
[0006]
In the first stage chlorine dioxide bleaching stage, the addition of chlorine dioxide bleaching was divided into two parts, and after the first chlorine dioxide addition, 1 minute was carried out at pH 8.5-10, and then acid was added for 3 hours at pH 2.5. After the treatment, a method is known in which chlorine dioxide is added again and treated for 2 minutes to reduce the amount of chlorine dioxide used to bleach to the desired whiteness (Non-Patent Document 2). However, in order to carry out this method, the operation is complicated and the chlorine dioxide bleaching stage is completed in a very short time after the second chlorine dioxide addition, so that the added chlorine dioxide cannot be fully utilized. There was also a point.
[0007]
In the subsequent chlorine dioxide bleaching stage, chlorine dioxide bleaching is carried out at pH 5-10 for 5 to 15 minutes from the start of chlorine dioxide bleaching, and then treated at 70 ° C. for 2.5 hours at pH 1.7-4.4. A method for increasing the bleaching efficiency is also known (Non-patent Document 3). However, as described in the paper, this method has a problem that it is not effective for pulp having a kappa number of 10 or more and cannot be applied to the first stage chlorine dioxide bleaching stage.
[0008]
There has also been proposed a method in which a reducing agent such as formalin is directly added to the chlorine dioxide bleaching stage to regenerate chlorite by-produced from chlorine dioxide into chlorine dioxide, thereby reducing the amount of chlorine dioxide used (for example, patents). Reference 1). However, it cannot be said that it is environmentally preferable to add a substance such as formalin, which is concerned about environmental influences, to pulp bleaching.
[0009]
As an indirect method to reduce the amount of chlorine dioxide used, delignification is promoted as much as possible during cooking, and the kappa number of unbleached pulp is reduced, or delignification is promoted as much as possible in the alkaline oxygen bleaching process. Many methods have been proposed to reduce the kappa number of the pulp before the bleaching step. Moreover, the method etc. which perform a xylanase pretreatment are also known (for example, nonpatent literature 4). However, when the amount of chlorine dioxide used is reduced by using these methods, particularly when lignocellulose containing hardwood is used as a raw material, a large amount of hexeneuronic acid remains, the K value of bleached pulp increases, and the fading property deteriorates. There was a problem.
[0010]
[Patent Document 1]
US Pat. No. 6,235,154 (B1 claim 1, Japanese Patent Special Publication 2002-506935 gazette claim 1)
[Non-Patent Document 1]
Dominque Lachenal et al., 1997 ISWPC Proceedings, p95-98
[Non-Patent Document 2]
S. Juutilainen et al., 1999 Tappi Pulping Conference Proceedings p645-651
[Non-Patent Document 3]
GESeger et al., Tappi Journal, 75 (7) p174-180, 1992 [Non-Patent Document 4]
Viikari, L et al. Biotechnology in the Pulp & Paper Industry 3rd International Conference Proceedings p67-69 (1986)
[0011]
[Problems to be solved by the invention]
An object of the present invention is to produce bleached pulp by subjecting unbleached pulp obtained by cooking lignocellulosic material containing hardwood to alkaline oxygen bleaching and then treating it in a multistage bleaching step having a chlorine dioxide bleaching stage in the first stage. Is to provide a method for producing bleached pulp in which the amount of chlorine dioxide used is reduced and the fading property is improved.
[0012]
[Means for Solving the Problems]
In view of the present situation, the present inventors use a lignocellulosic material containing hardwood as a raw material, perform chlorine dioxide bleaching in the first stage of the multistage bleaching process, and reduce the amount of chlorine dioxide used without deteriorating the bleaching of bleached pulp. As a result of diligent research on how to find a reduction method, it was found that it is effective to design the first stage chlorine dioxide stage in two stages.
[0013]
In other words, it was found that the first half of the first stage chlorine dioxide stage can be realized by setting the following conditions, considering the first half as a “bleaching part” and the second half as a “hexeneuronic acid decomposition part”. First, the total amount of chlorine dioxide added to the first stage chlorine dioxide bleaching stage is added all at once at the start and reacted for 1 to 15 minutes to maximize the bleaching action by chlorine dioxide. Thereafter, acid is added without washing to adjust the pH to 2.0 to 3.5, thereby activating chlorite generated at the initial stage of the reaction to decompose hexeneuronic acid. At higher temperatures, hexeneuronic acid is simultaneously hydrolyzed. Thus, by designing the first stage chlorine dioxide bleaching stage, it was possible to achieve both sufficient bleaching action and decomposition of hexeneuronic acid in the first stage chlorine dioxide bleaching stage, and the present invention was completed.
[0014]
The present invention includes the following inventions.
(1) In a method for producing bleached pulp by subjecting unbleached pulp obtained by digesting lignocellulosic material containing hardwood to alkaline oxygen bleaching, and then treating it in a multistage bleaching step having a chlorine dioxide bleaching stage in the first stage, At the start of the chlorine dioxide bleaching stage, all of the chlorine dioxide is added all at once, and after 1 to 15 minutes of residence at 80 to 100 ° C., acid is added without washing to pH 2.0 to 3.5. Furthermore, the manufacturing method of the bleached pulp characterized by performing a chlorine dioxide bleaching stage by processing for 60 to 240 minutes on 80-100 degreeC conditions.
[0015]
(2) In the chlorine dioxide bleaching stage, at the start of the chlorine dioxide bleaching stage, the acid or the reaction solution is adjusted so that the reaction pH immediately before adding the acid is 4.0 to 6.5, preferably pH 4.5 to 5.5. The method for producing bleached pulp according to (1) above, wherein an alkali is added.
[0016]
(3) The final stage of the multi-stage bleaching step has a chlorine dioxide bleaching stage, and the pH at the end of the final stage chlorine dioxide bleaching stage is 4.5 to 6.5. The manufacturing method of the bleached pulp as described in said (1) term or (2) term.
[0017]
(4) The method for producing bleached pulp according to (3) above, wherein the washing waste water after the final stage chlorine dioxide bleaching stage is used as dilution water at the start of the first stage chlorine dioxide bleaching stage.
[0018]
(5) In any of the above (1) to (4), in the multi-stage bleaching step, an alkali extraction stage to which oxygen and hydrogen peroxide have been added is performed following the first chlorine dioxide bleaching stage. The method for producing bleached pulp according to claim 1.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The lignocellulosic material used in the present invention is preferably 100% hardwood material, but if hardwood material is included, it may contain softwood material or may contain non-wood material. There is no particular limitation except that hardwood is included. As the cooking method for obtaining the pulp used in the present invention, known cooking methods such as kraft cooking, polysulfide cooking, soda cooking, alkali sulfite cooking, etc. can be used, considering pulp quality, energy efficiency, etc. Then, kraft cooking or polysulfide cooking is suitably used.
[0020]
For example, when kraft cooking 100% hardwood wood lignocellulose, the degree of sulfation of the kraft cooking liquor is 5 to 75%, preferably 15 to 45%, the effective alkali addition rate is 5 to 30% by weight per mass of absolutely dry wood, Preferably, 10 to 25% by mass, cooking temperature is 130 to 170 ° C., and the cooking method may be either a continuous cooking method or a batch cooking method. When a continuous cooking kettle is used, a cooking solution is added at multiple points. A cooking method may be used, and the method is not particularly limited.
[0021]
In cooking, as a cooking aid for the cooking liquor used, known cyclic keto compounds, for example, benzoquinone, naphthoquinone, anthraquinone, anthrone, phenanthroquinone, and nuclear substitutes such as alkyl and amino of the quinone compounds, or the quinone Selected from hydroquinone compounds such as anthrahydroquinone, which is a reduced form of the above compounds, and 9,10-diketohydroanthracene compounds which are stable compounds obtained as intermediates in the anthraquinone synthesis method by the Diels-Alder method 1 type or 2 types or more may be added, The addition rate is a normal addition rate, for example, is 0.001-1.0 mass% per the absolute dry mass of a wood chip.
[0022]
In the present invention, the unbleached chemical pulp obtained by a known cooking method is delignified by a known alkaline oxygen bleaching method after washing, roughing and fine selection steps. As the alkaline oxygen bleaching method used in the present invention, a known medium concentration method or high concentration method can be applied as it is, but currently, a medium concentration method in which the pulp concentration is generally used at 8 to 15% by mass. Is preferred.
[0023]
In the alkali oxygen bleaching method by the intermediate concentration method, caustic soda or oxidized kraft white liquor can be used as the alkali, and oxygen gas from the cryogenic separation method, from PSA (Pressure Swing Adsorption) Oxygen, oxygen from VSA (Vacuum Swing Adsorption), etc. can be used. The oxygen gas and alkali are added to a medium-concentration pulp slurry in a medium-concentration mixer and mixed sufficiently, and then sent to a reaction tower capable of holding a mixture of pulp, oxygen, and alkali for a certain period of time under pressure, and delignified. Is done.
[0024]
The oxygen gas addition rate is 0.5 to 3% by mass per bone dry pulp mass, the alkali addition rate is 0.5 to 4% by mass, the reaction temperature is 80 to 120 ° C., the reaction time is 15 to 100 minutes, and the pulp concentration Is 8 to 15% by mass, and other known conditions can be applied. In the present invention, in the alkali oxygen bleaching step, it is a preferred embodiment that the alkali oxygen bleaching is continuously carried out a plurality of times and delignification proceeds as much as possible. The pulp that has been subjected to alkaline oxygen bleaching is then sent to a washing step. After washing, the pulp is sent to a multistage bleaching process.
[0025]
In the multistage bleaching process of the present invention, the first stage is always subjected to chlorine dioxide bleaching. In the first stage chlorine dioxide bleaching stage of the present invention, the chlorine dioxide added to the first stage chlorine dioxide bleaching stage is always added all at once at the start, and the processing temperature is 80 to 100 ° C, preferably 85 to 95 ° C. The residence treatment is performed for 15 minutes, preferably 5 to 10 minutes. Thereafter, an acid for adjusting the pH is added without washing, and the pH is 2.0 to 3.5, preferably pH 2.5 to 3.0, 80 to 100 ° C, preferably 85 to 95 ° C. The first stage chlorine dioxide bleaching stage is performed by treatment for 240 minutes, preferably 90 to 180 minutes.
[0026]
The pH before adding the acid for pH adjustment is 4.0 to 6.5, preferably pH 4.5 to 6.5, more preferably pH 5.0 to 6.0, and if necessary, At the start of the chlorine dioxide bleaching stage, an alkali for adjusting pH or an acid is added. The addition rate of chlorine dioxide is 0.2 to 2.0% by mass as chlorine dioxide per mass of absolutely dry pulp, and is determined by the properties of the pulp after oxygen bleaching and the target whiteness of the bleached pulp. The alkali and acid for pH adjustment are not particularly limited, but caustic soda and sulfuric acid, hydrochloric acid or nitric acid are preferably used from the viewpoint of ease of handling and economical aspect. Although it does not specifically limit regarding a pulp density | concentration, It is 8-15 mass% suitably from the point of operativity.
[0027]
In the present invention, the bleaching stage subsequent to the first stage chlorine dioxide stage is not particularly limited, but a preferred embodiment is that the next stage is an alkali extraction stage and the last stage is a chlorine dioxide bleaching stage. As the conditions when the next stage is an alkali extraction stage, the alkali addition rate is 0.5 to 3% by mass per mass of the dry pulp, the reaction temperature is 60 to 120 ° C., the reaction time is 15 to 120 minutes, the pulp The concentration is 8 to 15% by mass. Preferably, oxygen gas is added to the alkali extraction stage. The addition rate of oxygen gas is 0.1-3 mass% per mass of dry pulp. More preferably, hydrogen peroxide is also added. The addition rate of hydrogen peroxide is 0.05-2 mass% per mass of dry pulp.
[0028]
In the present invention, since the pH at the end of the first stage chlorine dioxide bleaching stage is 3.5 or less, the heavy metal content in the pulp after the first stage chlorine dioxide bleaching stage is significantly reduced, hydrogen peroxide induced by heavy metals, Since the decomposition rate of oxygen-based chemicals such as oxygen and ozone is lowered, the oxygen-based chemicals can be reacted more effectively.
[0029]
In the multi-stage bleaching process of the present invention, the final stage is preferably a chlorine dioxide bleaching stage. The conditions of the final stage chlorine dioxide bleaching stage are preferably pH 4.5 to 6.5, more preferably pH 5.0 to 6.0, reaction temperature 50 to 90 ° C., reaction time 30 to 240 minutes, The pulp concentration is 8 to 15%, and an acid and an alkali are added as necessary to adjust the pH. The alkali and acid for pH adjustment are not particularly limited, but caustic soda and sulfuric acid, hydrochloric acid or nitric acid are preferably used from the viewpoint of ease of handling and economical aspect. The addition rate of chlorine dioxide is 0.05 to 1% by mass with respect to the mass of the absolutely dry pulp, and can be added in divided portions.
[0030]
In the present invention, when the final stage is a chlorine dioxide bleaching stage, the washing waste water after the final stage chlorine dioxide bleaching stage can be used as dilution water at the start of the first stage chlorine dioxide bleaching stage. The advantage of using the washing waste water after the final stage chlorine dioxide bleaching stage as dilution water at the start of the first stage chlorine dioxide bleaching stage is that chlorite contained in the washing waste water of the final stage chlorine dioxide bleaching stage can be used effectively. Can be mentioned. In the present invention, the final chlorine dioxide bleaching is preferably carried out in the range of pH 4.5 to 6.5 so that most of the waste chlorine dioxide remains in the form of chlorite. Chlorite has poor reactivity in the range of pH 4.5 to 6.5, but since the reactivity with lignin and hexeneuronic acid increases when pH falls, washing added to the pulp as dilution water for the first stage chlorine dioxide stage Chlorite in the wastewater reacts with lignin and hexeneuronic acid after sulfuric acid addition and is effectively used.
[0031]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, of course, this invention is not limited by these Examples. Examples 1-3 and Comparative Examples 1-3 shown below are bleached hardwood kraft pulp after factory oxygen bleaching in a D1-E / O-D2 sequence. Example 4 and Comparative Example 4 are D1 -Bleached with E / OP-D2 sequence.
Unless otherwise indicated, the following methods were used to measure the kappa number, the potassium permanganate value (K value), the pulp whiteness, and the pulp fading. In addition, the addition rate of the chemical | medical agent in an Example and a comparative example shows the mass% per absolute dry pulp mass.
[0032]
1. Measurement of pulp kappa number The kappa number was measured according to JIS P8211.
[0033]
2. Measurement of potassium permanganate value (K value) of pulp The potassium permanganate value was measured according to JIS P 8206.
[0034]
3. Measurement of Pulp Whiteness After the bleached pulp was disaggregated, a sheet having a basis weight of 60 g / m 2 was prepared according to Tappi test method T205os-71 (JIS P 8209), and the whiteness of the pulp was measured according to JIS P 8123.
[0035]
4). Evaluation of Pulp Fading After bleaching the bleached pulp, aluminum sulfate was added to adjust the pH to 4.5, and then a sheet having a basis weight of 60 g / m 2 was prepared and dried with a blow dryer. This sheet was faded for 24 hours under the conditions of 80 ° C. and 65% relative humidity, and the PC value was calculated from the whiteness before and after the fade according to the following formula and evaluated.
[0036]
Example 1
70g of hardwood kraft pulp after factory oxygen bleaching (mixed material; 80% eucalyptus wood, 20% acacia wood, whiteness; 49.5%, kappa number; 12.0) was collected in an absolutely dry mass and put into a plastic bag. Then, after adjusting the pulp concentration to 10% using ion-exchanged water, 0.7% of chlorine dioxide was added per mass of dry pulp, and immersed in a constant temperature water bath at 90 ° C. for 10 minutes. The pH of the pulp slurry at this time was 4.0. Then, without washing, 0.6% sulfuric acid was immediately added per mass of the dry pulp, and again immersed in a constant temperature water bath having a temperature of 90 ° C. for 180 minutes to perform D1 stage bleaching. The pH of the pulp slurry at the end of stage D1 was 3.0. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel. The K value of the pulp after the D1 stage was 2.5.
[0037]
Add ion-exchanged water to the pulp after stage D1 and adjust the pulp concentration to 10%, then add 1.0% caustic soda per mass of absolutely dry pulp, put it in a 2 liter stainless steel indirectly heated autoclave, The pressure was increased with a commercially available compressed oxygen gas having a purity of 99.9% so that the gauge pressure was 0.15 MPa, and the mixture was reacted at 70 ° C. for 20 minutes. Thereafter, the pulp slurry was taken out from the autoclave, transferred to a plastic bag, and then immersed in a constant temperature water bath having a temperature of 70 ° C. for 70 minutes to extract the E / O stage. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel.
[0038]
Subsequently, the pulp after the E / O stage is put into a plastic bag with an absolute dry mass of 60.0 g, adjusted to a pulp concentration of 10% using ion-exchanged water, and then the chlorine dioxide per absolute dry pulp mass is 0.2. % And caustic soda 0.05% were added and immersed in a constant temperature water bath at a temperature of 70 ° C. for 180 minutes to perform D2 stage bleaching. The pH of the pulp slurry at the end of stage D2 was 5.5. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel. The whiteness of the obtained bleached pulp was 85.0%, the K value was 1.0, and the PC value was 1.5.
Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0039]
Example 2
In Example D1, Stage 1 and Example 1 except that 0.1% of caustic soda was added per mass of dry pulp at the same time as chlorine dioxide was added, and the addition rate of sulfuric acid was changed to 0.7% per mass of dry pulp. The same operation was performed. The pH immediately before the addition of sulfuric acid in the D1 stage is 5.0, the pH at the end of the D1 stage is 3.0, the K value after the D1 stage is 2.4, the whiteness of the bleached pulp is 86.0%, The K value was 0.9 and the PC value was 1.4.
Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0040]
Example 3
The diluted water in the D1 stage of Example 2 was replaced with the D2 stage washing filtrate collected in Example 1, and the same operation as in Example 2 was performed except that the addition rate of caustic soda was changed to 0.15% per absolute dry pulp mass. went. The pH immediately before the addition of sulfuric acid in the D1 stage is 5.2, the pH at the end of the D1 stage is 3.0, the K value of the pulp after the D1 stage is 2.3, and the whiteness of the bleached pulp is 86.8%. The K value was 0.8 and the PC value was 1.3.
Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0041]
Example 4
In the E / O stage of Example 2, the same operation as in Example 2 was performed except that 0.2% of hydrogen peroxide was added per mass of dry pulp. The whiteness of the bleached pulp was 88.0%, the K value was 0.8, and the PC value was 1.2. Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0042]
Comparative Example 1
The same operation as in Example 1 was performed except that 0.6% of sulfuric acid was added at the same time as the start of stage D1 of Example 1 and the sulfuric acid was not added midway. The pH at the start of D1 stage 10 minutes and at the end of D1 stage is 3.0, K value of pulp after D1 stage is 2.6, whiteness of bleached pulp is 83.8%, K value is 1.1, PC value Was 2.0.
Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0043]
Comparative Example 2
The same operation as in Example 1 was performed except that sulfuric acid was not added during the D1 stage of Example 1. The K value of the pulp after the D1 stage was 3.5, the whiteness of the bleached pulp was 84.1%, the K value was 2.0, and the PC value was 4.4.
Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0044]
Comparative Example 3
The same operation as in Example 1 was performed except that the reaction temperature in the D1 stage of Example 1 was changed to 70 ° C. The K value of the pulp after stage D1 was 4.1, the whiteness of the bleached pulp was 82.8%, the K value was 2.6, and the PC value was 6.0.
Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0045]
Comparative Example 4
The same operation as in Comparative Example 2 was performed except that 0.2% of hydrogen peroxide per mass of dry pulp was added to the E / O stage of Comparative Example 2. The K value of the pulp after the D1 stage was 3.5, the whiteness of the bleached pulp was 84.9%, the K value was 2.0, and the PC value was 4.2. Table 1 shows the chlorine dioxide addition rate in the D1 stage, the K value of the pulp after the D1 stage, the whiteness of the bleached pulp, the K value, and the PC value.
[0046]
[Table 1]
[0047]
As is clear from comparing Examples 1 and 2 and Comparative Examples 1 to 3 in Table 1, the unbleached pulp obtained by digesting the lignocellulosic material containing hardwood is subjected to alkaline oxygen bleaching, and then to the first stage. When producing bleached pulp by processing in a multistage bleaching process having a chlorine dioxide bleaching stage, the whole amount of chlorine dioxide is added at the start of the first stage chlorine dioxide bleaching stage and stays at 80-100 ° C for 1-15 minutes Then, acid is added without washing to adjust the pH to 2.0 to 3.5, and further, if the chlorine dioxide bleaching stage is performed by treating at 80 to 100 ° C. for 60 to 240 minutes, the whiteness is high. It can be seen that bleached pulp having a low K value and good color fading can be obtained. Further, it can be seen that the effect is further enhanced by adjusting the pH immediately before the addition of the acid to 4.5 to 6.0 in the first stage chlorine dioxide bleaching stage.
[0048]
Further, as apparent from the comparison between Examples 2 and 3 in Table 1, the final chlorine dioxide bleaching stage was performed under the condition that the final pH was 4.5 to 6.5, and the washing filtrate of this stage was used as the first stage dioxide dioxide. It can be seen that the bleaching efficiency is improved when used as a dilution water in the chlorine bleaching stage.
On the other hand, as is clear from comparison between Example 4 and Comparative Example 4, when the first stage chlorine dioxide bleaching stage was performed under the above conditions, the bleaching efficiency when oxygen and hydrogen peroxide were added to the alkali extraction stage It can also be seen that it becomes higher.
[0049]
【The invention's effect】
In a method for producing bleached pulp by subjecting unbleached pulp obtained by digesting lignocellulosic material containing hardwood to alkaline oxygen bleaching and then treating it in a multistage bleaching step having a chlorine dioxide bleaching stage in the first stage, the chlorine dioxide At the start of the bleaching stage, all of the chlorine dioxide is added at once, and after 1 to 15 minutes of residence at 80 to 100 ° C., acid is added without washing to pH 2.0 to 3.5, By performing the chlorine dioxide bleaching stage by treating for 60 to 240 minutes at 80 to 100 ° C., it becomes possible to produce a bleached pulp that can be efficiently bleached and has improved fading.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002352065A JP3915682B2 (en) | 2002-12-04 | 2002-12-04 | Method for producing bleached pulp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002352065A JP3915682B2 (en) | 2002-12-04 | 2002-12-04 | Method for producing bleached pulp |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004183149A JP2004183149A (en) | 2004-07-02 |
JP3915682B2 true JP3915682B2 (en) | 2007-05-16 |
Family
ID=32753780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002352065A Expired - Lifetime JP3915682B2 (en) | 2002-12-04 | 2002-12-04 | Method for producing bleached pulp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3915682B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4513959B2 (en) * | 2004-09-17 | 2010-07-28 | 三菱瓦斯化学株式会社 | Semi-bleaching bleaching process for chemical pulp for papermaking |
US20060201642A1 (en) * | 2005-03-08 | 2006-09-14 | Andritz Inc. | Methods of treating chemical cellulose pulp |
JP6680395B1 (en) * | 2019-07-29 | 2020-04-15 | 三菱瓦斯化学株式会社 | Method for producing bleached pulp |
-
2002
- 2002-12-04 JP JP2002352065A patent/JP3915682B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004183149A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4967451B2 (en) | Method for producing bleached pulp | |
JP5487974B2 (en) | Method for producing bleached pulp | |
JP4893210B2 (en) | Method for producing bleached pulp | |
JP4887900B2 (en) | Method for producing bleached pulp | |
JPH1181173A (en) | Production of bleached pulp | |
JP5471049B2 (en) | Method for producing TCF bleached pulp | |
JP3915682B2 (en) | Method for producing bleached pulp | |
JP5515409B2 (en) | Method for producing ECF bleached pulp | |
JP5526604B2 (en) | ECF bleaching method | |
JP5471050B2 (en) | TCF bleaching method | |
JP2013181258A (en) | Method for producing pulp | |
JP2011001636A (en) | Method for producing bleached pulp | |
JP2002266271A (en) | Bleached pulp improved in color fading tendency | |
JP2011001637A (en) | Method for producing bleached pulp | |
JP3656905B2 (en) | Process for producing bleached pulp with improved fading | |
JP2006274478A (en) | Papermaking chemical pulp having improved discoloration property | |
JP2000290887A (en) | Bleaching of lignocellulose | |
JP5888151B2 (en) | Method for producing bleached pulp | |
JP4344144B2 (en) | Process for bleaching chemical pulp for papermaking | |
JP2002302888A (en) | Method of production for bleached pulp | |
JP4750068B2 (en) | Method for measuring hexeneuronic acid content in bleached pulp, method for producing bleached pulp, and method for producing paper | |
JP4645093B2 (en) | Method for producing bleached pulp | |
JP2005068567A (en) | Method for producing bleached pulp | |
JP2000110089A (en) | Production of bleached pulp | |
JP4039308B2 (en) | Method for producing bleached pulp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3915682 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100216 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140216 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |