JP3914624B2 - How to reuse cleaning water for electronic materials - Google Patents
How to reuse cleaning water for electronic materials Download PDFInfo
- Publication number
- JP3914624B2 JP3914624B2 JP35518097A JP35518097A JP3914624B2 JP 3914624 B2 JP3914624 B2 JP 3914624B2 JP 35518097 A JP35518097 A JP 35518097A JP 35518097 A JP35518097 A JP 35518097A JP 3914624 B2 JP3914624 B2 JP 3914624B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- cleaning water
- cleaning
- electronic materials
- ozone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Detergent Compositions (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電子材料用洗浄水に関する。さらに詳しくは、本発明は、半導体用シリコン基板、液晶用ガラス基板などの電子材料を扱う産業において行われるウェット洗浄に用いられる電子材料用洗浄水に関する。
【0002】
【従来の技術】
従来より、半導体用シリコン基板、液晶用ガラス基板などは、RCA洗浄と呼ばれる、硫酸と過酸化水素水の混合液、塩酸と過酸化水素水と水の混合液、アンモニア水と過酸化水素水と水の混合液など、過酸化水素をベースとする濃厚薬液を用いた高温洗浄により清浄化されていた。この洗浄法を採用した場合の多大な薬液コスト、リンス用の超純水コスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を作る空調コストを低減し、さらに水の大量使用、薬物の大量廃棄、排ガスの放出といった環境への負荷を低減するために、近年ウェット洗浄工程の見直しが進められている。
本発明者らは、先に特開平8−316187号公報において、高濃度の塩酸や過酸化水素などの薬品を使用することなく、効率よく半導体基板上の金属汚染物及び有機汚染物の除去を可能にし、洗浄後の廃液処理を容易にする洗浄方法として、塩素化合物を含む酸性水溶液にオゾンを吹き込んで調製した洗浄水を用いる洗浄方法を提案した。本発明者らは、その後さらに研究を進め、洗浄対象物及び洗浄目的に応じて、酸化還元電位とpHを適度に調整した各種の電子材料用洗浄水を開発した。電子材料用洗浄水の酸化還元電位の調整は、超純水に過酸化水素、オゾン、酸素ガス、酸化性塩素などの酸化剤や、水素ガス、次亜硫酸ナトリウムム(Na2S2O4)などの還元剤を溶解することにより行われる。また、pHの調整は、塩酸、硫酸、硝酸、フッ化水素酸などの酸や、アンモニア、水酸化カリウムなどのアルカリを溶解することにより行われる。
本発明者らは、また、ユースポイントにおける電子材料用洗浄水の使用量が変動した場合にも安定して供給することができ、しかも超純水を無駄に廃棄することのない洗浄水供給装置として、電子材料用洗浄水を主配管を通じてユースポイントに送給し、ユースポイントで使用されなかった電子材料用洗浄水を返送して再使用する電子材料用洗浄水供給装置を開発した。ユースポイントで使用されなかった洗浄水は、そのまま循環して再使用したり、あるいは、前段の一次純水製造部に戻して、超純水の原水として使用したりする。電子材料用洗浄水の水質管理を簡単にするためには、ユースポイントで使用されなかった洗浄水は、一次純水製造部に返送して原水とする方法が望ましい。
電子材料用洗浄水は、含有する酸化剤の濃度が同じであれば、酸の添加によりpHを低くする方が酸化還元電位が高くなり、洗浄効果を高めることができる。このために、酸として、塩酸、硫酸、硝酸、フッ化水素酸などを添加して、pHを調整する場合が多い。これらの酸としては、電子工業グレードの高純度試薬を用いるために、薬剤コストが高くなるという問題があった。さらに、このような電子材料用洗浄水を、一次純水製造部に返送して超純水の原水として使用する場合には、あらかじめこれらの酸を除去する必要があり、一次純水製造部におけるイオン負荷が増大するという問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、薬剤を用いることなく電子材料用洗浄水のpHを調整して洗浄効果を高めるとともに、ユースポイントで使用されなかった余剰の電子材料用洗浄水を超純水の原水として利用するとき、余剰の洗浄水の脱イオンが不要で、回収、再利用の容易な電子材料用洗浄水を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、超純水に炭酸ガスを溶解することにより、薬剤を用いることなく超純水のpHを調整することが可能であり、ユースポイントで使用されなかった余剰の電子材料用洗浄水は、脱炭酸処理により容易にCO2除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)オゾン及び飽和炭酸水を含有させて酸化還元電位を上昇させた電子材料用洗浄水をユースポイントに送り、使用されなかった電子材料用洗浄水を原水とともに、脱カチオン塔、脱炭酸塔、脱アニオン塔及び逆浸透膜装置を経由して、サブシステムに通水し、前記オゾン及び飽和炭酸水を含有させて酸化還元電位を上昇させた電子材料用洗浄水とすることを特徴とする電子材料用洗浄水の再利用方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の電子材料用洗浄水は、酸化剤又は還元剤と炭酸を含有する。含有させる酸化剤には特に制限はなく、例えば、過酸化水素、オゾン、酸素ガス、酸化性塩素などを挙げることができる。含有させる還元剤には特に制限はなく、例えば、水素ガス、次亜硫酸ナトリウム(Na2S2O4)などを挙げることができる。酸化剤を含有する本発明の電子材料用洗浄水は、電子材料表面の金属汚染、有機物汚染などの洗浄に好適に使用することができる。還元剤を含有する本発明の電子材料用洗浄水は、電子材料表面の微粒子などの除去に好適に使用することができる。
本発明において、電子材料用洗浄水に炭酸を含有させる方法には特に制限はなく、例えば、超純水に炭酸ガスを直接バブリングして溶解させることができ、気体透過膜モジュールを使用して炭酸ガスを溶解させることもでき、あるいは、あらかじめ炭酸ガスを高濃度に溶解した炭酸水を調製しておき、これを超純水に添加することもできる。
本発明の電子材料用洗浄水の調製において、酸化剤又は還元剤と炭酸を含有させる順序には特に制限はなく、酸化剤又は還元剤を含有させたのち炭酸を含有させることができ、あるいは逆に、炭酸を含有させたのち酸化剤又は還元剤を含有させることもできる。
本発明の電子材料用洗浄水としては、例えば、過酸化水素と炭酸を含有する洗浄水、オゾンと炭酸を含有する洗浄水、酸素ガスと炭酸を含有する洗浄水、酸化性塩素と炭酸を含有する洗浄水、水素ガスと炭酸を含有する洗浄水などを挙げることができる。
【0006】
電子材料用洗浄水の酸化還元電位は、含有される酸化剤又は還元剤の濃度とともに、洗浄水のpHによっても変化する。図1は、酸化剤を高濃度、中濃度、低濃度に含有する電子材料用洗浄水の、pHと酸化還元電位の関係を示す模式的説明図である。同一pHで比較すると、酸化剤の濃度が高いほど洗浄水の酸化還元電位は高くなるが、酸化剤の濃度が一定であっても、洗浄水のpHが低いほど酸化還元電位は高くなる。電子材料表面に付着した金属汚染や有機物汚染を除去する場合は、一般に洗浄水の酸化還元電位が高いほど洗浄効果が高まるので、酸化剤を含有する洗浄水に酸を添加してpHを低下させることが行われる。
電子材料用洗浄水のpHを下げ、酸化還元電位を高めて有機物汚染、金属汚染などの除去効果を高めるために、塩酸などの鉱酸を添加すると、ユースポイントで使用されなかった洗浄水を返送し、一次純水製造部において再処理するとき、除去すべきイオンの負荷が大きくなるが、塩酸などの鉱酸の代わりに、炭酸又は炭酸ガスを用いてpHを調整することにより、一次純水製造部において、脱炭酸装置により容易に炭酸を除去することが可能となり、脱炭酸装置の後段に設置したイオン交換装置への負荷を軽減することができる。炭酸ガスは、水に非常に溶解しやすく、その濃度が正しくpHの低下に反映される。例えば、中性の水に炭酸ガス100mg/リットルを溶解させると、pHは約4.5まで低下する。本発明の電子材料用洗浄水は、洗浄する対象物に応じて、含有させる酸化剤又は還元剤と炭酸の量を調整し、所望の酸化還元電位及びpHを有する洗浄水とすることができる。
【0007】
本発明の電子材料用洗浄水は、炭酸を使用して洗浄水のpHを調整するものであり、炭酸によりpHを調整した洗浄水は、従来の塩酸などの鉱酸を用いてpHを調整した洗浄水とpHが同じであれば、同等の洗浄効果を有する。
超純水自体をウェーハに高圧スプレーして洗浄する際に、超純水に炭酸を溶解して超純水の比抵抗を下げ、ウェーハにおける静電気の発生を抑制することは従来も行われていたが、酸化剤又は還元剤を含有する洗浄水に炭酸を溶解させることは行われてはいなかった。
ユースポイントで使用されなかった本発明の電子材料用洗浄水は、脱炭酸処理ののち、一次純水製造部又は超純水製造装置に戻し、再利用することができる。洗浄水中の炭酸は、脱炭酸により容易に除去することができるので、塩類の増加はなく、超純水製造装置の脱塩装置の負荷を増大させることがない。炭酸を含有する電子材料用洗浄水の余剰分を戻すポイントは、脱炭酸装置の上流であれば特に制限はないが、特に前処理工程と一次純水製造部との中間に位置する水槽が適当である。酸化剤がオゾンである本発明の電子材料用洗浄水を回収する場合には、紫外線照射、触媒や活性炭との接触などより、オゾンを分解して酸素としたのちに、一次純水製造部に戻すことが好ましい。
本発明の電子材料用洗浄水について脱炭酸を行う方法には特に制限はなく、例えば、炭酸を含有する洗浄水を通常の気液接触装置に通すことによって行うことができる。炭酸を含有する洗浄水は、通常はpH5以下となっていて、炭酸は、炭酸イオン、重炭酸イオンのようなイオン状でなく、二酸化炭素(CO2)として溶解しているので、気液接触することにより、容易に炭酸ガスとなって気相に放散される。気液接触は、例えば、充填材を充填した気液接触塔において、洗浄水を上部から散水し、下部から空気などの気体を供給することにより行うことができる。また、電子材料用洗浄水を貯留する槽内に気体を散気し、炭酸をストリッピングする方法によることもできる。あるいは、脱気膜装置を使用して脱炭酸を行うことも可能である。
【0008】
ユースポイントで使用されなかった本発明の電子材料用洗浄水は、専用の脱炭酸装置で処理すれば、洗浄水の含有成分により、超純水製造装置の一次純水製造部に戻すことができ、あるいは、二次純水製造部(サブシステム)に戻すこともできる。脱炭酸することなく戻す場合には、一次純水製造部に戻すことが好ましい。一次純水製造部には、通常、脱気装置が設けられているので、使用されなかった余剰の洗浄水中の炭酸は、一次純水製造部を通過する間に除去される。また、使用されなかった余剰洗浄水のpHが5より高い場合には、脱炭酸することなく一次純水製造部に戻し、一次純水製造部で炭酸を除去することができる。
図2は、酸化剤がオゾンである本発明の電子材料用洗浄水の利用システムの一態様の系統図である。超純水製造装置のサブシステム2(二次純水製造部)から送り出された超純水は、気体透過膜モジュール3においてオゾン発生器4から送られるオゾンを溶解し、次いで気体透過膜モジュール5において炭酸ガス供給器6から送られる炭酸ガスを溶解して、オゾンと炭酸を含有する電子材料用洗浄水となる。電子材料用洗浄水は、ユースポイント7へ送給されるが、ユースポイントで使用されなかった電子材料用洗浄水は、オゾン分解装置8においてオゾンを分解除去したのち返送配管9を通じて一次純水製造部1へ返送される。ユースポイント7において使用された電子材料用洗浄水であっても、含まれる不純物の少ない洗浄水は、使用されなかった洗浄水とともに返送して再利用することができる。図示の一次純水製造部1は、脱カチオン塔11、脱炭酸塔12、脱アニオン塔13及び逆浸透膜装置14から構成されている。返送された余剰の洗浄水は、一次純水製造部1へ供給される原水とともに一旦水槽10に貯留された後、脱カチオン塔11を経由して脱炭酸塔12に送られる。脱炭酸塔12においては、空気源15からの空気流によって洗浄水中の炭酸が除去される。脱炭酸塔12において炭酸を除去した洗浄水は、脱アニオン塔13に送られる。洗浄水中の炭酸はすでに脱炭酸塔12で除去されているので、脱アニオン塔13のアニオン交換樹脂に対する負荷とはならず、脱アニオン塔13は再生頻度が少なく長期間使用することができる。脱アニオン塔13から逆浸透膜装置を経由して流出する一次純水は、次いでサブシステム2でさらに高純度化されて再び超純水として使用される。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
参考例
下地金属製膜を施した直径6インチのシリコンウェーハを、銅5μg/リットルを含む水に3分間浸漬したのち乾燥することによって、表面に銅が付着した汚染ウェーハを12枚作製した。洗浄処理前の銅濃度を求めるために、その内の3枚を抜き取り、全反射蛍光X線分析法により表面の銅濃度を測定した。その結果、3枚の汚染ウェーハの銅濃度の平均値は1.05×1012原子/cm2であった。
超純水に、気体透過膜モジュールを用いてオゾンを溶解して、溶存オゾン濃度を1.0mg/リットルとしたのち、さらに気体透過膜モジュールを用いて炭酸ガスを濃度100mg/リットルになるように溶解し、pHを4.5に調整して電子材料用洗浄水を得た。
3枚の汚染ウェーハをこの電子材料用洗浄水に5分間浸漬して洗浄し、次いで、超純水ですすぎを行ったのち乾燥した。乾燥後のウェーハ表面の銅の濃度を、全反射蛍光X線分析法により測定した。3枚の平均値は0.97×1010原子/cm2であった。
この電子材料用洗浄水を、プラスチック充填材を充填した気液接触塔に通水させたところ、溶解している炭酸ガス濃度は1mg/リットルまで低下し、実質的にイオン負荷とはならなかった。
比較例1
電子材料用洗浄水として、気体透過膜モジュールを用いてオゾンを溶解して、溶存オゾン濃度を1.0mg/リットルとしたのち、さらに塩酸を添加してpHを4.5に調整した電子材料用洗浄水を用いた以外は、参考例と同じ操作を繰り返した。洗浄、乾燥後の3枚のウェーハ表面の銅の濃度の平均値は0.98×1010原子/cm2であった。
実施例1
電子材料用洗浄水として、気体透過膜モジュールを用いてオゾンを溶解して、溶存オゾン濃度を1.0mg/リットルとしたのち、さらにあらかじめ調製した飽和炭酸水を添加してpHを4.5に調整した電子材料用洗浄水を用いた以外は、参考例と同じ操作を繰り返した。洗浄、乾燥後の3枚のウェーハ表面の銅の濃度の平均値は0.95×1010原子/cm2であった。
比較例2
電子材料用洗浄水として、気体透過膜モジュールを用いてオゾンを溶解して、溶存オゾン濃度を1.0mg/リットルとしたのち、pH調整を行わないpH6.5の電子材料用洗浄水を用いた以外は、参考例と同じ操作を繰り返した。洗浄、乾燥後の3枚のウェーハ表面の銅の濃度の平均値は3.12×1010原子/cm2であった。
参考例及び実施例1及び比較例1〜2の結果を、第1表に示す。
【0010】
【表1】
【0011】
第1表の結果から、超純水にオゾン1.0mg/リットルを溶解し、さらに炭酸ガスを溶解してpHを4.5に調整した電子材料用洗浄水を用いた参考例と、超純水にオゾン1.0mg/リットルを溶解し、さらに塩酸を添加してpHを4.5に調整した電子材料用洗浄水を用いた比較例1とで、ウェーハ表面の銅汚染は同程度まで除去されている。すなわち、炭酸を溶解することによりpH調整を行った本発明の電子材料用洗浄水によって、塩酸を添加することによりpH調整を行った従来の電子材料用洗浄水と変わらぬ洗浄効果が得られることが分かる。
また、あらかじめ調製した飽和炭酸水を添加することにより、炭酸を含有させた実施例1の電子材料用洗浄水を用いても、気体透過膜モジュールを用いて炭酸ガスを溶解させた参考例の電子材料用洗浄水と同じ洗浄効果が得られている。
これに対して、超純水にオゾン1.0mg/リットルを溶解し、pH調整は行わない比較例1の電子材料用洗浄水を用いた場合は、銅汚染の除去が不十分である。
【0012】
【発明の効果】
本発明の電子材料用洗浄水は、洗浄水のpH調整に炭酸を用いるので、塩酸などの鉱酸の添加の必要がなく、ユースポイントで使用されなかった余剰の洗浄水は、一次純水製造部の脱炭酸装置の上流に返送するか、専用の脱炭酸装置で処理することにより、炭酸は容易に除去され、脱イオン装置へ負荷をかけることなく再利用することができる。
【図面の簡単な説明】
【図1】図1は、電子材料用洗浄水のpHと酸化還元電位の関係を示す説明図である。
【図2】図2は、本発明の電子材料用洗浄水の利用システムの一態様の系統図である。
【符号の説明】
1 一次純水製造部
2 サブシステム
3 気体透過膜モジュール
4 オゾン発生器
5 気体透過膜モジュール
6 炭酸ガス供給器
7 ユースポイント
8 オゾン分解装置
9 返送配管
10 水槽
11 脱カチオン塔
12 脱炭酸塔
13 脱アニオン塔
14 逆浸透膜装置
15 空気源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to cleaning water for electronic materials. More specifically, the present invention relates to cleaning water for electronic materials used for wet cleaning performed in industries that handle electronic materials such as semiconductor silicon substrates and glass substrates for liquid crystals.
[0002]
[Prior art]
Conventionally, silicon substrates for semiconductors, glass substrates for liquid crystals, etc. are called RCA cleaning, a mixture of sulfuric acid and hydrogen peroxide, a mixture of hydrochloric acid, hydrogen peroxide and water, ammonia and hydrogen peroxide. It was cleaned by high-temperature cleaning using a concentrated chemical solution based on hydrogen peroxide, such as a mixture of water. When this cleaning method is adopted, the chemical cost, the ultrapure water cost for rinsing, the waste liquid treatment cost, the air conditioning cost for exhausting chemical vapor and creating new clean air are reduced, and the use of a large amount of water, In recent years, the wet cleaning process has been reviewed in order to reduce environmental burdens such as mass disposal and emission of exhaust gas.
In the prior art of JP-A-8-316187, the present inventors have efficiently removed metal contaminants and organic contaminants on a semiconductor substrate without using chemicals such as high-concentration hydrochloric acid or hydrogen peroxide. A cleaning method using cleaning water prepared by blowing ozone into an acidic aqueous solution containing a chlorine compound has been proposed as a cleaning method that enables waste liquid treatment after cleaning. The present inventors have further studied and developed various types of cleaning water for electronic materials in which the redox potential and pH are appropriately adjusted according to the object to be cleaned and the purpose of cleaning. Adjustment of the oxidation-reduction potential of cleaning water for electronic materials can be achieved by adding ultra-pure water to oxidizing agents such as hydrogen peroxide, ozone, oxygen gas, and oxidizing chlorine, hydrogen gas, and sodium hyposulfite (Na 2 S 2 O 4 ). It is performed by dissolving a reducing agent such as. The pH is adjusted by dissolving an acid such as hydrochloric acid, sulfuric acid, nitric acid or hydrofluoric acid, or an alkali such as ammonia or potassium hydroxide.
The present inventors also provide a cleaning water supply device that can stably supply even when the amount of electronic material cleaning water used at the point of use fluctuates and that does not waste ultrapure water wastefully. As a result, we have developed a cleaning water supply device for electronic materials that supplies cleaning water for electronic materials to the point of use through the main pipe, and returns and reuses the cleaning water for electronic material that was not used at the point of use. The wash water that has not been used at the point of use is circulated and reused as it is, or returned to the primary pure water production department in the previous stage and used as raw water of ultrapure water. In order to simplify the quality control of the cleaning water for electronic materials, it is desirable that the cleaning water not used at the point of use is returned to the primary pure water production department to be used as raw water.
If the concentration of the oxidizing agent contained in the electronic material cleaning water is the same, the oxidation-reduction potential becomes higher and the cleaning effect can be enhanced by lowering the pH by adding acid. For this reason, hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid and the like are often added as acids to adjust the pH. As these acids, there is a problem that the chemical cost is high because an electronic industrial grade high-purity reagent is used. Furthermore, when such cleaning water for electronic materials is returned to the primary pure water production department and used as the raw water of ultrapure water, it is necessary to remove these acids in advance, in the primary pure water production department. There was a problem that the ion load increased.
[0003]
[Problems to be solved by the invention]
The present invention improves the cleaning effect by adjusting the pH of the electronic material cleaning water without using a chemical, and uses the excess electronic material cleaning water that has not been used at the point of use as the raw water of ultrapure water. The purpose of the present invention is to provide cleaning water for electronic materials that does not require deionization of excess cleaning water and can be easily recovered and reused.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors can adjust the pH of ultrapure water without using a chemical by dissolving carbon dioxide in ultrapure water. The present inventors have found that excess cleaning water for electronic materials that has not been used at the point of use can easily remove CO 2 by decarboxylation, and based on this finding, the present invention has been completed.
That is, the present invention
(1) Electronic material cleaning water, which contains ozone and saturated carbonated water to raise the oxidation-reduction potential, is sent to the point of use, and unused electronic material cleaning water is fed together with raw water, decation tower, and decarbonation tower. In addition, the water is passed through a sub-system via a deanion tower and a reverse osmosis membrane device, and the washing water for electronic materials is obtained by containing the ozone and saturated carbonated water to increase the redox potential. How to reuse cleaning water for electronic materials,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The cleaning water for electronic materials of the present invention contains an oxidizing agent or a reducing agent and carbonic acid. There is no restriction | limiting in particular in the oxidizing agent to contain, For example, hydrogen peroxide, ozone, oxygen gas, oxidizing chlorine etc. can be mentioned. There is no particular limitation on the reducing agent to be contained, for example, hydrogen gas, sodium hyposulfite (Na 2 S 2 O 4) and the like. The cleaning water for electronic materials of the present invention containing an oxidizing agent can be suitably used for cleaning metal surface contamination, organic contamination, etc. on the surface of the electronic material. The cleaning water for electronic material of the present invention containing a reducing agent can be suitably used for removing fine particles on the surface of the electronic material.
In the present invention, there is no particular limitation on the method of incorporating carbonic acid into the cleaning water for electronic materials. For example, carbonic acid gas can be directly bubbled and dissolved in ultrapure water, and carbonic acid can be dissolved using a gas permeable membrane module. The gas can be dissolved, or carbonated water in which carbon dioxide gas is dissolved at a high concentration is prepared in advance, and this can be added to ultrapure water.
In the preparation of the cleaning water for electronic materials of the present invention, the order in which the oxidizing agent or reducing agent and carbonic acid are contained is not particularly limited, and after containing the oxidizing agent or reducing agent, carbonic acid can be contained, or vice versa. In addition, after containing carbonic acid, an oxidizing agent or a reducing agent can also be contained.
The electronic material cleaning water of the present invention includes, for example, cleaning water containing hydrogen peroxide and carbonic acid, cleaning water containing ozone and carbonic acid, cleaning water containing oxygen gas and carbonic acid, and oxidizing chlorine and carbonic acid. And cleaning water containing hydrogen gas and carbonic acid.
[0006]
The oxidation-reduction potential of the cleaning water for electronic materials varies depending on the pH of the cleaning water as well as the concentration of the oxidizing agent or reducing agent contained therein. FIG. 1 is a schematic explanatory diagram showing the relationship between pH and redox potential of electronic material cleaning water containing an oxidizing agent in high, medium, and low concentrations. When compared at the same pH, the higher the concentration of the oxidizing agent, the higher the redox potential of the wash water. However, even if the concentration of the oxidizing agent is constant, the lower the pH of the wash water, the higher the redox potential. When removing metal contamination or organic contamination attached to the surface of electronic materials, the cleaning effect generally increases as the oxidation-reduction potential of the cleaning water increases, so the pH is lowered by adding acid to the cleaning water containing the oxidizing agent. Is done.
In order to lower the pH of cleaning water for electronic materials and increase the oxidation-reduction potential to increase the removal effect of organic contamination, metal contamination, etc., adding mineral acid such as hydrochloric acid will return the cleaning water that was not used at the point of use. However, when reprocessing in the primary pure water production department, the load of ions to be removed increases, but primary pure water is adjusted by adjusting the pH using carbonic acid or carbon dioxide instead of mineral acid such as hydrochloric acid. In the production department, carbonic acid can be easily removed by the decarboxylation device, and the load on the ion exchange device installed at the subsequent stage of the decarbonation device can be reduced. Carbon dioxide gas is very soluble in water, and its concentration is correctly reflected in the decrease in pH. For example, when 100 mg / liter of carbon dioxide gas is dissolved in neutral water, the pH drops to about 4.5. The washing water for electronic materials of the present invention can be made into washing water having a desired oxidation-reduction potential and pH by adjusting the amount of oxidizing agent or reducing agent to be contained and carbonic acid according to the object to be washed.
[0007]
The cleaning water for electronic materials of the present invention adjusts the pH of the cleaning water using carbonic acid, and the cleaning water whose pH was adjusted by carbonic acid adjusted the pH using a conventional mineral acid such as hydrochloric acid. If the pH is the same as that of the washing water, it has an equivalent washing effect.
When cleaning ultra-pure water itself onto a wafer by high-pressure spraying, it has been conventionally practiced to reduce the specific resistance of ultra-pure water by dissolving carbonic acid in ultra-pure water to suppress the generation of static electricity on the wafer. However, carbonic acid has not been dissolved in washing water containing an oxidizing agent or a reducing agent.
The electronic material cleaning water of the present invention that has not been used at the point of use can be returned to the primary pure water production department or the ultrapure water production apparatus and reused after decarboxylation. Since carbonic acid in the wash water can be easily removed by decarboxylation, there is no increase in salts, and the load on the demineralizer of the ultrapure water production apparatus is not increased. There is no particular limitation on the point of returning the excess cleaning water for electronic materials containing carbonic acid as long as it is upstream of the decarboxylation device, but a water tank located between the pretreatment step and the primary pure water production department is particularly suitable. It is. When recovering the cleaning water for electronic materials of the present invention in which the oxidizing agent is ozone, the ozone is decomposed into oxygen by ultraviolet irradiation, contact with a catalyst or activated carbon, etc. It is preferable to return.
There is no restriction | limiting in particular in the method to decarboxylate about the washing water for electronic materials of this invention, For example, it can carry out by letting the washing water containing a carbonic acid pass through a normal gas-liquid contact apparatus. Washing water containing carbonic acid usually has a pH of 5 or less, and carbonic acid is dissolved as carbon dioxide (CO 2 ), not ionic, such as carbonate ions or bicarbonate ions. By doing so, it easily becomes carbon dioxide gas and is diffused into the gas phase. The gas-liquid contact can be performed, for example, by sprinkling washing water from the upper part and supplying a gas such as air from the lower part in a gas-liquid contact tower filled with a filler. Moreover, it can also be based on the method which diffuses gas in the tank which stores the cleaning water for electronic materials, and strips carbonic acid. Alternatively, decarboxylation can be performed using a degassing membrane device.
[0008]
The electronic material cleaning water of the present invention that was not used at the point of use can be returned to the primary pure water production unit of the ultrapure water production equipment by the components contained in the washing water if treated with a dedicated decarboxylation device. Alternatively, it can be returned to the secondary pure water production department (subsystem). When returning without decarboxylation, it is preferable to return to the primary pure water production department. Since the primary pure water production unit is usually provided with a deaeration device, excess carbon dioxide in the unused wash water is removed while passing through the primary pure water production unit. Moreover, when the pH of the excess washing water which has not been used is higher than 5, it can be returned to the primary pure water production section without decarboxylation, and the primary pure water production section can remove carbonic acid.
FIG. 2 is a system diagram of an embodiment of a system for using cleaning water for electronic materials of the present invention in which the oxidizing agent is ozone. The ultrapure water sent out from the subsystem 2 (secondary pure water production section) of the ultrapure water production apparatus dissolves ozone sent from the
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
REFERENCE EXAMPLE A silicon wafer having a diameter of 6 inches with a base metal film was immersed in water containing 5 μg / liter of copper for 3 minutes and then dried to prepare 12 contaminated wafers having copper attached to the surface. In order to determine the copper concentration before the cleaning treatment, three of them were extracted and the copper concentration on the surface was measured by total reflection X-ray fluorescence analysis. As a result, the average value of the copper concentration of the three contaminated wafers was 1.05 × 10 12 atoms / cm 2 .
Dissolve ozone in ultrapure water using a gas permeable membrane module to a dissolved ozone concentration of 1.0 mg / liter, and then use a gas permeable membrane module to adjust the concentration of carbon dioxide to 100 mg / liter. It melt | dissolved and pH was adjusted to 4.5 and the washing water for electronic materials was obtained.
Three contaminated wafers were cleaned by immersing them in this electronic material cleaning water for 5 minutes, then rinsed with ultrapure water and then dried. The copper concentration on the wafer surface after drying was measured by total reflection X-ray fluorescence analysis. The average value of the three sheets was 0.97 × 10 10 atoms / cm 2 .
When this electronic material cleaning water was passed through a gas-liquid contact tower filled with a plastic filler, the concentration of dissolved carbon dioxide gas decreased to 1 mg / liter, and it did not substantially become an ion load. .
Comparative Example 1
For electronic material cleaning water for electronic materials, ozone is dissolved using a gas permeable membrane module, the dissolved ozone concentration is adjusted to 1.0 mg / liter, and hydrochloric acid is added to adjust the pH to 4.5. The same operation as in the reference example was repeated except that washing water was used. The average value of the copper concentration on the surface of the three wafers after cleaning and drying was 0.98 × 10 10 atoms / cm 2 .
Example 1
As cleaning water for electronic materials, ozone is dissolved by using a gas permeable membrane module so that the dissolved ozone concentration becomes 1.0 mg / liter, and then a saturated carbonated water prepared in advance is added to adjust the pH to 4.5. The same operation as in the reference example was repeated except that the adjusted cleaning water for electronic materials was used. The average value of the copper concentration on the surface of the three wafers after cleaning and drying was 0.95 × 10 10 atoms / cm 2 .
Comparative Example 2
As cleaning water for electronic materials, ozone was dissolved using a gas permeable membrane module so that the dissolved ozone concentration was 1.0 mg / liter, and then cleaning water for electronic materials having a pH of 6.5 without pH adjustment was used. Except for the above, the same operation as in the reference example was repeated. The average value of the copper concentration on the surface of the three wafers after cleaning and drying was 3.12 × 10 10 atoms / cm 2 .
The results of Reference Example, Example 1, and Comparative Examples 1 and 2 are shown in Table 1.
[0010]
[Table 1]
[0011]
From the results in Table 1, a reference example using cleaning water for electronic materials in which 1.0 mg / liter of ozone was dissolved in ultrapure water and carbon dioxide was dissolved to adjust the pH to 4.5, and ultrapure water were used. Copper contamination on the wafer surface is removed to the same extent as in Comparative Example 1 using electronic material cleaning water in which ozone is dissolved at 1.0 mg / liter in water and hydrochloric acid is added to adjust the pH to 4.5. Has been. That is, the cleaning effect for electronic materials of the present invention, which has been adjusted for pH by dissolving carbonic acid, can provide the same cleaning effect as conventional cleaning water for electronic materials that has been adjusted for pH by adding hydrochloric acid. I understand.
Moreover, even if it uses the washing water for electronic materials of Example 1 containing carbonic acid by adding saturated carbonated water prepared in advance, the electron of the reference example in which carbon dioxide gas was dissolved using the gas permeable membrane module The same cleaning effect as the material cleaning water is obtained.
On the other hand, when 1.0 mg / liter of ozone is dissolved in ultrapure water and the cleaning water for electronic materials of Comparative Example 1 in which pH adjustment is not performed is used, removal of copper contamination is insufficient.
[0012]
【The invention's effect】
Since the cleaning water for electronic materials of the present invention uses carbonic acid to adjust the pH of the cleaning water, there is no need to add a mineral acid such as hydrochloric acid, and excess cleaning water that has not been used at the point of use is produced as primary pure water. The carbon dioxide is easily removed by returning it to the upstream of the decarboxylation device of the unit or by processing with a dedicated decarboxylation device, and can be reused without applying a load to the deionization device.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the relationship between the pH of cleaning water for electronic materials and the oxidation-reduction potential.
FIG. 2 is a system diagram of one embodiment of a system for using cleaning water for electronic materials according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Primary pure
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35518097A JP3914624B2 (en) | 1997-12-24 | 1997-12-24 | How to reuse cleaning water for electronic materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35518097A JP3914624B2 (en) | 1997-12-24 | 1997-12-24 | How to reuse cleaning water for electronic materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11186207A JPH11186207A (en) | 1999-07-09 |
JP3914624B2 true JP3914624B2 (en) | 2007-05-16 |
Family
ID=18442421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35518097A Expired - Lifetime JP3914624B2 (en) | 1997-12-24 | 1997-12-24 | How to reuse cleaning water for electronic materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3914624B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6310017B1 (en) * | 1999-02-01 | 2001-10-30 | Ct Associates, Inc. | Cleaner composition, method for making and using same |
JP3949504B2 (en) | 2002-04-25 | 2007-07-25 | 英夫 吉田 | Method and apparatus for activation treatment of base material surface |
JP5358910B2 (en) * | 2007-08-10 | 2013-12-04 | 栗田工業株式会社 | Carbonated water manufacturing apparatus and manufacturing method |
JP6970007B2 (en) * | 2017-12-25 | 2021-11-24 | 株式会社荏原製作所 | Gas solution manufacturing equipment |
JP7059040B2 (en) | 2018-02-23 | 2022-04-25 | 株式会社荏原製作所 | Gas solution manufacturing equipment |
-
1997
- 1997-12-24 JP JP35518097A patent/JP3914624B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11186207A (en) | 1999-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5072062B2 (en) | Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water | |
KR100303933B1 (en) | Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates | |
KR100926743B1 (en) | Hydrogen Dissolved Water Production Equipment | |
WO2009128327A1 (en) | Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases | |
WO2009113682A1 (en) | Gas-dissolved water supply system | |
JP2677235B2 (en) | Semiconductor substrate cleaning apparatus, cleaning method, and cleaning liquid generation method | |
WO2014069203A1 (en) | Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials | |
JP3296405B2 (en) | Cleaning method and cleaning device for electronic component members | |
JP2004122020A (en) | Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus | |
JP3914624B2 (en) | How to reuse cleaning water for electronic materials | |
JPWO2009082008A1 (en) | Hydrogen peroxide removal method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus | |
JP4978275B2 (en) | Primary pure water production process water treatment method and apparatus | |
JP4273440B2 (en) | Cleaning water for electronic material and cleaning method for electronic material | |
JP3639102B2 (en) | Wet processing equipment | |
JP3928484B2 (en) | Functional water recovery method | |
JP3016301B2 (en) | Cleaning method | |
JP2000262992A (en) | Substrate washing method | |
JP2754925B2 (en) | Water recovery method from diluted wastewater for printed circuit board cleaning | |
JP5037748B2 (en) | Ozone water concentration adjustment method and ozone water supply system | |
JP2006278838A (en) | Sulfuric acid recycling type cleaning system | |
JP3507590B2 (en) | Wet processing method and processing apparatus | |
JP3209223B2 (en) | Wet treatment method | |
CN100444934C (en) | Method and apparatus for removing ozone | |
JP3444473B2 (en) | Electronic material cleaning method and electronic material cleaning water | |
KR100502589B1 (en) | Method of regenerating effluent as washing liquid for metal products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040414 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040610 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050309 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050419 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140209 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |