[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3914585B2 - Macrophage nitric oxide production enhancer - Google Patents

Macrophage nitric oxide production enhancer Download PDF

Info

Publication number
JP3914585B2
JP3914585B2 JP29626195A JP29626195A JP3914585B2 JP 3914585 B2 JP3914585 B2 JP 3914585B2 JP 29626195 A JP29626195 A JP 29626195A JP 29626195 A JP29626195 A JP 29626195A JP 3914585 B2 JP3914585 B2 JP 3914585B2
Authority
JP
Japan
Prior art keywords
arginine
nitric oxide
amino acid
amino acids
acid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29626195A
Other languages
Japanese (ja)
Other versions
JPH09110686A (en
Inventor
敏也 小林
洋 深澤
稔 栗林
大二 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP29626195A priority Critical patent/JP3914585B2/en
Publication of JPH09110686A publication Critical patent/JPH09110686A/en
Application granted granted Critical
Publication of JP3914585B2 publication Critical patent/JP3914585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルギニンを全アミノ酸に対し10〜30重量%配合したアミノ酸組成物を有効成分として含有する、マクロファージの一酸化窒素産生亢進剤に関する。
本発明の一酸化窒素産生亢進剤は、これを投与することによりマクロファージの一酸化窒素産生が亢進され、免疫機能が高まり、副作用を生ずることなく、術後等の侵襲期、或いは免疫不全症、放射線療法、抗癌剤投与、後天性免疫不全症等に伴って発生する感染症の予防及び治療に有用なものとなる。
【0002】
【従来の技術】
従来、ヒトのアミノ酸の摂取必要量の決定に際しては、バランスのとれた必須アミノ酸の摂取に重点が置かれており、非必須アミノ酸(可欠アミノ酸)の摂取は、Roseによる動物の成長速度や窒素平衡保持を指標とした実験(Physiol.Rev.,vol.18,pp.109−136(1938))により、特に必要ではないとされてきた。しかし近年、生体が生理的に最適な反応を示すために必要なアミノ酸の種類と量は、窒素平衡等で推定されたものより多いことが指摘されている。特に、各種病態下においては、例えば、侵襲期における分枝鎖アミノ酸(ロイシン、イソロイシン、バリン)(以下、特に指定していないアミノ酸については、グリシンを除きすべてL型アミノ酸である)やグルタミン要求量の増大が挙げられる。そして、Seifterらは、アルギニンの摂取により創傷治癒日数が短縮されることを明らかにしており、これは、アルギニンが肉芽形成に必要なコラーゲンの構成成分であるプロリンに変換され供給されると共に、創傷治癒に効果を及ぼすインスリン、グルカゴン等のホルモン分泌を刺激する作用を有するためであると報告している(Surgery,vol.84,pp.224−230(1978))。又、Barbulらは、正常人に30gのアルギニンを投与することにより免疫機能の亢進を認め(Surgery,vol.90,pp.244−251(1981))、さらに、Reynoldsらも、アルギニンが細胞傷害性Tリンパ球の分化促進等の免疫への作用を有していることを報告している(Surgery,vol.104,pp.142−151(1988))。これらのことは、アルギニンは単に体蛋白の構成成分であるばかりでなく、生理的機能の保持に必要であることを示唆している。そのため、アルギニンの生体維持に必要な量は、Roseの古典的な基準では的確でなく、さらに高いものと考えられる(若林保良ら,外科と代謝・栄養,vol.25,pp.398−404(1991))。従って、アルギニンの体内合成量が疾病等により低下したり、疾病期の栄養管理において供給されるアルギニン量が必要量より少なかったりすると、疾病に対する治癒回復の遅延や症状の増悪、合併症の併発等が危惧される。
【0003】
又、正常動物においては、全ての細胞で一様に十分量のアルギニンは合成されず、基本的にグルタミン酸から小腸と腎臓の主要臓器の分担のもと7種類の酵素により合成されて体内各部に送られ、蛋白合成や尿素回路、その他に消費されると言われている(若林保良ら,外科と代謝・栄養,vol.25, pp.398-404 (1991))。そのため、小腸の大量切除術や短腸症候群等の腸管障害を有する患者、外傷や熱傷等の高度侵襲を受け蛋白代謝が異常に亢進した患者、或いは抗癌剤投与時の副作用として見られる腸管障害や腸管萎縮を有する患者等では、アルギニンの合成臓器機能が著しく低下しており、アルギニンが必須となる可能性は極めて高く、通常の栄養組成物での栄養管理においてもアルギニン不足の状態を呈し、症状の憎悪や回復の遅延、さらには感染症の発生が危惧される。
【0004】
病態下におけるアルギニンの作用としては、創傷治癒効果や免疫賦活効果以外にも、窒素節約効果、アンモニア解毒、内分泌系刺激、クレアチン・ポリアミン合成等が知られている。そして、これらの効果を利用するものとして、例えば、アンモニア解毒作用を利用した肝不全患者用アミノ酸製剤(特開平 1-83017号公報)、免疫賦活作用を利用した免疫刺激性組成物(特開平2-191213号公報)、免疫刺激剤(特表平5-502881号公報)、癌用アミノ酸製剤(特公平 5-79049号公報、特開平 3-68514号公報、特開平 6-40900号公報)等が提案されている。さらに最近の研究により、L−アルギニン−一酸化窒素経路によってアルギニンから生成した一酸化窒素は血管拡張作用を有し、アルギニン投与量の増大に伴い、一酸化窒素の産生が著しく高まることが明らかとなり、又、一酸化窒素は局所の細胞機能の調節や細胞間の連絡に重要な役割を果たしていることが判ってきた。しかし、このアルギニンから生成される一酸化窒素は、生体内では上記の免疫賦活効力を発揮する一方、一般的にはラジカルな気体であるため、細胞障害や発癌性等の毒性作用も有し、生体に対して善悪の二面性を有する。又、アルギニンの経口もしくは経腸による過剰投与は、一酸化窒素合成やサイクリックGMP合成を介して下痢が発生することが知られており、下痢による栄養素の腸管からの吸収障害により全身の栄養状態を低下させることが懸念される。即ち、過剰投与時のアルギニンは病態下において「両刃の剣」的物質であり、アルギニンやアルギニンの誘導体であるオルニチン等のこれらの作用をコントロールすることが、治療上重要な課題となってきている。
【0005】
一方、術後等の侵襲期、癌患者における放射線療法や抗癌剤投与時、さらには後天性免疫不全症等においては免疫機能が低下しており、平素無害と考えられている菌或いは弱毒菌、原虫等により感染症(日和見感染症)を引き起こしやすい状況にある。このような患者に対する栄養療法としては、輸液等の経静脈栄養療法、経腸もしくは経口療法がある。経腸もしくは経口療法は、輸液等の経静脈栄養療法と比較して投与経路がより生理的であり、安全性も高いばかりでなく凝固機能障害、肝機能障害、呼吸障害、網内系への脂肪沈着、免疫機能に及ぼす障害、脂肪塞栓等の合併症が発生し難い等の特徴があり注目されている。特に、経静脈療法時に発生する腸管萎縮によるバクテリアルトランスロケーションは経腸療法では起こり難いことから、医療における経口もしくは経腸栄養療法の占める割合は高まってきている。しかしながら、これまでの栄養療法に用いられる組成物はいずれもあくまで患者の栄養状態の回復、維持を目的としたものであり、感染症の防止及び治療を目的とした栄養組成物は未だ開発されていない現状にある。
【0006】
【発明が解決しようとする課題】
本発明は、上述したアルギニンの有用性、特に一酸化窒素が関与する免疫賦活作用に着目し、免疫機能の低下時の感染症の発症を予防及び治療することができ、かつ下痢等の副作用が発生しない組成物を鋭意探索した結果、アミノ酸組成物中に一定の範囲でアルギニンを配合することにより、副作用がなく、生体のマクロファージによる一酸化窒素産生量を増加させることにより感染症発症の予防及び治療ができることを見出すに至った。
即ち本発明は、術後等の侵襲期、或いは免疫不全症、放射線療法、抗癌剤投与、後天性免疫不全症等に伴って発生する感染症の予防及び治療に有用なマクロファージの一酸化窒素産生亢進剤を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、アルギニンを全アミノ酸に対し10〜30重量%配合したアミノ酸組成物を有効成分として含有する、マクロファージの一酸化窒素 (NO) 産生亢進剤に関する。
本発明の亢進剤を投与することによりマクロファージの一酸化窒素産生が亢進され、術後等の侵襲期、或いは免疫不全症、放射線療法、抗癌剤投与、後天性免疫不全症候群等に伴って発生する感染症の予防及び治療に有用な医薬及び栄養組成物が提供される。
本発明ではアミノ酸組成物を以下の条件に従って調製する。
(1) 必須アミノ酸組成をヒトやウシ等の乳蛋白質、或いは卵白等の卵蛋白質の必須アミノ酸組成に近似した割合とする。必須アミノ酸組成を表1に示す。
【0008】
【表1】

Figure 0003914585
【0009】
(2) 非必須アミノ酸組成については、アルギニンが全アミノ酸に対して10〜30重量%の割合、好ましくは20〜25重量%の割合とする。
(3) アルギニンを除く非必須アミノ酸組成をヒトやウシ等の乳蛋白質、或いは卵白等の卵蛋白質、さらには大豆蛋白質の非必須アミノ酸組成に近似した割合とする。非必須アミノ酸組成を表2に示す。
【0010】
【表2】
Figure 0003914585
【0011】
本発明における有効成分のアミノ酸組成物は、以上のような条件に従って栄養組成物の窒素源として配合することにより、広範囲な疾患患者に対し、蛋白代謝亢進に伴う体内のアルギニン不足状態を速やかに解消させ、下痢等の副作用や体内のアミノ酸インバランスも発生しない状態で、アルギニンの有する生理作用、特に免疫賦活作用を最大限に発揮させ前記感染症を予防あるいは治療することができる。
【0012】
本発明のマクロファージの一酸化窒素産生亢進剤のアミノ酸組成物には、遊離型の結晶アミノ酸やその薬理学的に許容される塩、例えば、ナトリウム塩等の金属塩、塩酸塩等の鉱酸塩、酢酸塩等の有機酸塩の形態のものが使用可能である。又、遊離型の結晶アミノ酸の一部もしくは全部をN−アシル誘導体の形態としたものを使用してもよく、2種類のアミノ酸が塩結合した物質、例えば、L−アルギニン・L−グルタミン酸塩やL−リジン・L−アスパラギン酸塩等を使用してもよい。さらに、カゼインやホエー蛋白質等の乳蛋白質、或いは卵白等の卵蛋白質、又はそれらの加水分解物をベースとして、遊離のアルギニンやアルギニンを含む合成ペプチド、或いは、魚類の白子蛋白質であるプロタミン等のアルギニンを高度に含有している蛋白質やその加水分解物等を加えて、そのアルギニン含量を調整してもよい。特に、遊離の結晶アミノ酸のみから成る窒素源や乳蛋白質加水分解物或いは卵蛋白質加水分解物をベースとして、遊離のアルギニンやアルギニンを含むペプチドを加えてアルギニン含量を調整した組成物 (窒素源) を使用すると、腸管からの吸収が速やかであるため、さらに良好な効果を得ることが期待できる。又、本発明のマクロファージの一酸化窒素産生亢進剤は、上記した窒素源を混合することにより調製することができるが、さらに糖質、脂質、ビタミン及びミネラル等の栄養素を、必要量添加配合した栄養剤として用いることが実際上好ましい。
【0013】
本発明の一酸化窒素産生亢進剤については、窒素源濃度が2〜12重量%の溶液となるように調整して投与することが望ましい。又、糖質や脂質等のエネルギー源を配合する場合、窒素源由来の窒素量に対する糖質や脂質由来のカロリー量の比率(Non-protein Cal/N 比) を90〜200 の範囲に納まるよう調整し、かつ糖質や脂質の濃度を 0.5〜2kcal/mlの範囲内に調整し、投与することが望ましい。本発明の一酸化窒素産生亢進剤に配合することができる糖質としては、特に限定されるものではなく、グルコース、シュクロース、フルクトース及びデキストリン等を使用すればよい。特に、デキストリンを使用すると経口経腸投与のさいその浸透圧を低く抑えることができ、投与時の高浸透圧に由来する下痢の発生を減少させることができる。又、脂質としては、特に限定されるものではなく、大豆油、サフラワー油、コーン油、シソ油等を使用すればよい。尚、脂質は必須脂肪酸であるリノール酸の供給源となることが望ましいので、リノール酸を含有する大豆油やサフラワー油等を配合することが好ましい。その配合量については特に限定されないが、総カロリーに対して2〜4カロリー%のリノール酸を配合すると必須脂肪酸は欠乏しない。又、近年、もう一つの必須脂肪酸であることが確認されているn-3系の多価不飽和脂肪酸であるα−リノレン酸をリノール酸と共に、好ましくは、α−リノレン酸/リノール酸比で 1/5〜1/3 程度の比率とするとよい。即ち、α−リノレン酸を配合すると、臨床的にn-3系多価不飽和脂肪酸の欠乏症状として認識されているしびれ、まひ、筋力低下、視力障害等の発生が防止できる。
【0014】
本発明の一酸化窒素産生亢進剤の調製法は、通常の経口経腸栄養組成物の調製法と実質的に同様に、例えば、上記した成分を含有する原材料を粉体混合して調製したり、溶解して液剤に調製したり、適当な乳化剤を添加して乳化液剤に調製することができる。さらに、必要に応じて、エリソルビン酸等の保存剤、クエン酸、リンゴ酸、炭酸ナトリウム等のpH調整剤、或いはその他の添加剤を加えることもできる。尚、液剤においては、加熱滅菌又は無菌濾過等の手段により無菌化しておくことが望ましい。又、粉体においては、投与直前に水又は温湯で溶解もしくは懸濁して投与することができる形態にしておくことが望ましい。このようにして調製された本発明の一酸化窒素産生亢進剤は、経口もしくは経腸投与されるが、その投与量は、通常の経口経腸栄養組成物の投与量と同様にすればよく、一般的には、成人で1日当たり窒素源量で20〜120gとすればよい。又、糖質や脂質等を任意に配合した経口経腸栄養組成物で、それらの配合量が1kcal/mlとなるよう調製したものであれば、 200〜2,400ml を目安とし、患者の病態、栄養状態、年齢、体重等に応じて適宜に増減させれば良い。
【0015】
【発明の実施の形態】
以下の実施例により本発明をより詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
【0016】
【実施例1】
本発明栄養組成物の製造
表3、表4(ミネラル類の配合)及び表5(ビタミン類の配合)の配合表に従い、表6の実施例1の欄に示したアミノ酸組成の窒素源をその他の原料と共に溶解、懸濁し、クエン酸でpHを中性付近に調整した後、高圧ホモジナイザーで乳化した。次いで、この乳化液剤を合成樹脂バッグに充填し、空間部を窒素置換した後、密封し、常法により加熱滅菌して目的の本発明のマクロファージの一酸化窒素産生亢進剤を製造した。
【0017】
【表3】
Figure 0003914585
【0018】
【表4】
Figure 0003914585
【0019】
【表5】
Figure 0003914585
【0020】
【表6】
Figure 0003914585
【0021】
【実施例2】
リステリアの腹腔内投与感染による生存率の測定
本発明のマクロファージの一酸化窒素産生亢進剤の作用効果について、リステリアの腹腔内投与感染による延命効果の試験を行った。即ち、本発明の亢進剤及び比較用栄養組成物1及び2(以下比較例1及び2とする)を、体重25〜30gのICR系マウス(1群13匹)に1週間自由摂取させた後、リステリア生菌(新潟大学医学部細菌学教室より譲受)4×105 個を腹腔内に注射して感染させた。以後、経日的に生死を観察して生存率を算出した。尚、比較例1及び2は、本発明の亢進剤の製造と同様の方法により、表6に示される各比較例の組成の窒素源を用いて製造したものを使用した。比較例1はアルギニンが配合されていないもの、又、比較例2はアルギニンが全アミノ酸組成に対する重量比で31%配合されているものである。結果を図1に示す。
【0022】
この結果、期間中常に本発明の亢進剤を摂取した群は、比較例1及び2に比べて生存率が高値に推移した。
【0023】
【実施例3】
リステリアの静脈内投与感染による臓器内菌数の測定
本発明の亢進剤の作用効果について、リステリアの静脈内投与感染による臓器内菌数の測定を行った。即ち、体重25〜30gのICR系マウス(1群5匹)に実施例2と同様の各組成物を1週間自由摂取させた後、リステリア生菌4×105 個を静脈内に注射して感染させた。感染6日後に標的臓器である肝臓及び脾臓を摘出し、各臓器内の菌数を調べた。結果を図2に示す。
【0024】
この結果、本発明の一酸化窒素産生亢進剤を摂取した群は、比較例1及び2の栄養組成物を摂取した群と比べて、各臓器内の菌数は低値を示した。
【0025】
【実施例4】
NO産生量の測定
本発明の穴進剤の、NO産生量の測定を行った。即ち、体重25〜30gのICR系マウス(1群5匹)に実施例2及び3と同様の各組成物を1週間自由摂取させた後、金崎らの方法(生体防御、1巻、167−172頁(1984年))に従い、10%チオグリコール酸培地(栄研化学社)1.5mlを腹腔内に注射して、3日目に腹腔滲出マクロファージを採取した。採取したマクロファージを5×10/mlになるように調整し、LPS(リポポリサッカライド;リストバイオロジカルラボラトリー社)又はINF−γ(インターフェロン−γ;ジエンザイム社)で刺激した。
3日間培養後の上清を採取し、NO産生量を測定した。NO産生量はStein&Strejanの方法(Cell.Immunol.150:281,1993)に従い、Griess reagent(Anal.Biochem.126:231,1982)を用いて、nitrite(NO )として測定した。標準にはNaNO溶液を用いてA550にて測定した。結果を図3に示す。
【0026】
この結果、腹腔マクロファージによるNO産生量は、比較例に比べ本発明の一酸化窒素産生亢進剤で高値を示した。
【0027】
【発明の効果】
これらの結果より、本発明の亢進剤は、マクロファージのNO産生量を亢進して免疫賦活作用を示すとともに、感染に対し防御及び治療効果を有する。
従って本発明により、術後等の侵襲期、或いは免疫不全症、放射線療法、抗癌剤投与、後天性免疫不全症等に伴って発生する感染症の予防及び治療に有用な栄養組成物が提供される。
【図面の簡単な説明】
【図1】実施例2における、リステリアの腹腔内投与感染による各組成物投与時の生存率の変化を示す。
【図2】 実施例3における、リステリアの静脈内投与感染による各組成物投与時の肝臓及び脾臓の臓器内菌数を示す。
【図3】実施例4における、各組成物を投与した動物から得られた腹腔マクロファージのNO産生量を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a macrophage nitric oxide production enhancer comprising as an active ingredient an amino acid composition containing 10 to 30% by weight of arginine based on all amino acids.
The nitric oxide production-enhancing agent of the present invention enhances nitric oxide production of macrophages by administering this, enhances immune function, and causes no side effects, such as post-operative invasive phase, or immunodeficiency, It is useful for the prevention and treatment of infectious diseases that occur with radiation therapy, administration of anticancer agents, acquired immune deficiency, and the like.
[0002]
[Prior art]
Conventionally, in determining the amount of amino acid intake required by humans, emphasis has been placed on balanced intake of essential amino acids, and intake of non-essential amino acids (absent amino acids) depends on the growth rate of animals and nitrogen by Rose. It has been determined that it is not particularly necessary by an experiment using an equilibrium as an index (Physiol. Rev., vol. 18, pp. 109-136 (1938)). However, in recent years, it has been pointed out that the types and amounts of amino acids necessary for the living body to exhibit a physiologically optimal reaction are larger than those estimated by nitrogen equilibrium and the like. In particular, under various pathological conditions, for example, branched chain amino acids (leucine, isoleucine, valine) in the invasive phase (hereinafter, amino acids not specifically designated are all L-type amino acids except glycine) and glutamine requirements Increase. Seifter et al. Have shown that ingestion of arginine shortens the number of days for wound healing, which is converted into proline, a component of collagen necessary for granulation, and supplied to wounds. It has been reported that it has an action of stimulating the secretion of hormones such as insulin and glucagon that have an effect on healing (Surgery, vol. 84, pp. 224-230 (1978)). Barbul et al. Also confirmed that immune function was enhanced by administering 30 g of arginine to normal individuals (Surgery, vol. 90, pp. 244-251 (1981)). In addition, Reynolds et al. It has been reported that it has an effect on immunity such as promotion of differentiation of sex T lymphocytes (Surgery, vol. 104, pp. 142-151 (1988)). These facts suggest that arginine is not only a component of body protein but also necessary for maintaining physiological functions. Therefore, the amount of arginine necessary for maintaining the living body is not accurate according to Rose's classical standard, and is considered to be higher (Wakabayashi Y. et al., Surgery and Metabolism / Nutrition, vol. 25, pp . 3 98-404). (1991)). Therefore, if the amount of arginine synthesized in the body decreases due to illness, etc., or if the amount of arginine supplied in nutritional management in the disease stage is less than the required amount, delayed recovery from disease, exacerbation of symptoms, complications, etc. Is concerned.
[0003]
Moreover, in normal animals, sufficient amount of arginine is not synthesized uniformly in all cells, but is basically synthesized from glutamic acid by seven types of enzymes under the sharing of the main organs of the small intestine and kidneys, and in each part of the body. It is said that it is sent to and consumed by protein synthesis, urea cycle, etc. (Wakabayashi Yasu et al., Surgery and Metabolism / Nutrition, vol.25, pp.398-404 (1991)). Therefore, patients with intestinal disorders such as massive resection of the small intestine and short bowel syndrome, patients with severely invasive injuries such as trauma and burns, or abnormally increased protein metabolism, or intestinal disorders or intestinal tracts seen as side effects when administering anticancer drugs In patients with atrophy, etc., the organ function of arginine is significantly reduced, arginine is very likely to be essential, and even in nutritional management with normal nutritional composition, arginine is deficient, and symptoms are There is concern about hatred, delayed recovery, and the occurrence of infectious diseases.
[0004]
As the action of arginine under pathological conditions, in addition to the wound healing effect and immunostimulatory effect, nitrogen saving effect, ammonia detoxification, endocrine system stimulation, creatine / polyamine synthesis and the like are known. Examples of utilizing these effects include, for example, an amino acid preparation for liver failure patients utilizing ammonia detoxification (JP-A-1-83017), and an immunostimulatory composition utilizing immunostimulatory action (JP-A-2). -191213), immunostimulants (Japanese Patent Publication No. 5-502881), amino acid preparations for cancer (Japanese Patent Publication No. 5-79049, Japanese Patent Publication No. 3-68514, Japanese Patent Publication No. 6-40900), etc. Has been proposed. More recent studies have revealed that nitric oxide produced from arginine by the L-arginine-nitric oxide pathway has a vasodilatory effect, and the production of nitric oxide increases markedly with increasing arginine dosage. In addition, it has been found that nitric oxide plays an important role in regulating local cell functions and intercellular communication. However, nitric oxide produced from this arginine exerts the above-mentioned immunostimulatory effect in vivo, but is generally a radical gas, and thus has toxic effects such as cell damage and carcinogenicity, Has a good and evil duality to the living body. In addition, it is known that arginine overdose orally or enterally causes diarrhea through nitric oxide synthesis or cyclic GMP synthesis, and due to impaired absorption of nutrients from the intestinal tract due to diarrhea, systemic nutritional status There is a concern that this may be reduced. That is, arginine at the time of overdose is a “double-edged sword” substance under pathological conditions, and controlling these actions such as arginine and ornithine, a derivative of arginine, has become an important therapeutic issue .
[0005]
On the other hand, in the invasive period such as after surgery, at the time of radiation therapy or anticancer drug administration in cancer patients, and also in acquired immune deficiency, etc., the immune function is reduced, and bacteria or attenuated bacteria, protozoa considered to be plain harmless It is easy to cause infections (opportunistic infections). Examples of nutrition therapy for such patients include intravenous nutrition therapy such as infusion and enteral or oral therapy. Enteral or oral therapy has a more physiological route of administration compared to parenteral nutrition therapy such as infusion and is not only highly safe, but also coagulation dysfunction, liver dysfunction, respiratory disorder, and reticuloendothelial system. It has attracted attention because it has features such as fat deposition, damage to immune function, and difficulty in complications such as fat embolism. In particular, since bacterial translocation due to intestinal atrophy that occurs during intravenous therapy is unlikely to occur with enteral therapy, the proportion of oral or enteral nutrition therapy in medicine has increased. However, all the compositions used in nutrition therapy so far are intended to restore and maintain the nutritional status of patients, and nutritional compositions aimed at preventing and treating infectious diseases have not yet been developed. There is no current situation.
[0006]
[Problems to be solved by the invention]
The present invention focuses on the usefulness of arginine described above, particularly the immunostimulatory action involving nitric oxide, can prevent and treat the onset of infectious diseases when immune function is reduced, and has side effects such as diarrhea. As a result of diligent search for a composition that does not occur, by adding arginine to a certain range in the amino acid composition, there is no side effect, and the production of infectious diseases can be prevented by increasing the amount of nitric oxide produced by macrophages in the body. I came to find that it can be treated.
That is, the present invention relates to the enhancement of nitric oxide production of macrophages useful for the prevention and treatment of infectious diseases occurring in the invasive phase after surgery, etc., or immunodeficiency, radiation therapy, administration of anticancer drugs, acquired immune deficiency, etc. It is an object to provide an agent.
[0007]
[Means for Solving the Problems]
The present invention relates to a macrophage nitric oxide (NO) production enhancer containing an amino acid composition containing arginine in an amount of 10 to 30% by weight based on all amino acids as an active ingredient.
Administration of the enhancer of the present invention enhances nitric oxide production of macrophages, and infections occurring during the invasive phase after surgery, or immunodeficiency, radiation therapy, administration of anticancer drugs, acquired immune deficiency syndrome, etc. Pharmaceutical and nutritional compositions useful for the prevention and treatment of illnesses are provided.
In the present invention, the amino acid composition is prepared according to the following conditions.
(1) The essential amino acid composition is set to a ratio that approximates the essential amino acid composition of milk protein such as human and cow, or egg protein such as egg white. The essential amino acid composition is shown in Table 1.
[0008]
[Table 1]
Figure 0003914585
[0009]
(2) Regarding the non-essential amino acid composition, arginine is 10 to 30% by weight, preferably 20 to 25% by weight, based on all amino acids.
(3) The non-essential amino acid composition excluding arginine is set to a ratio that approximates the non-essential amino acid composition of milk protein such as human and cow, egg protein such as egg white, and soy protein. The non-essential amino acid composition is shown in Table 2.
[0010]
[Table 2]
Figure 0003914585
[0011]
The amino acid composition of the active ingredient in the present invention is formulated as a nitrogen source of the nutritional composition according to the above conditions, thereby quickly eliminating the arginine deficiency state in the body due to increased protein metabolism for patients with a wide range of diseases. In the state where side effects such as diarrhea and amino acid imbalance in the body do not occur, the physiological action of arginine, particularly the immunostimulatory action, can be exhibited to the maximum to prevent or treat the infectious disease.
[0012]
The amino acid composition of the macrophage nitric oxide production enhancer of the present invention includes free crystalline amino acids and pharmacologically acceptable salts thereof, for example, metal salts such as sodium salts, and mineral acid salts such as hydrochlorides. Organic acid salt forms such as acetates can be used. In addition, a part or all of the free crystalline amino acid may be used in the form of an N-acyl derivative, or a substance in which two types of amino acids are salt-bound, such as L-arginine / L-glutamate, L-lysine / L-aspartate or the like may be used. In addition, milk proteins such as casein and whey protein, egg proteins such as egg white, or hydrolysates thereof, free arginine and synthetic peptides containing arginine, or arginine such as protamine which is a white protein of fish The arginine content may be adjusted by adding a protein containing a high amount of lysine or a hydrolyzate thereof. In particular, a composition (nitrogen source) in which arginine content was adjusted by adding free arginine or a peptide containing arginine based on a nitrogen source consisting of only free crystalline amino acids, milk protein hydrolyzate or egg protein hydrolysate. When used, the absorption from the intestinal tract is rapid, and it can be expected to obtain a better effect. In addition, the macrophage nitric oxide production enhancer of the present invention can be prepared by mixing the above-mentioned nitrogen source, and further, nutrients such as carbohydrates, lipids, vitamins and minerals are added and added in necessary amounts. It is practically preferable to use it as a nutrient.
[0013]
About the nitric oxide production enhancer of the present invention, it is desirable to adjust and administer the solution so that the nitrogen source concentration is 2 to 12% by weight. When energy sources such as carbohydrates and lipids are added, the ratio of the amount of calories derived from carbohydrates and lipids to the amount of nitrogen derived from nitrogen sources (Non-protein Cal / N ratio) should be within the range of 90-200. It is desirable to adjust the concentration of carbohydrates and lipids within the range of 0.5 to 2 kcal / ml before administration. The carbohydrate that can be blended in the nitric oxide production enhancer of the present invention is not particularly limited, and glucose, sucrose, fructose, dextrin, and the like may be used. In particular, when dextrin is used, the osmotic pressure during oral enteral administration can be kept low, and the occurrence of diarrhea due to the high osmotic pressure at the time of administration can be reduced. Moreover, it does not specifically limit as a lipid, What is necessary is just to use soybean oil, safflower oil, corn oil, perilla oil, etc. In addition, since it is desirable that lipid becomes a supply source of linoleic acid, which is an essential fatty acid, it is preferable to blend soybean oil or safflower oil containing linoleic acid. The blending amount is not particularly limited, but when 2 to 4 cal% linoleic acid is blended with respect to the total calories, essential fatty acids are not deficient. Further, in recent years, α-linolenic acid, which is an n-3 polyunsaturated fatty acid that has been confirmed to be another essential fatty acid, together with linoleic acid, preferably in an α-linolenic acid / linoleic acid ratio. The ratio should be about 1/5 to 1/3. That is, when α-linolenic acid is added, it is possible to prevent the occurrence of numbness, paralysis, muscle weakness, visual impairment and the like that are clinically recognized as deficiencies of n-3 polyunsaturated fatty acids.
[0014]
The preparation method of the nitric oxide production enhancer of the present invention is substantially the same as the preparation method of a normal oral enteral nutrition composition, for example, by mixing powders of raw materials containing the above-described components. It can be dissolved to prepare a liquid, or an appropriate emulsifier can be added to prepare an emulsified liquid. Furthermore, if necessary, a preservative such as erythorbic acid, a pH adjusting agent such as citric acid, malic acid, sodium carbonate, or other additives may be added. The liquid agent is preferably sterilized by means such as heat sterilization or aseptic filtration. In addition, it is desirable that the powder be in a form that can be administered by dissolving or suspending in water or hot water immediately before administration. The nitric oxide production-enhancing agent of the present invention thus prepared is orally or enterally administered, and its dose may be the same as the dose of a normal oral enteral nutrition composition, In general, the amount of nitrogen source per day for an adult may be 20 to 120 g. In addition, oral enteral nutritional compositions containing sugars, lipids, etc. arbitrarily formulated and prepared so that the amount of the composition is 1 kcal / ml, 200 to 2,400 ml should be used as a guideline. What is necessary is just to increase / decrease suitably according to a nutritional state, age, weight, etc.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0016]
[Example 1]
Production of the nutritional composition of the present invention According to the composition table of Table 3, Table 4 (Mineral compounding) and Table 5 (Vitamin compounding), the amino acid composition shown in the column of Example 1 in Table 6 was used. A nitrogen source was dissolved and suspended together with other raw materials, and the pH was adjusted to near neutral with citric acid, followed by emulsification with a high-pressure homogenizer. Subsequently, this emulsified liquid agent was filled into a synthetic resin bag, the space portion was purged with nitrogen, sealed, and heat-sterilized by a conventional method to produce the target macrophage nitric oxide production enhancer of the present invention.
[0017]
[Table 3]
Figure 0003914585
[0018]
[Table 4]
Figure 0003914585
[0019]
[Table 5]
Figure 0003914585
[0020]
[Table 6]
Figure 0003914585
[0021]
[Example 2]
Measurement of survival rate due to intraperitoneal infection of Listeria Regarding the action effect of the nitric oxide production enhancer of macrophages of the present invention, the effect of prolonging the life due to intraperitoneal infection of Listeria was examined. That is, after the enhancer of the present invention and comparative nutritional compositions 1 and 2 (hereinafter referred to as Comparative Examples 1 and 2) were freely ingested by ICR mice (13 mice per group) weighing 25-30 g for one week. Infected by intraperitoneal injection of 4 × 10 5 live Listeria (assigned from Niigata University School of Medicine, Department of Bacteriology). Thereafter, the survival rate was calculated by observing life and death over time. In Comparative Examples 1 and 2, those produced using a nitrogen source having the composition of each Comparative Example shown in Table 6 by the same method as the production of the enhancer of the present invention were used. Comparative Example 1 does not contain arginine, and Comparative Example 2 contains 31% arginine by weight with respect to the total amino acid composition. The results are shown in FIG.
[0022]
As a result, the group that constantly ingested the enhancer of the present invention during the period had a higher survival rate than Comparative Examples 1 and 2.
[0023]
[Example 3]
The effect of the enhancing agents of the measuring <br/> present invention organ in number of bacteria by intravenous administration infection Listeria was measured organ in number of bacteria by intravenous administration infection Listeria. That is, ICR mice (5 mice per group) weighing 25 to 30 g were allowed to freely ingest each composition similar to Example 2 for 1 week, and then 4 × 10 5 viable Listeria were injected intravenously. Infected. Six days after infection, the liver and spleen as target organs were removed, and the number of bacteria in each organ was examined. The results are shown in FIG.
[0024]
As a result, the group that ingested the nitric oxide production enhancer of the present invention showed a lower number of bacteria in each organ than the group that ingested the nutritional compositions of Comparative Examples 1 and 2.
[0025]
[Example 4]
Measurement of NO production amount The production amount of NO of the agent of the present invention was measured. That is, after the same respective compositions as in Example 2 and 3 in ICR strain mice weighing 25-30 g (1 group 5 mice) ad libitum for one week, the method of Kim Ke Sakira (biodefense, Volume 1, 167-172 (1984)), 1.5 ml of 10% thioglycolic acid medium (Eiken Chemical Co., Ltd.) was injected intraperitoneally, and peritoneal exudate macrophages were collected on the third day. The collected macrophages were adjusted to 5 × 10 6 / ml and stimulated with LPS (Lipopolysaccharide; List Biological Laboratory) or INF-γ (Interferon-γ; Dienzyme).
Supernatants after 3 days of culture were collected and NO production was measured. The amount of NO production was measured as nitrogen (NO 2 ) using Griess reagent (Anal. Biochem. 126: 231, 1982) according to the method of Stein & Strjan (Cell. Immunol. 150: 281, 1993). The standard was measured at A 550 using a NaNO 2 solution. The results are shown in FIG.
[0026]
As a result, the amount of NO produced by peritoneal macrophages was higher in the nitric oxide production enhancer of the present invention than in the comparative example.
[0027]
【The invention's effect】
From these results, the enhancer of the present invention enhances macrophage NO production and exhibits an immunostimulatory effect, and has a protective and therapeutic effect against infection.
Therefore, the present invention provides a nutritional composition useful for the prevention and treatment of infectious diseases that occur in the invasive phase after surgery, etc., or immunodeficiency, radiation therapy, administration of anticancer drugs, acquired immune deficiency, etc. .
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows changes in survival rate at the time of each composition administration due to intraperitoneal infection of Listeria in Example 2.
FIG. 2 shows the numbers of bacteria in organs of the liver and spleen at the time of administration of each composition by intravenous administration of Listeria in Example 3.
FIG. 3 shows NO production amounts of peritoneal macrophages obtained from animals administered with each composition in Example 4.

Claims (1)

下の (1)〜(4) の条件を満たすアミノ酸組成物を有効成分として含有する、マクロファージの一酸化窒素産生亢進剤。
(1) アミノ酸組成物の全アミノ酸に対する必須アミノ酸の比率(重量%)は以下の通りである。
L-イソロイシン 4.0 〜 8.0
L-ロイシン 7.0 〜 14.0
L-リジン 5.0 〜 10.0
L-メチオニン及びL-シスチン 3.0 〜 6.0
L-フェニルアラニン及びL-チロシン 6.0 〜 9.0
L-スレオニン 4.0 〜 6.0
L-トリプトファン 1.0 〜 2.0
L-バリン 5.0 〜 10.0
L-ヒスチジン 2.0 〜 4.0
(2) アミノ酸組成物の全アミノ酸に対するL-アルギニンの比率は10〜30重量%である。
(3) アミノ酸組成物のL-リジンに対するL-アルギニンの比率は重量比で1〜4である。
(4) アミノ酸組成物の全アミノ酸に対するL-アルギニンを除く非必須アミノ酸の比率(重量%)は以下の通りである。
L-アラニン 2.5 〜 10.0
L-アスパラギン酸及びL-アスパラギン 6.0 〜 11.0
L-グルタミン酸及びL-グルタミン 7.0 〜 21.0
グリシン 1.0 〜 8.0
L-プロリン 3.0 〜 11.0
L-セリン 2.0 〜 7.0
Satisfies the amino acid composition containing as an active ingredient, the nitric oxide production promoting agent macrophage follows (1) to (4).
(1) The ratio (% by weight) of essential amino acids to all amino acids in the amino acid composition is as follows.
L-isoleucine 4.0-8.0
L-Leucine 7.0 to 14.0
L-Lysine 5.0 to 10.0
L-methionine and L-cystine 3.0-6.0
L-Phenylalanine and L-Tyrosine 6.0-9.0
L-threonine 4.0-6.0
L-tryptophan 1.0-2.0
L-Valine 5.0 to 10.0
L-Histidine 2.0-4.0
(2) The ratio of L-arginine to all amino acids in the amino acid composition is 10 to 30% by weight.
(3) The ratio of L-arginine to L-lysine in the amino acid composition is 1 to 4 by weight.
(4) The ratio (% by weight) of non-essential amino acids excluding L-arginine with respect to all amino acids in the amino acid composition is as follows.
L-alanine 2.5 to 10.0
L-aspartic acid and L-asparagine 6.0 to 11.0
L-glutamic acid and L-glutamine 7.0 to 21.0
Glycine 1.0-8.0
L-proline 3.0 to 11.0
L-Serine 2.0-7.0
JP29626195A 1995-10-19 1995-10-19 Macrophage nitric oxide production enhancer Expired - Lifetime JP3914585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29626195A JP3914585B2 (en) 1995-10-19 1995-10-19 Macrophage nitric oxide production enhancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29626195A JP3914585B2 (en) 1995-10-19 1995-10-19 Macrophage nitric oxide production enhancer

Publications (2)

Publication Number Publication Date
JPH09110686A JPH09110686A (en) 1997-04-28
JP3914585B2 true JP3914585B2 (en) 2007-05-16

Family

ID=17831286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29626195A Expired - Lifetime JP3914585B2 (en) 1995-10-19 1995-10-19 Macrophage nitric oxide production enhancer

Country Status (1)

Country Link
JP (1) JP3914585B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1093364A1 (en) * 1998-05-21 2001-04-25 Magainin Pharmaceuticals Inc. A method for stimulation of defensin production by exposure to isoleucin
UA78486C2 (en) * 1999-12-10 2007-04-10 Хемджен Корпорейшн Formulation for oral use in fowls and animals for treating or decreasing risk of infections of digestive tract (variants), use of composition (variants), method for treating or decreasing risk of infections of digestive tract (variants)
JP4681132B2 (en) * 2001-01-29 2011-05-11 味の素株式会社 Nitric oxide synthase production promoter and cosmetic or pharmaceutical composition
JP4512948B2 (en) * 2005-04-04 2010-07-28 コスモ食品株式会社 Useful amino acid composition, food or food compounding agent containing the same, and method for producing the same
JP2008031054A (en) * 2006-07-26 2008-02-14 Nippon Yakuhin Kaihatsu Kk Immunomodulatory agent
JP5484704B2 (en) * 2008-09-29 2014-05-07 常盤薬品工業株式会社 Fever symptom suppressant for the elderly
CA2877953A1 (en) * 2012-06-29 2014-01-03 Masahiko Morita Agent for preventing deterioration in vascular endothelial function or improving vascular endothelial function

Also Published As

Publication number Publication date
JPH09110686A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
TWI429405B (en) Pediatric amino acid solution for parenteral nutrition
Wilmore et al. Role of glutamine in immunologic responses
ES2556765T3 (en) Nutritional support to prevent or moderate bone marrow paralysis or neutropenia during anticancer treatment
JP5315996B2 (en) Total enteral nutrition composition
EP0312612B1 (en) Nutritive emulsion
AU710527B2 (en) Amino acid compositions and use thereof in clinical nutrition
JP3287842B2 (en) Uses of arginine as an immunostimulant
JP2009242413A (en) Medicine based on amino acid
NL8101182A (en) FOOD PREPARATIONS AND METHOD OF ADMINISTRATION.
JP2005529980A (en) Methods and compositions for treating or preventing catabolism and promoting anabolism in mammals undergoing metabolic stress
JP2013100336A (en) Long-term nutrient supply to cancer patient
JP4011638B2 (en) Oral enteral nutrition composition
JP3914585B2 (en) Macrophage nitric oxide production enhancer
EP0689835A2 (en) Composition comprising a mixture of amino acids and at least one N-3 fatty acid
D'Souza et al. Glutamine supplements in the critically ill
EP0502313A2 (en) Method for insuring adequate intracellular glutathione in tissue
CN1126541C (en) Compound amino acid composition
US6797729B1 (en) Therapeutic glutamine and N-actyl-cysteine composition
CA2227978A1 (en) Immune-modulation with amino acids
Leguina-Ruzzi et al. Glutamine: a conditionally essential amino acid with multiple biological functions
JPH07330583A (en) Liquid preparation containing free glutamic acid
EP0146474A2 (en) Nutritional composition containing alpha-cetoisocaproic acid or one of its salts
RU2709501C1 (en) Pharmaceutical composition for parenteral drip introduction
JPH07267855A (en) Glutamine producing agent
JP3429327B2 (en) Amino acid infusion for cancer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160209

Year of fee payment: 9

EXPY Cancellation because of completion of term