JP3913015B2 - Washing wastewater treatment method - Google Patents
Washing wastewater treatment method Download PDFInfo
- Publication number
- JP3913015B2 JP3913015B2 JP2001260041A JP2001260041A JP3913015B2 JP 3913015 B2 JP3913015 B2 JP 3913015B2 JP 2001260041 A JP2001260041 A JP 2001260041A JP 2001260041 A JP2001260041 A JP 2001260041A JP 3913015 B2 JP3913015 B2 JP 3913015B2
- Authority
- JP
- Japan
- Prior art keywords
- aeration
- activated sludge
- wastewater
- microfiltration membrane
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、洗濯排水や洗浄排水の処理方法、特に、原子力施設から排出される洗濯排水や洗浄排水の処理方法及び装置に関ものである。また、本発明は、設備改造等、設置面積に制約がある場合の排水処理方法に応用可能な技術に関するものである。
【0002】
【従来の技術】
例えば原子力施設から排出される洗濯排水もしくは洗浄排水(以下、代表的に洗濯排水という)には、洗剤、布繊維、脂肪分、炭水化物のような有機物質の他に、極微量の放射性物質が含まれている。放流規制値を満足させるために、これらの物質を除去し無害化しなければならない。
【0003】
従来、洗濯排水を無害化する処理方法としては、洗濯排水に粉末活性炭や粉末イオン交換樹脂を添加し、それに含まれる有機物や放射性物質を吸着した後、プレコートフィルタによってろ過する処理方法や、洗濯排水を直接限外ろ過膜や逆浸透膜によってろ過し、その濃縮液を蒸発濃縮する処理方法がある。また、近年になって、洗濯排水にオゾンを添加して、その中の有機物を酸化分解する方法が試みられている。
【0004】
【発明が解決しようとする課題】
しかし、プレコートフィルタによってろ過する処理方法は、添加する粉末活性炭や粉末イオン交換樹脂によって、放射性廃棄物の量が増加するという問題がある。また、直接限外ろ過膜や逆浸透膜によってろ過し、その濃縮液を蒸発濃縮する方法は、蒸発濃縮液中に、洗剤中の相当量の非放射性塩類と共に放射性物質が混在するため、エネルギー消費量が大きいだけでなく放射性廃棄物の量がやはり増加し、結果として処理コストが高くなるという問題がある。
【0005】
更に、オゾンを添加する方法は、洗剤に含まれる界面活性剤を分解するのに効果的であるが、オゾン消費量が非常に多くなる。オゾンは比較的高価な酸化剤であるため、設備費及び運転費が非常に大きく、甚だ不経済であるという欠点があった。
【0006】
【課題を解決するための手段】
従って、本発明の目的は、原子力施設からの洗濯排水を効果的に処理できると共に、低廉な設備費及び運転費で放射性廃棄物の量を大幅に低減することができる処理方法を提供することである。
【0007】
この目的を達成するために、請求項1に記載の本発明による処理方法は、原子力施設からの洗濯排水を浮遊性活性汚泥フロックと曝気混合し、得られた混合液を精密ろ過膜によって固液分離し、前記混合液を前記精密ろ過膜でろ過するときは、該精密ろ過膜の直下に設けられた第1曝気手段によって曝気し、前記混合液を前記精密ろ過膜でろ過しないときは、前記第1曝気手段による曝気を停止すると共に、前記精密ろ過膜によるろ過及び前記第1曝気手段による曝気を停止したときは、発生した気泡が前記精密ろ過膜に接触しない位置に設けられた第2曝気手段によって前記混合液を連続的又は間欠的に曝気することを特徴としている。
【0008】
また、請求項2に記載の本発明のように、洗濯排水によって活性汚泥を馴致した後、貧栄養状態で洗濯排水と活性汚泥を曝気混合することが好ましい。更に、請求項3に記載の本発明のように、洗濯排水による馴致は栄養源としてアンモニウム塩及び/又はリン酸塩を添加しながら行われるのが好ましく、請求項4に記載の本発明のように、栄養源の添加を停止して洗濯排水を貧栄養状態とするのが好ましい。
【0009】
更に、請求項5に記載の本発明のように、活性汚泥の濃度が約6000〜10000mg/Lになるまで活性汚泥を馴致することが好適であり、請求項6記載の本発明のように、貧栄養状態は、洗濯排水中のBODと窒素(N)の重量比が100:5以下、又は該BODとリン(P)の重量比が100:1以下であることが好ましい。また、請求項7に記載の本発明のように、活性汚泥の増加量分を酸化剤で酸化分解処理することが好ましく、この場合、酸化剤としては、請求項8に記載の本発明のように、オゾン又は過酸化水素が好適である。
【0010】
【発明の実施の形態】
次に、添付図面を参照して、本発明の好適な実施の形態について詳細に説明するが、図中、同一符号は同一又は対応部分を示すものとする。また、本発明は、以下の説明から分かるように、この実施の形態に限定されるものではなく、種々の改変が可能である。
【0011】
(実施の形態1)
図1は、本発明の処理方法を実施するための処理設備もしくは処理系統の一実施の形態を示している。図1において、先ず洗濯排水1が生物処理槽(膜分離槽と呼んでもよい)2に流入する。生物処理槽2の中には浮遊した活性汚泥フロックが保持されており、その中に膜モジュールからなる平膜状の分離膜3が浸漬されている。活性汚泥を保持する方法として、粒状担体や繊維状担体を用いる方法があるが、本発明の好適な実施の形態ではこれらの各種担体を用いず、浮遊性の活性汚泥フロックを用いることが好ましい。担体を用いない理由は、担体表面に層状に付着成長した活性汚泥の内部が嫌気状態となりやすく、それが剥離したとき分離膜3を閉塞させるからである。
【0012】
なお、通常、原子力施設の洗濯排水は日中の操業によって発生し、夜間はまったく発生しないような流出パターンが多く、排水流量と水質の変動が激しいので、洗濯排水1は、図示しない調整槽もしくは混合槽に一旦流入させ、そこで流量と水質が均一化されたのち、生物処理槽2に流入させるように構成することができる。
【0013】
分離膜3は、この実施の形態では細孔径0.4μmの精密ろ過膜であって、水は通過するが活性汚泥や微細粒子は通過できない機能を有している。生物処理槽2内の好ましくは底部において分離膜3の下方には、外部のブロア(図示せず)に通じる散気管(曝気手段)6が設置されており、この散気管6を経由して空気5が生物処理槽2内に供給される。空気5によって活性汚泥と洗濯排水は混合・曝気されると共に、分離膜3の表面が気泡洗浄され、分離膜3に活性汚泥が付着して細孔が閉塞されるのを防止する。生物処理槽2とその近くに配置された膜ろ過水槽7との間には水位差が存在しており、この水位差で分離膜3を通過した清澄な膜ろ過水4は、膜ろ過水槽7に流入し、処理水8として放流される。なお、膜ろ過水4をポンプ吸引することにより膜ろ過水槽7に流入させるようにしてもよい。
【0014】
一方、洗濯排水中の有機成分の分解に伴なって増加した活性汚泥は、余剰汚泥9として生物処理槽2から引き抜いて余剰汚泥槽10に導入され、ここから余剰汚泥ポンプ11によって脱水機12に送られ、脱水機12で脱水処理して脱水ケーキ13となる。このとき発生する脱離液14は生物処理槽2に戻される。洗濯排水が原子力施設からの排水である場合、その中に含まれる微量の放射性核種は、活性汚泥フロック中に保持されており、余剰汚泥9と共に脱水ケーキ13に含まれ除去される。因みに、除染係数(洗濯排水中の放射能濃度/処理水中の放射能濃度比)は10〜20である。
【0015】
この活性汚泥フロックは、当初、下水汚泥や産業排水処理で用いられている汚泥を種汚泥として投入し、栄養源としてアンモニウム塩やリン酸塩を添加しながら洗濯排水で馴致し、活性汚泥濃度が約6000〜10000mg/L程度に達するまで増殖させる。その後、栄養源の添加は停止して、洗濯排水中に含まれる微量の窒素(N)やリン(P)だけの貧栄養状態で処理することが好ましい。これによって、生物処理槽2中の活性汚泥の自己消化量が増加し、その結果、余剰活性汚泥量が少なくなり、そのため、脱水ケーキ13の量も低減させることができる。
【0016】
更に、処理水8を洗濯用水として再利用するためには、栄養源としての塩類の添加による処理水8中の塩類の増加量を少なくすることが必要である。塩類の増加は洗濯物の黄ばみの原因となるからである。上述のように栄養源の添加を停止することによって処理水8の再利用率は50〜70%にすることができる。
【0017】
(実施の形態2)
本発明の処理方法を実施するための処理設備の実施の形態2を示す図2から分かるように、この実施の形態2は、図1の実施の形態1に循環ポンプ15,オゾン源としてのオゾン反応槽20,酸素富化器17及びオゾン発生器18並びにそれらに関係した配管類が付加されているほかは実施の形態1と実質的に同じ構成である。この実施の形態2においては、循環ポンプ15によって余剰汚泥槽10から余剰汚泥の一部を引き抜き、オゾン反応槽20に導入する。その際、乾燥空気16から酸素富化器17及びオゾン発生器18によって発生させたオゾン19を循環ポンプ15の吸引側に混入し、オゾン反応槽20で溶解させたのち余剰汚泥槽10へと戻す。これによって、余剰汚泥の約70〜90%は酸化分解されて炭酸ガスと水となる。
【0018】
オゾン19の注入量は、乾燥余剰汚泥1kgあたり約0.04〜0.08kgであることが好ましい。約0.04kgより少ないと余剰汚泥の酸化分解が不十分となり、余剰汚泥の減少量が少なくなって、脱水機12の規模が大きくなり、脱水ケーキ13の量が増加する。約0.08kgより多いとオゾン19が過剰となり、酸素富化器17及びオゾン発生器18の装置規模が増加するだけでなく、未反応のオゾンの処理装置が必要となる。
【0019】
(実施の形態3)
図3は、本発明の処理方法を実施するための処理設備の実施の形態3を示している。図3の実施の形態3においては、生物処理槽2の前工程として混合槽もしくは調整槽21が設けられており、この混合槽21に、洗濯排水1及び脱離液14を導入すると共に、生物処理槽2中の活性汚泥を循環ポンプ15で引き抜きオゾン反応槽20を経由して導入している。その際、乾燥空気16から酸素富化器17及びオゾン発生器18によって発生させたオゾン19を循環ポンプ15の吸引側に混入することについては、図2の実施の形態と同様である。
【0020】
図3の実施の形態3においては、オゾン19の注入量が乾燥汚泥1kgあたり約0.04〜0.1kgであることが好ましい。約0.04kgより少ないと余剰汚泥の酸化分解が不十分となり、余剰汚泥の減少量が少なくなって脱水機12の規模が大きくなり、脱水ケーキ13の量が増加する。また、注入量が約0.1kgより多いとオゾン19が過剰となり、酸素富化器17及びオゾン発生器18の装置規模が増加するだけでなく、未反応のオゾンの処理装置が必要となる。なお、図2の実施の形態よりもやや多くのオゾン量を投入するのは、オゾン反応槽20で未反応のオゾンを、混合槽21で洗濯排水1中の有機物の酸化に利用できるからである。
【0021】
(実施の形態4)
図4に示された本発明の実施の形態4は、過酸化水素水22が余剰汚泥槽10に添加されるほかは図1の実施の形態1と実質的に同じ構成である。余剰汚泥槽10に過酸化水素水22を添加することにより、余剰汚泥の約70〜90%は酸化分解されて炭酸ガスと水となる。
【0022】
過酸化水素水22の注入量は、乾燥余剰汚泥1kgあたり0.05〜0.1kg程度であることが好ましい。約0.05kgより少ないと余剰汚泥の酸化分解が不十分となり、余剰汚泥の減少量が少なくなって、脱水機12の規模が大きくなり、脱水ケーキ13の量が増加する。また、注入量が約0.1kgより多いと過酸化水素水22が過剰となり、不経済であるだけでなく、未反応の過酸化水素水22の還元剤が必要となる。
【0023】
(実施例1)
原子力施設から排出された洗濯排水を図1に示す処理設備で処理した。洗濯排水の水質は、BOD180mg/L,COD125mg/L,SS70mg/L,窒素(N)4mg/L,リン(P)0.5mg/L,電導度500μS/cm,放射能濃度2×10-3Bq/mLであった。また、生物処理槽のBOD容積負荷は0.8kg/m3・d,COD容積負荷は0.6kg/m3・d,活性汚泥濃度は約10000mg/Lであった。なお、ここで、Lはリットルである。このときの処理結果を表1に示す。表1から分かるように、処理水の水質は、放流規制値(30mg/L以下)を十分に満足するものであった。また、処理水を洗濯用水として再利用しても、洗濯物の黄ばみを生じさせないことが確認された。
【0024】
(実施例2,3及び4)
実施例1で用いたのと同じ洗濯排水を図2,図3及び図4に示す処理設備でそれぞれ処理した結果を表1に示す。
【0025】
【表1】
【0026】
上述した実施の形態1〜4においては、ブロワから供給された空気5が散気管6から噴射されて気泡となり分離膜3の表面を洗浄するため、活性汚泥が膜表面に積層して透過水量が低下するのを防いでいる。しかし、排水流量が多く、その汚濁物質(BOD,COD)濃度が低い場合には、生物処理槽2への空気供給量は、BOD分解に必要な空気量よりも過剰(過曝気)となることがあり、これによって、活性汚泥フロックが細分化して、分離膜3を目詰まりさせ易くするだけでなく、汚泥の自己消化による処理水質の悪化という悪循環を招く可能性がある。また、洗濯排水はその中の残存する洗剤によって泡の発生が著しいことがあり、過剰の曝気によって生物処理槽2から溢れる可能性がある。更に、原子力施設に限らないが、設置面積を最小限にするため、調整槽もしくは混合槽(実施の形態3)の容量を削減しなければならないことがある。因みに、生物処理方法は、24時間連続運転で負荷変動を極力回避することによって処理性能が安定し、良好な処理水質が得られる。しかし、洗濯排水が流入する時間内に、生物処理槽2で洗濯排水を処理しなければならない場合があり、むしろ洗濯排水1が流入しない時間帯での低負荷対策が課題となった。
【0027】
(実施の形態5)
図5は、本発明の処理方法を実施するための図1,2,3又は4に記載の処理設備の一改良例を示す図であり、特に、図1,2,3又は4に記載の処理設備における諸問題を解決するための改良部分を抽出して示している。図5において、洗濯排水1は生物処理槽2に流入する。生物処理槽2の中には浮遊した活性汚泥フロックが保持されており、その中に、実施の形態1において用いられた分離膜と同様のものでよい平膜状の分離膜3が浸漬されている。生物処理槽2内には、分離膜3の直下部に第1散気管(第1曝気手段)6aが設置されると共に、後述する位置に第2散気管(第2曝気手段)6bが設置されており、これらの散気管6a及び6bには図示しないブロワからの空気5が弁7a,7bを自動又は手動で選択的に経由して供給されるようになっている。生物処理槽2と膜ろ過水4の抜き出し位置の水位差又はポンプ吸引で分離膜3を通過した清澄な膜ろ過水4は、生物処理槽2の外部に処理水として流出する。
【0028】
分離膜3によりろ過を行うときは、ブロワからの空気5を散気管から噴射することによって、活性汚泥と洗濯排水が曝気・混合されると共に、分離膜3の表面が気泡洗浄される。通常、6aからの空気量は膜面積1m2あたり約12〜20L/分であることが好ましい。空気量が約12L/分より少ないときは、膜表面の洗浄効果が不充分となり、約20L/分より多いときは、エネルギーの無駄となるばかりでなく、気泡による分離膜3の振動が過剰となり、膜の痛みが激しくなって機械的寿命が短くなる。
【0029】
また、分離膜3への空気供給は間欠的に行うことができる。このとき、言うまでもなく膜ろ過は空気供給のときにのみ行われる。分離膜3によるろ過を停止するときは、弁7aを閉じて散気管6aからの空気供給を停止し、弁7bを開けて散気管6bから空気を供給する。これらの弁7a及び7bは自動又は手動で開閉することができる。本発明により付加された散気管6bは、そこから排出された気泡とその結果として得られる混合液とが直接に分離膜3に接触しないような位置に設けることが好ましい。弁7aが閉じ分離膜3でろ過されていないときに膜面を気泡洗浄すると、分離膜3の膜モジュールを構成する部材の接合面に過剰の振動を与えて、膜モジュールの機械的寿命を短くするという逆効果が生ずるからである。
【0030】
また、散気管6bからの空気は連続的又は間欠的に供給して、生物処理槽2の溶存酸素(DO)が約1〜6mg/Lとなるように空気量を調節することが好ましい。溶存酸素(DO)が1mg/L以下であれば活性汚泥が嫌気性になる危険があり、6mg/L以上を長期に継続すれば活性汚泥が細分化し、分離膜3の目詰まりを早めることになる。
【0031】
特に、洗濯排水が日中(例えば日勤の5〜8時間)のみに発生し、夜間は全く発生しないような場合であって、生物処理槽2の前側に上述した調整槽が設けられず、洗濯排水を、生物処理槽2から流出するまでの時間中に処理しなければならないような条件下では、以上の処理方法と矛盾しないように運転を行なう。即ち、洗濯排水1の流入時間帯は、分離膜3のろ過と散気管6aによる連続的又は間欠的曝気とを行ない、洗濯排水1の流入が停止した時間帯は、分離膜3のろ過及び散気管6aによる曝気は停止し、散気管6bで連続的又は間欠的に曝気を行なう。
【0032】
このようにして処理された原子力施設から排出される洗濯排水中に含まれる微量の放射性核種は、活性汚泥フロック中に保持され、適時、生物処理槽2の外部に余剰汚泥として排出される(図1〜図4参照)。なお、除染係数(洗濯排水中の放射能濃度/処理水中の放射能濃度比)は、この改変例では約20以上であった。実施の形態1〜4と同様に、活性汚泥フロックは、当初、下水汚泥や産業排水処理で用いられている汚泥を種汚泥として投入し、栄養源としてアンモニウム塩やリン酸塩を添加しながら洗濯排水で馴致し、活性汚泥濃度が約6000〜10000mg/L程度に達するまで増殖させる。排水を処理すると、活性汚泥の増殖によりその濃度は増加するが、通常は、約10000〜20000mg/Lの範囲となるように余剰汚泥量を引き抜く(図5には余剰汚泥槽を図示していない)。なお、図5は生物処理槽が角型槽で、その片側の側壁下部に散気管6bを設けた場合を示している。
【0033】
(実施の形態6)
図6は、本発明を実施するための図1,2,3又は4に記載した処理設備の別の改良例を示す図であり、特に改良部分を抽出して示しており、図5の改良例と異なる点は、散気管6c及び弁7cが追加されていることと、分離膜3及び散気管6aの設置位置が中心にあることである。また、散気管6c及び弁7cの作用は、実施の形態5に関連して説明した散気管6b及び弁7bとそれぞれ実質的に同じである。
【0034】
即ち、図6は、生物処理槽2が角型槽である場合には、その両側壁の下部近くに散気管6b及び散気管6cを配置しうることや、生物処理槽2が円形槽である場合には、その周壁の下部近くに散気管6b及び散気管6cを同心円状に配置しうることを示している。
【0035】
(実施例5)
原子力施設から排出される洗濯排水を、図5に部分的に示す処理設備で処理した。この原子力施設では、洗濯排水は日中の8時間だけ発生し、残る16時間は発生しなかった。しかも、排水が発生した8時間の間に全て発生排水を処理する必要があった。排水水質は、COD100mg/L,SS70mg/L,放射能濃度2×10-3Bq/mLであった。このときの生物処理槽2のCOD容積負荷は0.3kg/m3・d,活性汚泥濃度は約10000mg/Lであった。処理結果を表2に示す。
【0036】
表2から分かるように、処理水水質は、排水流入前と流入後で変化しているが、いずれも放流規制値を十分に満足するものであった。なお、処理水とは、図5には示していないが、図1の実施の形態における膜ろ過水槽7を出た処理水を指している。生物処理槽2の形状は角型槽であった。運転日数が半年間を経ても、透過液流束が0.6m3/m2・d以下になることはなかった。
【0037】
(実施例6)
実施例5で用いたのと同じ洗濯排水を図6に示す処理設備で処理した結果を表2に示す。なお膜分離槽の形状は、円形槽であった。運転日数が半年間を経ても、透過液流束が0.6m3/m2・d以下になることはなかった。
【0038】
(比較例)
実施例5の洗濯排水を用いて図1の処理設備で処理した。その結果、処理水は実施例5及び6とほぼ同じ水質が得られたが、運転日数3ヶ月以内に透過流束が0.4m3/m2・d以下と減少し、改良効果が確認された。
【0039】
【表2】
【0040】
【発明の効果】
以上の説明から分かるように、請求項1に記載した本発明の洗濯排水の処理方法及び装置によれば、原子力施設から排出される洗濯排水を活性汚泥と曝気混合し、得られた混合液を精密ろ過膜によって固液分離し、前記混合液を前記精密ろ過膜でろ過するときは、該精密ろ過膜の直下に設けられた第1曝気手段によって曝気し、前記混合液を前記精密ろ過膜でろ過しないときは、前記第1曝気手段による曝気を停止すると共に、前記精密ろ過膜によるろ過及び前記第1曝気手段による曝気を停止したときは、発生した気泡が前記精密ろ過膜に接触しない位置に設けられた第2曝気手段によって前記混合液を連続的又は間欠的に曝気することにより、空気量の最適化が可能となり、泡の発生によるトラブルを軽減することができる。
【0041】
また、請求項2に記載のように、洗濯排水で活性汚泥を好ましくはその濃度が約6000〜10000mg/Lになるまで(請求項5)馴致した後、貧栄養状態で該洗濯排水と該活性汚泥を曝気混合し、請求項3に記載のように、洗濯排水による馴致は栄養源としてアンモニウム塩及び/又はリン酸塩を添加しながら行い、請求項4に記載のように、栄養源の添加を停止して洗濯排水を請求項6に規定した貧栄養状態とすると、生物処理槽中の活性汚泥の自己消化量が増加し、その結果、余剰活性汚泥量が少なくなり、脱水ケーキの量も低減させることができるほか、塩の低下により処理水の再利用率を50〜70%に増すことができる。
即ち、洗剤に起因する塩濃度が、無害化処理することによって上昇することが少なくすることができる。これによって洗濯に必要な用水量の節減だけでなく、洗濯によって発生する極微量の放射性核種を含む排水を管理区域外に排出する量を低減できる。
【0042】
請求項7に記載の処理方法のように、活性汚泥の増加量分を酸化剤で酸化分解処理したり、請求項8に記載の処理方法のように、酸化剤をオゾン又は過酸化水素水とすることによって、余剰汚泥の約70〜90%を酸化分解して炭酸ガスと水にすることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る洗濯排水の処理方法を実施する処理設備の一例を示す系統図である。
【図2】 本発明の実施の形態2に係る洗濯排水の処理方法を実施する処理設備の一例を示す系統図である。
【図3】 本発明の実施の形態3に係る洗濯排水の処理方法を実施する処理設備の一例を示す系統図である。
【図4】 本発明の実施の形態4に係る洗濯排水の処理方法を実施する処理設備の一例を示す系統図である。
【図5】 本発明の実施の形態5に係る洗濯排水の処理方法を実施する処理設備の一例を示す系統図である。
【図6】 本発明の実施の形態6に係る洗濯排水の処理方法を実施する処理設備の一例を示す系統図である。
【符号の説明】
1 洗濯排水
2 生物処理槽
3 分離膜(精密ろ過膜)
4 膜ろ過水
5 空気
6 散気管
6a 散気管(第1曝気手段)
6b 散気管(第2曝気手段)
6c 散気管(第2曝気手段)
7 膜ろ過水槽
7a 弁
7b 弁
7c 弁
8 処理水
9 余剰汚泥
10 余剰汚泥槽
11 余剰汚泥ポンプ
12 脱水機
13 脱水ケーキ
14 脱離液
15 循環ポンプ
16 乾燥空気
17 酸素富化膜
18 オゾン発生器(オゾン源)
19 オゾン
20 オゾン反応槽(オゾン源)
21 混合槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating laundry wastewater and washing wastewater, and more particularly to a method and apparatus for treating laundry wastewater and washing wastewater discharged from nuclear facilities. The present invention also relates to a technique applicable to a wastewater treatment method in the case where there is a restriction on the installation area, such as facility modification.
[0002]
[Prior art]
For example, laundry wastewater or washing wastewater (hereinafter referred to as laundry wastewater) discharged from nuclear facilities contains trace amounts of radioactive substances in addition to organic substances such as detergents, fabric fibers, fats, and carbohydrates. It is. These substances must be removed and detoxified in order to meet the release limits.
[0003]
Conventional treatment methods for detoxifying laundry wastewater include treatment methods that add powdered activated carbon or powder ion exchange resin to laundry wastewater, adsorb organic substances and radioactive substances contained in the wastewater, and then filter them with a precoat filter. There is a treatment method in which the solution is directly filtered through an ultrafiltration membrane or a reverse osmosis membrane, and the concentrated solution is evaporated and concentrated. In recent years, an attempt has been made to add ozone to laundry wastewater to oxidatively decompose organic substances therein.
[0004]
[Problems to be solved by the invention]
However, the processing method of filtering with a precoat filter has a problem that the amount of radioactive waste increases due to the added powdered activated carbon or powder ion exchange resin. In addition, the method of directly filtering through an ultrafiltration membrane or reverse osmosis membrane and evaporating and concentrating the concentrated liquid consumes energy because the evaporative concentrated liquid contains radioactive substances together with a considerable amount of non-radioactive salts in the detergent. There is a problem that not only the amount is large but also the amount of radioactive waste is increased, resulting in high processing costs.
[0005]
Furthermore, the method of adding ozone is effective in decomposing the surfactant contained in the detergent, but the amount of ozone consumption is very large. Since ozone is a relatively expensive oxidizer, there is a disadvantage that the equipment cost and the operation cost are very high and it is very uneconomical.
[0006]
[Means for Solving the Problems]
Accordingly, an object of the present invention is to provide a treatment method capable of effectively treating laundry wastewater from nuclear facilities and greatly reducing the amount of radioactive waste with low equipment costs and operation costs. is there.
[0007]
In order to achieve this object, the treatment method according to the first aspect of the present invention comprises aeration and mixing of washing wastewater from a nuclear facility with floating activated sludge flocs, and the resulting mixed liquid is solid-liquid by a microfiltration membrane. When separating and filtering the mixed solution with the microfiltration membrane, aeration is performed by a first aeration means provided directly under the microfiltration membrane, and when the mixed solution is not filtered with the microfiltration membrane, When the aeration by the first aeration means is stopped and the filtration by the microfiltration membrane and the aeration by the first aeration means are stopped, the second aeration provided at a position where the generated bubbles do not contact the microfiltration membrane. The mixed liquid is aerated continuously or intermittently by means .
[0008]
Further, as in the present invention described in claim 2 , it is preferable to aeration and mix the laundry wastewater and the activated sludge in an oligotrophic state after acclimatizing the activated sludge by the laundry wastewater. Furthermore, as in the third aspect of the present invention, it is preferable that acclimatization by washing drainage is performed while adding ammonium salt and / or phosphate as a nutrient source, as in the fourth aspect of the present invention. In addition, it is preferable to stop the addition of the nutrient source and make the laundry wastewater in an oligotrophic state.
[0009]
Furthermore, it is preferable to acclimate the activated sludge until the concentration of the activated sludge is about 6000 to 10,000 mg / L as in the present invention described in claim 5, and as in the present invention described in claim 6 , The oligotrophic state is preferably such that the weight ratio of BOD and nitrogen (N) in the laundry wastewater is 100: 5 or less, or the weight ratio of the BOD and phosphorus (P) is 100: 1 or less. Further, as in the present invention described in claim 7 , it is preferable to oxidatively decompose the increased amount of activated sludge with an oxidizing agent. In this case, the oxidizing agent is as in the present invention described in claim 8. In particular, ozone or hydrogen peroxide is preferred.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals denote the same or corresponding parts. Further, as will be understood from the following description, the present invention is not limited to this embodiment, and various modifications are possible.
[0011]
(Embodiment 1)
FIG. 1 shows an embodiment of a processing facility or processing system for carrying out the processing method of the present invention. In FIG. 1, laundry wastewater 1 first flows into a biological treatment tank (which may be called a membrane separation tank) 2. A floating activated sludge floc is held in the biological treatment tank 2, and a flat membrane-like separation membrane 3 made of a membrane module is immersed therein. As a method for holding the activated sludge, there is a method using a granular carrier or a fibrous carrier, but in a preferred embodiment of the present invention, it is preferable to use a floating activated sludge floc without using these various carriers. The reason for not using the carrier is that the inside of the activated sludge deposited and grown in a layered manner on the carrier surface is likely to be in an anaerobic state, and the separation membrane 3 is blocked when it peels off.
[0012]
Normally, washing wastewater in nuclear facilities is generated by daytime operations, and there are many outflow patterns that do not occur at night, and the wastewater flow rate and water quality fluctuate drastically. It can be configured to once flow into the mixing tank, where the flow rate and water quality are equalized and then flow into the biological treatment tank 2.
[0013]
In this embodiment, the separation membrane 3 is a microfiltration membrane having a pore diameter of 0.4 μm, and has a function of allowing water to pass but not allowing activated sludge or fine particles to pass. An aeration pipe (aeration means) 6 communicating with an external blower (not shown) is installed in the biological treatment tank 2 preferably below the separation membrane 3 at the bottom, and air is passed through this aeration pipe 6. 5 is supplied into the biological treatment tank 2. The activated sludge and laundry wastewater are mixed and aerated by the air 5 and the surface of the separation membrane 3 is washed with bubbles to prevent the activated sludge from adhering to the separation membrane 3 and blocking the pores. There is a water level difference between the biological treatment tank 2 and the membrane filtration water tank 7 disposed in the vicinity thereof, and the clear membrane filtrate 4 that has passed through the separation membrane 3 due to this water level difference is the membrane filtration water tank 7. And discharged as treated water 8. Note that the membrane filtrate 4 may be pumped into the membrane filtrate tank 7.
[0014]
On the other hand, the activated sludge increased with the decomposition of the organic components in the washing wastewater is extracted from the biological treatment tank 2 as surplus sludge 9 and introduced into the surplus sludge tank 10, and from here to the dewatering machine 12 by the surplus sludge pump 11. The dehydrated cake 12 is dehydrated by the dehydrator 12. The desorbed liquid 14 generated at this time is returned to the biological treatment tank 2. When the laundry wastewater is wastewater from a nuclear facility, a trace amount of radionuclide contained therein is retained in the activated sludge floc and is contained in the dewatered cake 13 and removed together with the excess sludge 9. Incidentally, the decontamination coefficient (radioactivity concentration in laundry wastewater / radioactivity concentration ratio in treated water) is 10-20.
[0015]
This activated sludge floc was initially introduced with sewage sludge and sludge used in industrial wastewater treatment as seed sludge, adapted to laundry drainage while adding ammonium salt and phosphate as nutrient sources, and the activated sludge concentration is Grow until reaching about 6000-10000 mg / L. Thereafter, the addition of the nutrient source is stopped, and the treatment is preferably performed in an oligotrophic state of only a small amount of nitrogen (N) and phosphorus (P) contained in the laundry wastewater. Thereby, the amount of activated sludge in the biological treatment tank 2 increases, and as a result, the amount of surplus activated sludge decreases, so that the amount of dehydrated cake 13 can also be reduced.
[0016]
Furthermore, in order to reuse the treated water 8 as washing water, it is necessary to reduce the increase in the amount of salts in the treated water 8 due to the addition of salts as a nutrient source. This is because an increase in salt causes yellowing of the laundry. By stopping the addition of the nutrient source as described above, the reuse rate of the treated water 8 can be 50 to 70%.
[0017]
(Embodiment 2)
As can be seen from FIG. 2 showing the second embodiment of the treatment facility for carrying out the treatment method of the present invention, this second embodiment is different from the first embodiment of FIG. The configuration is substantially the same as that of the first embodiment except that a reaction tank 20, an oxygen enricher 17, an ozone generator 18, and piping related thereto are added. In the second embodiment, a part of the excess sludge is extracted from the excess sludge tank 10 by the circulation pump 15 and introduced into the ozone reaction tank 20. At that time, ozone 19 generated by the oxygen enricher 17 and the ozone generator 18 from the dry air 16 is mixed into the suction side of the circulation pump 15, dissolved in the ozone reaction tank 20, and then returned to the excess sludge tank 10. . As a result, about 70 to 90% of the excess sludge is oxidized and decomposed into carbon dioxide and water.
[0018]
The amount of ozone 19 injected is preferably about 0.04 to 0.08 kg per 1 kg of dry surplus sludge. If it is less than about 0.04 kg, the oxidative decomposition of surplus sludge becomes insufficient, the amount of decrease of surplus sludge decreases, the scale of the dehydrator 12 increases, and the amount of dehydrated cake 13 increases. If it exceeds about 0.08 kg, the ozone 19 becomes excessive, and not only the device scales of the oxygen enricher 17 and the ozone generator 18 are increased, but also an unreacted ozone treatment device is required.
[0019]
(Embodiment 3)
FIG. 3 shows Embodiment 3 of the processing equipment for carrying out the processing method of the present invention. In Embodiment 3 of FIG. 3, the mixing tank or the adjustment tank 21 is provided as a pre-process of the biological treatment tank 2, and while the washing waste water 1 and the detachment liquid 14 are introduced into this mixing tank 21, the biological tank The activated sludge in the treatment tank 2 is extracted by the circulation pump 15 and introduced through the ozone reaction tank 20. At that time, the ozone 19 generated by the oxygen enricher 17 and the ozone generator 18 from the dry air 16 is mixed into the suction side of the circulation pump 15 as in the embodiment of FIG.
[0020]
In Embodiment 3 of FIG. 3, it is preferable that the injection amount of ozone 19 is about 0.04 to 0.1 kg per 1 kg of dry sludge. If it is less than about 0.04 kg, the oxidative decomposition of surplus sludge becomes insufficient, the amount of surplus sludge decreases, the scale of the dehydrator 12 increases, and the amount of dewatered cake 13 increases. Further, when the injection amount is more than about 0.1 kg, the ozone 19 becomes excessive, and not only the device scale of the oxygen enricher 17 and the ozone generator 18 is increased, but also an unreacted ozone treatment device is required. The reason why a slightly larger amount of ozone is introduced than in the embodiment of FIG. 2 is that unreacted ozone can be used in the ozone reaction tank 20 for oxidation of organic matter in the laundry wastewater 1 in the mixing tank 21. .
[0021]
(Embodiment 4)
The fourth embodiment of the present invention shown in FIG. 4 has substantially the same configuration as that of the first embodiment of FIG. 1 except that the hydrogen peroxide solution 22 is added to the excess sludge tank 10. By adding the hydrogen peroxide solution 22 to the excess sludge tank 10, about 70 to 90% of the excess sludge is oxidized and decomposed into carbon dioxide gas and water.
[0022]
The injection amount of the hydrogen peroxide solution 22 is preferably about 0.05 to 0.1 kg per 1 kg of dried excess sludge. If the amount is less than about 0.05 kg, the oxidative decomposition of the excess sludge becomes insufficient, the amount of reduction of the excess sludge decreases, the scale of the dehydrator 12 increases, and the amount of the dehydrated cake 13 increases. If the injection amount is more than about 0.1 kg, the hydrogen peroxide solution 22 becomes excessive, which is not economical, and a reducing agent for the unreacted hydrogen peroxide solution 22 is required.
[0023]
Example 1
Washing wastewater discharged from the nuclear facility was treated with the treatment facility shown in FIG. The water quality of laundry wastewater is BOD 180 mg / L, COD 125 mg / L, SS 70 mg / L, nitrogen (N) 4 mg / L, phosphorus (P) 0.5 mg / L, conductivity 500 μS / cm, radioactivity concentration 2 × 10 −3. Bq / mL. The biological treatment tank had a BOD volume load of 0.8 kg / m 3 · d, a COD volume load of 0.6 kg / m 3 · d, and an activated sludge concentration of about 10,000 mg / L. Here, L is liters. Table 1 shows the processing results at this time. As can be seen from Table 1, the quality of the treated water sufficiently satisfied the discharge regulation value (30 mg / L or less). Moreover, it was confirmed that even if the treated water is reused as washing water, the laundry does not turn yellow.
[0024]
(Examples 2, 3 and 4)
Table 1 shows the results of treating the same laundry wastewater used in Example 1 with the treatment facilities shown in FIGS. 2, 3, and 4.
[0025]
[Table 1]
[0026]
In the first to fourth embodiments described above, the air 5 supplied from the blower is jetted from the diffuser tube 6 to become bubbles, and the surface of the separation membrane 3 is washed. Prevents the decline. However, when the wastewater flow rate is high and the pollutant (BOD, COD) concentration is low, the air supply amount to the biological treatment tank 2 becomes excessive (over-aeration) than the air amount necessary for BOD decomposition. As a result, the activated sludge flocs can be subdivided to facilitate clogging of the separation membrane 3, and there is a possibility that a vicious cycle of deterioration of treated water due to self-digestion of sludge may be caused. In addition, the washing wastewater may be significantly foamed due to the remaining detergent in the washing wastewater, and may overflow from the biological treatment tank 2 due to excessive aeration. Furthermore, although not limited to nuclear facilities, the capacity of the adjustment tank or mixing tank (Embodiment 3) may have to be reduced to minimize the installation area. Incidentally, in the biological treatment method, treatment performance is stabilized by avoiding load fluctuation as much as possible by continuous operation for 24 hours, and good treated water quality can be obtained. However, there is a case where the laundry wastewater needs to be treated in the biological treatment tank 2 within the time when the laundry wastewater flows in, and rather a countermeasure for low load in the time zone when the laundry wastewater 1 does not flow in becomes a problem.
[0027]
(Embodiment 5)
FIG. 5 is a view showing an improved example of the processing equipment shown in FIG. 1, 2, 3 or 4 for carrying out the processing method of the present invention, and in particular, shown in FIG. The improvement part for solving various problems in the processing equipment is extracted and shown. In FIG. 5, the laundry wastewater 1 flows into the biological treatment tank 2. A floating activated sludge floc is held in the biological treatment tank 2, and a flat membrane-like separation membrane 3, which may be the same as the separation membrane used in Embodiment 1, is immersed therein. Yes. In the biological treatment tank 2, a first air diffuser (first aeration means) 6a is installed immediately below the separation membrane 3, and a second air diffuser (second aeration means) 6b is installed at a position described later. The air diffusers 6a and 6b are supplied with air 5 from a blower (not shown) automatically or manually via valves 7a and 7b. The clear membrane filtrate 4 that has passed through the separation membrane 3 due to the difference in water level at the extraction position of the biological treatment tank 2 and the membrane filtrate 4 or pump suction flows out to the outside of the biological treatment tank 2 as treated water.
[0028]
When filtration is performed by the separation membrane 3, the activated sludge and the washing waste water are aerated and mixed and air bubbles are washed on the surface of the separation membrane 3 by injecting air 5 from the blower from the diffuser pipe. Usually, the amount of air from 6a is preferably about 12 to 20 L / min per 1 m 2 of membrane area. When the amount of air is less than about 12 L / min, the effect of cleaning the membrane surface is insufficient, and when it is more than about 20 L / min, not only is energy wasted, but vibration of the separation membrane 3 due to bubbles becomes excessive. , Membrane pain becomes severe and mechanical life is shortened.
[0029]
Moreover, the air supply to the separation membrane 3 can be performed intermittently. At this time, needless to say, membrane filtration is performed only when air is supplied. When the filtration by the separation membrane 3 is stopped, the valve 7a is closed to stop the air supply from the diffuser pipe 6a, and the valve 7b is opened to supply the air from the diffuser pipe 6b. These valves 7a and 7b can be opened and closed automatically or manually. The diffuser tube 6b added according to the present invention is preferably provided at a position where the bubbles discharged from the diffuser tube 6b and the resulting mixed liquid do not directly contact the separation membrane 3. When the membrane surface is bubble-washed when the valve 7a is closed and not filtered by the separation membrane 3, excessive vibration is applied to the joint surfaces of the members constituting the membrane module of the separation membrane 3 to shorten the mechanical life of the membrane module. This is because the adverse effect of doing this occurs.
[0030]
Moreover, it is preferable to supply the air from the diffuser 6b continuously or intermittently and adjust the amount of air so that the dissolved oxygen (DO) in the biological treatment tank 2 is about 1 to 6 mg / L. If dissolved oxygen (DO) is 1 mg / L or less, there is a risk that the activated sludge becomes anaerobic, and if it is continued at 6 mg / L or more for a long period of time, the activated sludge is fragmented and the clogging of the separation membrane 3 is accelerated. Become.
[0031]
In particular, washing drainage occurs only during the daytime (for example, 5-8 hours of day shift) and does not occur at all at night, and the above-described adjustment tank is not provided on the front side of the biological treatment tank 2, and washing is performed. The operation is performed so as not to contradict the above-described treatment method under the condition that the waste water must be treated during the time until it flows out of the biological treatment tank 2. That is, during the inflow time period of the laundry wastewater 1, the separation membrane 3 is filtered and the continuous or intermittent aeration by the air diffuser 6 a is performed. Aeration by the trachea 6a is stopped, and aeration is continuously or intermittently performed by the aeration tube 6b.
[0032]
A small amount of radionuclide contained in the washing wastewater discharged from the nuclear facility treated in this way is retained in the activated sludge floc and is discharged as excess sludge to the outside of the biological treatment tank 2 in a timely manner (Fig. 1 to FIG. 4). In addition, the decontamination factor (radioactivity concentration in laundry wastewater / radioactivity concentration ratio in treated water) was about 20 or more in this modified example. As in the first to fourth embodiments, activated sludge floc is initially washed with sewage sludge and sludge used in industrial wastewater treatment as seed sludge and added with ammonium salts and phosphates as nutrient sources. Acclimate with drainage and grow until activated sludge concentration reaches about 6000 to 10000 mg / L. When the wastewater is treated, its concentration increases due to the proliferation of activated sludge, but usually the amount of excess sludge is withdrawn so as to be in the range of about 10,000 to 20000 mg / L (the excess sludge tank is not shown in FIG. 5). ). FIG. 5 shows a case where the biological treatment tank is a square tank and a diffuser tube 6b is provided at the lower part of the side wall on one side.
[0033]
(Embodiment 6)
FIG. 6 is a diagram showing another improvement example of the processing facility described in FIG. 1, 2, 3 or 4 for carrying out the present invention, in which an improved portion is particularly extracted and shown. The difference from the example is that an air diffuser 6c and a
[0034]
That is, FIG. 6 shows that when the biological treatment tank 2 is a square tank, the diffuser pipe 6b and the diffuser pipe 6c can be arranged near the lower portions of both side walls, and the biological treatment tank 2 is a circular tank. In this case, it is shown that the air diffuser 6b and the air diffuser 6c can be arranged concentrically near the lower part of the peripheral wall.
[0035]
(Example 5)
Washing wastewater discharged from the nuclear facility was treated with the treatment equipment partially shown in FIG. In this nuclear facility, laundry drainage occurred only for 8 hours during the day and did not occur for the remaining 16 hours. In addition, it was necessary to treat the generated wastewater for 8 hours when the wastewater was generated. The wastewater quality was COD 100 mg / L, SS 70 mg / L, and radioactivity concentration 2 × 10 −3 Bq / mL. The COD volumetric load of the biological treatment tank 2 at this time was 0.3 kg / m 3 · d, and the activated sludge concentration was about 10,000 mg / L. The processing results are shown in Table 2.
[0036]
As can be seen from Table 2, the quality of the treated water changed before and after the inflow of the wastewater, but both satisfied the discharge regulation value sufficiently. In addition, although not shown in FIG. 5, the treated water has pointed out the treated water which left the membrane filtration water tank 7 in embodiment of FIG. The shape of the biological treatment tank 2 was a square tank. The permeate flux did not fall below 0.6 m 3 / m 2 · d even after half a year of operation.
[0037]
(Example 6)
Table 2 shows the results of treating the same laundry wastewater used in Example 5 with the treatment facility shown in FIG. The shape of the membrane separation tank was a circular tank. The permeate flux did not fall below 0.6 m 3 / m 2 · d even after half a year of operation.
[0038]
(Comparative example)
It processed with the processing facility of FIG. As a result, the treated water had almost the same water quality as in Examples 5 and 6, but the permeation flux decreased to 0.4 m 3 / m 2 · d or less within 3 months of operation, confirming the improvement effect. It was.
[0039]
[Table 2]
[0040]
【The invention's effect】
As can be seen from the above description, according to the method and apparatus for treating washing wastewater of the present invention described in claim 1, the washing wastewater discharged from the nuclear facility is aerated and mixed with activated sludge, and the resulting mixed liquid is mixed. When solid-liquid separation is performed using a microfiltration membrane, and the mixed solution is filtered through the microfiltration membrane, aeration is performed by a first aeration means provided immediately below the microfiltration membrane, and the mixed solution is filtered through the microfiltration membrane. When not filtering, the aeration by the first aeration means is stopped, and when the filtration by the microfiltration membrane and the aeration by the first aeration means are stopped, the generated bubbles are not in contact with the microfiltration membrane. By aeration of the mixed solution continuously or intermittently by the provided second aeration means , the amount of air can be optimized, and troubles due to generation of bubbles can be reduced.
[0041]
Further, as described in claim 2 , after acclimating activated sludge in laundry wastewater, preferably until the concentration is about 6000 to 10000 mg / L ( claim 5 ), the laundry wastewater and the activity in an oligotrophic state. The sludge is aerated and mixed as described in claim 3 with washing drainage while adding ammonium salts and / or phosphates as nutrient sources, and adding nutrient sources as described in claim 4. And the wastewater drainage is in an oligotrophic state as defined in claim 6 , the amount of activated sludge in the biological treatment tank increases, resulting in a decrease in the amount of surplus activated sludge and the amount of dehydrated cake. In addition to being able to reduce, the reuse rate of treated water can be increased to 50 to 70% due to a decrease in salt.
That is, it is possible to reduce the salt concentration caused by the detergent from being increased by the detoxification treatment. This not only reduces the amount of water required for washing, but also reduces the amount of wastewater containing a very small amount of radionuclide generated by washing outside the management area.
[0042]
As in the treatment method according to claim 7 , the increased amount of the activated sludge is oxidatively decomposed with an oxidant, or as in the treatment method according to claim 8 , the oxidant is mixed with ozone or hydrogen peroxide water. By doing so, about 70 to 90% of the excess sludge can be oxidized and decomposed into carbon dioxide gas and water.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a system diagram showing an example of a treatment facility for performing a method for treating laundry wastewater according to Embodiment 1 of the present invention.
FIG. 2 is a system diagram showing an example of a treatment facility for carrying out a method for treating laundry wastewater according to Embodiment 2 of the present invention.
FIG. 3 is a system diagram showing an example of a treatment facility for carrying out a method for treating laundry wastewater according to Embodiment 3 of the present invention.
FIG. 4 is a system diagram showing an example of a treatment facility for performing a method for treating laundry wastewater according to Embodiment 4 of the present invention.
FIG. 5 is a system diagram showing an example of a treatment facility for carrying out a method for treating laundry wastewater according to Embodiment 5 of the present invention.
FIG. 6 is a system diagram showing an example of a treatment facility for carrying out a method for treating laundry wastewater according to Embodiment 6 of the present invention.
[Explanation of symbols]
1 Laundry drain 2 Biological treatment tank 3 Separation membrane (microfiltration membrane)
4 Membrane filtered water 5 Air 6 Air diffuser 6a Air diffuser (first aeration means)
6b Air diffuser (second aeration means)
6c Air diffuser (second aeration means)
7 Membrane Filtration Water Tank 7a
19 Ozone 20 Ozone reaction tank (ozone source)
21 Mixing tank
Claims (8)
前記精密ろ過膜によるろ過及び前記第1曝気手段による曝気を停止したときは、発生した気泡が前記精密ろ過膜に接触しない位置に設けられた第2曝気手段によって前記混合液を連続的又は間欠的に曝気する洗濯排水の処理方法。When washing wastewater from nuclear facilities is aerated and mixed with floating activated sludge flocs , the resulting mixture is solid-liquid separated by a microfiltration membrane, and when the mixture is filtered by the microfiltration membrane, the microfiltration membrane is used. When aeration is performed by the first aeration means provided immediately below and the mixed liquid is not filtered by the microfiltration membrane, the aeration by the first aeration means is stopped ,
When the filtration by the microfiltration membrane and the aeration by the first aeration means are stopped, the mixed liquid is continuously or intermittently provided by the second aeration means provided at a position where the generated bubbles do not contact the microfiltration membrane. A method for treating laundry wastewater aerated .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001260041A JP3913015B2 (en) | 2000-11-17 | 2001-08-29 | Washing wastewater treatment method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-350440 | 2000-11-17 | ||
JP2000350440 | 2000-11-17 | ||
JP2001260041A JP3913015B2 (en) | 2000-11-17 | 2001-08-29 | Washing wastewater treatment method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005235417A Division JP4131734B2 (en) | 2000-11-17 | 2005-08-15 | Washing wastewater treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002210486A JP2002210486A (en) | 2002-07-30 |
JP3913015B2 true JP3913015B2 (en) | 2007-05-09 |
Family
ID=26604132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001260041A Expired - Lifetime JP3913015B2 (en) | 2000-11-17 | 2001-08-29 | Washing wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3913015B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10255064A1 (en) * | 2002-11-25 | 2004-06-17 | Rwe Nukem Gmbh | Process for treating radioactive waste water |
JP2006064561A (en) * | 2004-08-27 | 2006-03-09 | Shimizu Corp | Execution method of activated concrete cutting work |
JP5100256B2 (en) * | 2007-08-27 | 2012-12-19 | 株式会社エコアドバンス | Sewage treatment equipment |
JP4667531B2 (en) * | 2009-07-28 | 2011-04-13 | 株式会社神鋼環境ソリューション | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method |
JP5845673B2 (en) * | 2011-07-14 | 2016-01-20 | 株式会社明電舎 | Air diffuser |
JP2013116453A (en) * | 2011-12-05 | 2013-06-13 | Yanmar Sangyo Kk | Wastewater treatment apparatus |
JP6376798B2 (en) | 2014-03-27 | 2018-08-22 | 三菱重工業株式会社 | Laundry wastewater treatment apparatus and method using biological wastewater treatment formulation |
JP6632192B2 (en) * | 2015-01-14 | 2020-01-22 | フジクリーン工業株式会社 | Blower and wastewater treatment system |
CN113716746B (en) * | 2021-09-07 | 2023-08-29 | 浙江太阳石水处理有限公司 | Advanced treatment system for chemical wastewater by combining ultrafiltration and reverse osmosis |
CN113845212B (en) * | 2021-10-18 | 2024-01-19 | 碧水源膜技术研究中心(北京)有限公司 | MBR integrated sewage purification device and method |
-
2001
- 2001-08-29 JP JP2001260041A patent/JP3913015B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002210486A (en) | 2002-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7648631B2 (en) | Apparatus for wastewater treatment using nitrogen/phosphorus removal and floatation separation | |
CN110422964A (en) | A kind of chemical industrial park wastewater deep treatment process method | |
JP2008246386A (en) | Organic wastewater treatment apparatus | |
KR101352247B1 (en) | Apparatus for treating waste water | |
KR20180043689A (en) | Eco-friendly Sewage System By Contact Oxidation Method Using Plastic Material As Bio-film Filtration | |
JP3913015B2 (en) | Washing wastewater treatment method | |
WO2012036408A2 (en) | Submerged-membrane bioreactor that easily responds to load regulation, and method of treating wastewater using the same | |
JPH11114596A (en) | Production of ultrapure water and ultrapure water producing device | |
JP5049929B2 (en) | Water treatment apparatus and water treatment method | |
JP5001923B2 (en) | Water treatment apparatus and water treatment method | |
CA1093226A (en) | Closed loop waste treatment and water recycling toilet system | |
JP4131734B2 (en) | Washing wastewater treatment equipment | |
JP4358652B2 (en) | Wastewater treatment apparatus and method | |
KR101186606B1 (en) | Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater | |
JP2004322084A (en) | Biological filtration system | |
KR20050053136A (en) | Wastewater treatment system by means of membrane bio-reactor | |
KR20130079834A (en) | Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof | |
JP4696326B2 (en) | TOC component removal equipment in ultrapure water production equipment | |
JP2007038107A (en) | Method for treating organic drainage | |
KR100992463B1 (en) | Apparatus and method for waste-water treatment with phosphorous filtering tank and submerged membrane module | |
JP3629727B2 (en) | Organic wastewater treatment method and apparatus | |
KR20040020325A (en) | A method for treating the graywater by membrane | |
JP3387311B2 (en) | Ultrapure water production equipment | |
JP3438508B2 (en) | Advanced water treatment method and apparatus | |
JPH09262429A (en) | Desulfurizer for sulfide containing gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050614 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050815 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061030 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070130 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3913015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140209 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |