JP3911274B2 - Enamel wire and insulating coating used therefor - Google Patents
Enamel wire and insulating coating used therefor Download PDFInfo
- Publication number
- JP3911274B2 JP3911274B2 JP2004118957A JP2004118957A JP3911274B2 JP 3911274 B2 JP3911274 B2 JP 3911274B2 JP 2004118957 A JP2004118957 A JP 2004118957A JP 2004118957 A JP2004118957 A JP 2004118957A JP 3911274 B2 JP3911274 B2 JP 3911274B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating
- resin
- enameled wire
- layer
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Paints Or Removers (AREA)
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
Description
本発明は、モータやトランスなどの電気機器に用いるエナメル線及びそれに用いる絶縁塗料に関するものである。 The present invention relates to an enameled wire used for an electric device such as a motor or a transformer and an insulating paint used therefor.
一般的に、エナメル線は、導体の周りに絶縁塗料からなる絶縁皮膜を設けてなる。このエナメル線を使用して電気機器、例えばモータやトランスなどを作製する場合、一般的にはモータのコア(磁芯)のスロットに連続的にエナメル線をコイル状に巻回して形成したり、或いはエナメル線をコイル状に巻いたものをコアのスロットに嵌合、挿入したりする方法が主流であった。 Generally, an enameled wire is provided with an insulating film made of an insulating paint around a conductor. When using this enameled wire to make an electrical device such as a motor or a transformer, it is generally formed by winding the enameled wire continuously in a coil shape around the motor core (magnetic core) slot, Alternatively, a method in which an enameled wire wound in a coil shape is fitted and inserted into a slot of the core has been the mainstream.
一方、断面積の大きな(太サイズの)エナメル線や、平角導体を有するエナメル線の場合、エナメル線を連続的に巻いて巻き数の多い長尺のコイルを形成するのではなく、巻き数の少ない短尺の小径コイルを複数形成し、これら小径コイルのエナメル線端末を溶接して繋ぎ合わせ、長尺のコイルを形成する方法が提案されている。このように形成したコイルは、小型で、かつ、高密度の磁束が要求される電気機器のコイル、例えば自動車の発電機などのコイルに使用されている。 On the other hand, in the case of enameled wire with a large cross-sectional area (thick size) or enameled wire with a flat rectangular conductor, the enameled wire is not continuously wound to form a long coil with a large number of turns. A method has been proposed in which a plurality of small short-diameter coils are formed, and the enameled wire ends of these small-diameter coils are welded together to form a long coil. The coil formed in this way is used for a coil of an electric device that is small and requires a high-density magnetic flux, for example, a coil of an automobile generator or the like.
自動車の発電機などのコイルには、導体の周りにポリエステルイミドの絶縁皮膜を形成し、そのポリエステルイミド絶縁皮膜の周りにポリアミドイミドの絶縁皮膜を設けたダブルコート線や、導体の周りにポリアミドイミドの絶縁皮膜を設けたシングルコート線が主に使用されている。また、一部では、導体の周りにポリイミドの絶縁皮膜を形成し、そのポリイミド絶縁皮膜の周りにポリアミドイミドの絶縁皮膜を設け、耐熱性と機械強度を向上させたダブルコート線なども使用されている(例えば、特許文献1参照)。 For coils such as automobile generators, double-coated wires in which a polyesterimide insulation film is formed around a conductor and a polyamideimide insulation film is provided around the polyesterimide insulation film, or a polyamideimide around a conductor Single-coated wires with an insulating film are mainly used. In some cases, double-coated wires with a polyimide insulating film formed around the conductor and a polyamide-imide insulating film around the polyimide insulating film to improve heat resistance and mechanical strength are also used. (For example, refer to Patent Document 1).
ところで、自動車の発電機などのコイルでは、前述した短尺の各小径コイルのエナメル線端末を溶接する場合、TIG溶接やヒュージングといった電気的な溶接方法を用いることが主流である。 By the way, in a coil of an automobile generator or the like, when welding the enameled wire terminal of each of the short coils described above, it is a mainstream to use an electric welding method such as TIG welding or fusing.
TIG溶接やヒュージングを行う際、各コイルの溶接部は、銅を溶解させるために、銅の融点である1084℃以上に加熱される。この熱は溶接部近傍の絶縁皮膜にも伝わるため、絶縁皮膜も急激に加熱されることとなる。 When performing TIG welding or fusing, the weld of each coil is heated to 1084 ° C. or higher, which is the melting point of copper, in order to dissolve copper. Since this heat is also transmitted to the insulating film in the vicinity of the welded portion, the insulating film is also rapidly heated.
この時、前述した従来のポリエステルイミドとポリアミドイミドの絶縁皮膜とからなるダブルコート線や、ポリアミドイミド皮膜からなるシングルコート線では、溶接に伴う高温により、絶縁皮膜が熱分解してガスが生じたり、絶縁皮膜に吸湿されていた水分や絶縁皮膜の焼き付け後においても皮膜中に残留(残存)していた溶剤成分が急激に気化したりする。その結果、これらの熱分解ガスや気化ガスにより、絶縁皮膜が導体表面から押し上げられ、導体から剥離して浮き上がってしまったり(以下、皮膜浮きと表す)、ブリスタと呼ぶような発泡が生じたりする(以下、ブリスタ発生と表す)ため、電気機器の信頼性が低下するという問題があった。 At this time, in the conventional double-coated wire made of the polyesterimide and polyamideimide insulating film and the single-coated wire made of the polyamideimide film, the insulating film is thermally decomposed and gas is generated due to the high temperature caused by welding. The moisture absorbed in the insulating film and the solvent component remaining (residual) in the film after the baking of the insulating film are rapidly vaporized. As a result, the insulating film is pushed up from the surface of the conductor by these pyrolysis gas and vaporized gas, and is peeled off from the conductor and floats (hereinafter referred to as film floating), or foaming called a blister occurs. Therefore, there is a problem that the reliability of the electrical equipment is lowered.
一方、これらポリエステルイミド樹脂やポリアミドイミド樹脂よりも耐熱性の高いポリイミド樹脂の皮膜と、ポリアミドイミド樹脂の皮膜とからなるダブルコート線では、ポリイミド樹脂が高価なため、高価なエナメル線となってしまうという問題があった。また、導体と絶縁皮膜との密着性が悪いために、皮膜浮きが発生し易いという問題があった。 On the other hand, a double-coated wire composed of a polyimide resin film and a polyamideimide resin film, which have higher heat resistance than those of the polyesterimide resin and polyamideimide resin, is expensive and therefore becomes an expensive enameled wire. There was a problem. Moreover, since the adhesion between the conductor and the insulating film is poor, there is a problem that the film is liable to float.
以上の事情を考慮して創案された本発明の目的は、端末溶接時における溶接部近傍の絶縁皮膜の信頼性が高く、かつ、安価なエナメル線及びそれに用いる絶縁塗料を提供することにある。 An object of the present invention created in view of the above circumstances is to provide a highly reliable and inexpensive enameled wire near the welded part at the time of terminal welding and an insulating coating used therefor.
上記目的を達成すべく本発明に係るエナメル線は、導体の周りに少なくとも2層の絶縁層で構成される絶縁皮膜を有し、かつ、最外絶縁層がポリアミドイミド皮膜で構成され、複数のコイルの端末を電気的な溶接方法を用いて銅の融点以上に加熱し溶接して形成される電気機器コイルに使用されるエナメル線において、上記最外絶縁層の内層側に、ポリイミド樹脂とポリアミドイミド樹脂の混合樹脂皮膜で構成され、300〜400℃での線膨張係数が5×10 -4 /℃以下である混合樹脂絶縁層を設けたものである。 In order to achieve the above object, the enameled wire according to the present invention has an insulating film composed of at least two insulating layers around a conductor, and the outermost insulating layer is composed of a polyamideimide film . In an enameled wire used for an electric device coil formed by heating the terminal of the coil to a melting point of copper or higher by using an electrical welding method , polyimide resin and polyamide are provided on the inner layer side of the outermost insulating layer. It is composed of a mixed resin film of imide resin, and is provided with a mixed resin insulating layer having a linear expansion coefficient at 300 to 400 ° C. of 5 × 10 −4 / ° C. or less .
ここで、100重量部のポリイミド樹脂に対して20〜100重量部のポリアミドイミド樹脂を混合してなる混合樹脂で混合樹脂絶縁層を構成することが好ましい。また、混合樹脂絶縁層の層厚と絶縁皮膜全体の層厚との比が0.05以上であることが好ましい。 Here, it is preferable that the mixed resin insulating layer 1 00 parts by weight of the polyimide resin obtained by mixing 20 to 100 parts by weight of the polyamideimide resin of the mixed resin. Moreover , it is preferable that the ratio of the layer thickness of the mixed resin insulating layer to the layer thickness of the entire insulating film is 0.05 or more.
一方、本発明に係るエナメル線に用いる絶縁塗料は、導体の周りに少なくとも2層の絶縁層で構成される絶縁皮膜を有し、かつ、最外絶縁層がポリアミドイミド皮膜で構成され、複数のコイルの端末を電気的な溶接方法を用いて銅の融点以上に加熱し溶接して形成される電気機器コイルに使用されるエナメル線に用いる絶縁塗料において、上記最外絶縁層の内層側の上記絶縁層に、ポリイミド樹脂とポリアミドイミド樹脂とを所定の割合で混合して300〜400℃での線膨張係数が5×10 -4 /℃以下となる混合樹脂を用いるものである。 On the other hand, the insulating paint used for the enameled wire according to the present invention has an insulating film composed of at least two insulating layers around the conductor, and the outermost insulating layer is composed of a polyamideimide film, In an insulating paint used for an enameled wire used for an electric device coil formed by heating the terminal of the coil to a melting point of copper or higher by using an electric welding method , the above-mentioned inner layer side of the outermost insulating layer A mixed resin in which a polyimide resin and a polyamideimide resin are mixed at a predetermined ratio and a linear expansion coefficient at 300 to 400 ° C. is 5 × 10 −4 / ° C. or less is used for the insulating layer .
混合樹脂は、100重量部のポリイミド樹脂に対して20〜100重量部のポリアミドイミド樹脂を混合してなるものである。The mixed resin is obtained by mixing 20 to 100 parts by weight of polyamideimide resin with 100 parts by weight of polyimide resin.
本発明によれば、エナメル線の端末を溶接する際、溶接部近傍における絶縁皮膜の耐熱性、溶接性が良好であるという優れた効果を発揮する。 According to the present invention, when an end of an enameled wire is welded, an excellent effect is exhibited that the heat resistance and weldability of the insulating film in the vicinity of the welded portion are good.
以下、本発明の好適一実施の形態を添付図面に基づいて説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
本発明者らが、エナメル線の端末を溶接する際、溶接部近傍における皮膜浮きや、ブリスタ発生を抑制すべく、鋭意研究した結果、以下のことを見出した。 When the present inventors welded the end of an enameled wire, as a result of earnest research to suppress film floating and blister generation in the vicinity of the weld, the following was found.
(1) 絶縁皮膜を構成する材料としては、耐熱性が高く、熱分解しづらいものを用いることが必要である。このような材料としては、ポリイミド(以下、PIと表す)、ポリアミドイミド(以下、PAIと表す)が挙げられる。 (1) As a material constituting the insulating film, it is necessary to use a material that has high heat resistance and is difficult to be thermally decomposed. Examples of such a material include polyimide (hereinafter referred to as PI) and polyamideimide (hereinafter referred to as PAI).
(2) 絶縁皮膜を構成する材料としては、高温時の熱変形が小さい材料、すなわち線膨張係数が小さい材料を用いることが必要である。これは、溶接時に絶縁皮膜が急激な熱を受けた際、熱変形が小さい方が、皮膜浮きや、ブリスタ発生を抑制できるためである。 (2) As a material constituting the insulating film, it is necessary to use a material having a small thermal deformation at a high temperature, that is, a material having a small coefficient of linear expansion. This is because when the insulating film receives rapid heat during welding, the smaller the thermal deformation, the more the film floating and blister generation can be suppressed.
(1)について、PIとPAIとを比較すると、コスト面ではPAIの方が有利(安価)である。このため、本発明者らは、先ず、PAI単体で絶縁皮膜を構成したエナメル線について検討を行った。その結果、このエナメル線では、PAI層の高温での線膨張係数が大きいため、皮膜浮きや、ブリスタ発生を抑制することができないことがわかった。次に、PI単体で絶縁皮膜を構成したエナメル線について検討を行った。その結果、このエナメル線では、PAIよりも耐熱性に優れたPIを用いているが、導体とPI層との密着性が十分でないため、皮膜浮きや、ブリスタ発生を十分に抑制することができないことがわかった。また、コスト的にも高価なものとなった。 When (1) is compared between PI and PAI, PAI is more advantageous (inexpensive) in terms of cost. For this reason, the present inventors first examined an enameled wire in which an insulating film is composed of a single PAI. As a result, it was found that the enameled wire has a high coefficient of linear expansion at a high temperature of the PAI layer, so that it is not possible to suppress film floating and blister generation. Next, an enameled wire in which an insulating film was composed of PI alone was examined. As a result, this enameled wire uses PI which has better heat resistance than PAI. However, since the adhesion between the conductor and the PI layer is not sufficient, it is not possible to sufficiently suppress film floating and blistering. I understood it. Moreover, it became expensive in terms of cost.
そこで、本発明者らが、更に検討を続けた結果、最外層となる絶縁皮膜には、巻線時などの加工を受けた際に傷が生じにくく、耐傷性に優れたPAIを用い、高温での線膨張係数の小さいPIとPAIの混合樹脂を最外層以外の絶縁皮膜の一部に用いることで、皮膜浮きや、ブリスタ発生を抑制することが可能になるということを見出した。 Therefore, as a result of further investigations by the present inventors, the insulating film as the outermost layer is not easily damaged when subjected to processing such as winding, and PAI having excellent scratch resistance is used. It was found that by using a mixed resin of PI and PAI having a small linear expansion coefficient at a part of the insulating film other than the outermost layer, it is possible to suppress film floating and blister generation.
本発明の好適一実施の形態に係るエナメル線の横断面図を図1に示す。 A cross-sectional view of an enameled wire according to a preferred embodiment of the present invention is shown in FIG.
図1に示すように、本実施の形態に係るエナメル線10は、導体11の周りに少なくとも2層(図1中では2層)の絶縁層13,14で構成される絶縁皮膜を有し、PAI皮膜で構成される最外絶縁層14の内層側に、PI樹脂とPAI樹脂の混合樹脂皮膜で構成される混合樹脂絶縁層13を設けたものである。内層13及び外層14は一体に(又はほぼ一体に)形成される。
As shown in FIG. 1, the
また、混合樹脂絶縁層13の300℃〜400℃における線膨張係数は5×10-4/℃以下、好ましくは3.5×10-4/℃以下とされる。300℃〜400℃における線膨張係数を5×10-4/℃以下としたのは、線膨張係数が5×10-4/℃より大きいと、絶縁皮膜の皮膜浮きや、ブリスタ発生を抑制する効果が小さくなるためである。
The linear expansion coefficient of the mixed
さらに、混合樹脂絶縁層13の層厚と絶縁皮膜全体(混合樹脂絶縁層13+最外絶縁層14)の層厚との比は、特に規定するものではないが、0.05以上、好ましくは0.10以上、より好ましくは0.15以上とされる。この場合、混合樹脂絶縁層13の層厚と絶縁層全体の層厚との比が0.05より小さくなると、例えば、混合樹脂絶縁層13の層厚が2μmより薄くなると、皮膜浮きや、ブリスタ発生を抑制する効果が小さくなるためである。
Further, the ratio between the layer thickness of the mixed
本実施の形態で言うPI樹脂とPAI樹脂の混合樹脂の絶縁塗料としては、300℃〜400℃における線膨張係数が5×10-4/℃以下で、かつ、層厚が約2μmの極薄の絶縁フィルムを作製可能なものである。この混合樹脂の絶縁塗料を導体11に塗布、焼き付けしてなる絶縁皮膜が混合樹脂絶縁層13である。
As the insulating coating of the mixed resin of PI resin and PAI resin in the present embodiment, the linear expansion coefficient at 300 ° C. to 400 ° C. is 5 × 10 −4 / ° C. or less and the layer thickness is about 2 μm. It is possible to produce an insulating film. The mixed
本実施の形態で言うPI樹脂の絶縁塗料は、通常塗料の状態ではポリアミド酸溶液になっており、本溶液を導体に塗布した後、焼付炉にて焼成することによりポリアミド酸が閉環してPI樹脂絶縁皮膜となる。PI樹脂絶縁塗料としては、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを極性溶媒中で反応させて得られた塗料が最も一般的であり、PIの化学構造については特に規定するものではない。 The insulating coating of PI resin referred to in the present embodiment is usually a polyamic acid solution in the state of the coating, and after applying this solution to the conductor, the polyamic acid is closed by firing in a baking furnace, and PI. It becomes a resin insulation film. As the PI resin insulating paint, a paint obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine in a polar solvent is most common, and the chemical structure of PI is not particularly specified. Absent.
芳香族テトラカルボン酸二無水物として代表的なものは、
ピロメリット酸二無水物、
ベンゾフェノンテトラカルボン酸二無水物等がある。
A typical aromatic tetracarboxylic dianhydride is:
Pyromellitic dianhydride,
Examples include benzophenone tetracarboxylic dianhydride.
芳香族ジアミンとして代表的なものは、
4,4'−ジアミノジフェニルメタン、
4,4'−ジアミノジフェニルエーテル等がある。
Typical aromatic diamines are:
4,4′-diaminodiphenylmethane,
4,4'-diaminodiphenyl ether and the like.
市販のPI樹脂絶縁塗料としては、デュポン社製のPyre ML、東レ社製のトレニース#3000等が挙げられる。 Examples of commercially available PI resin insulating paints include Pyre ML manufactured by DuPont and Trenys # 3000 manufactured by Toray.
一方、本実施の形態で言うPAI樹脂の絶縁塗料としては、トリメリット酸無水物と4,4'−ジフェニルメタンジイソシアネートとを極性溶媒中で加熱反応させて得られた塗料が最も一般的であり、PAIの化学構造については特に規定するものではない。 On the other hand, as the PAI resin insulating paint referred to in the present embodiment, a paint obtained by heating and reacting trimellitic anhydride and 4,4′-diphenylmethane diisocyanate in a polar solvent is most common. The chemical structure of PAI is not particularly specified.
市販のPAI樹脂絶縁塗料としては、日立化成工業社製のHI-404やHI-406等が挙げられる。 Examples of commercially available PAI resin insulation paints include HI-404 and HI-406 manufactured by Hitachi Chemical.
混合樹脂の絶縁塗料におけるPIとPAIの混合比率は、混合樹脂絶縁層13の300℃〜400℃における線膨張係数を5×10-4/℃以下に調整できるのであれば、特に規定を設けるものではない。例えば、PI(トレニース#3000)の樹脂分100重量部に対し、PAI(HI-406,日立化成工業社製)の樹脂分を20〜100重量部、好ましくは30〜100重量部の範囲で混合される。この場合、PAIの混合比率が100重量部より多くなると、300℃〜400℃において5×10-4/℃以下の線膨張係数を達成するのが難しく、皮膜浮きや、ブリスタ発生を抑制する効果が小さくなるためである。また、PAIの混合比率が20重量部より少なくなると、コストメリットが小さくなる(コスト上昇を招く)ので好ましくない。
The mixing ratio of PI and PAI in the insulating coating of mixed resin is particularly specified if the linear expansion coefficient of mixed
本実施の形態に係るエナメル線10においては、導体11と絶縁皮膜との密着強度がより強い(高い)ほうが好ましい。これは、導体11と絶縁皮膜との密着強度がより高い方が、ブリスタ発生を抑制する効果が大きくなるからである。よって、導体11と絶縁皮膜との密着強度を向上させるべく、導体11の周りに設ける絶縁皮膜の内、最内層の絶縁層を構成する絶縁塗料中に、密着性向上剤と呼ばれる添加剤を添加することが好ましい。
In the enameled
密着性向上剤としては、導体11と絶縁皮膜との密着強度を向上させる作用を奏するものであれば特に限定するものではなく、例えば、
ブチル化メラミン樹脂等のメラミン樹脂類、
トリアルキルアミン等のアミン類、
メルカプトベンズイミダゾールなどのメルカプタン類、
ポリカルボジイミド樹脂類、
などが挙げられる。また、2種類以上の密着性向上剤を併用して添加するようにしてもよい。
The adhesion improver is not particularly limited as long as it has an effect of improving the adhesion strength between the
Melamine resins such as butylated melamine resin,
Amines such as trialkylamine,
Mercaptans such as mercaptobenzimidazole,
Polycarbodiimide resins,
Etc. Two or more types of adhesion improvers may be added in combination.
また、絶縁塗料の樹脂分に対する密着性向上剤の添加割合は、密着性向上効果が十分に得られ、かつ、絶縁塗料の安定性やエナメル線10の可とう性などの特性に悪影響を及ぼさない範囲であれば、特に規定するものではない。例えば、密着性向上剤としてブチル化メラミン樹脂を用いる場合、混合樹脂100重量部に対して、少なくとも0.1重量部、好ましくは0.3重量部以上添加すればよい。
In addition, the addition ratio of the adhesion improver to the resin content of the insulating paint can provide a sufficient effect of improving the adhesion, and does not adversely affect the characteristics of the insulating paint such as the stability of the insulating paint and the flexibility of the enameled
本実施の形態においては、導体11の周りに、内層側が混合樹脂絶縁層13、外層側がPAI皮膜の最外絶縁層14で構成される絶縁皮膜を有する2層構造の耐熱エナメル線10について説明を行ったが、絶縁皮膜の層構造は2層に限定するものではなく、3層以上であってもよい。例えば、図2に示すように、導体11の周りに、3層構造の絶縁皮膜を有するエナメル線20であってもよい。この場合、最内絶縁層22と最外絶縁層14がPAI皮膜で構成され、中間絶縁層23が混合樹脂皮膜で構成される。また、4層構造の絶縁皮膜を有するエナメル線の場合、最内から2層目と4層目がPAI皮膜で構成され、最内から1層目と3層目が混合樹脂皮膜で構成される。また、密着性向上剤は、最内の絶縁層を構成する絶縁塗料中に添加される。
In the present embodiment, a heat-
導体11の構成材としては、エナメル線導体として慣用的に用いられているものであれば全て適用可能であり、特に限定するものではないが、Cu又はCu合金が好ましい。また、導体11の断面形状についても、特に限定するものではなく、円形導体、平角導体などのようにいずれであってもよい。さらに、導体11の断面積(サイズ)についても、特に限定するものではなく、エナメル線導体として慣用的に用いられているものであれば全て適用可能である。
As a constituent material of the
次に、本実施の形態の作用を説明する。 Next, the operation of the present embodiment will be described.
本実施の形態に係るエナメル線10は、PAI皮膜で構成される最外絶縁層14の内層側に、PI樹脂とPAI樹脂の混合樹脂皮膜で構成され、300℃〜400℃における線膨張係数を5×10-4/℃以下に調整した混合樹脂絶縁層13を設けている。これによって、絶縁皮膜は、耐熱性が高く、熱分解しづらいものとなり、かつ、高温時の熱変形が小さくなる。その結果、エナメル線10の端末を溶接して繋ぎ合わせる際、溶接に伴う高温により絶縁皮膜が熱分解してガスが生じたり、絶縁皮膜に吸湿されていた水分や絶縁皮膜の焼き付け後においても皮膜中に残留(残存)していた溶剤成分が急激に気化したりしても、溶接部近傍の絶縁皮膜における皮膜浮きや、ブリスタ発生を抑制することができる。
The enameled
よって、本実施の形態に係るエナメル線10を用いて巻き数の少ない短尺の小径コイルを複数形成し、これら小径コイルのエナメル線端末を溶接して繋ぎ合わせてなる長尺のコイルで構成される電気機器においては、高い信頼性が得られる。
Therefore, a plurality of short small-diameter coils having a small number of turns are formed by using the enameled
以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。 As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.
次に、本発明について、実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。 Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
(実施例1)
ポリイミドa(トレニース#3000,東レ社製;以下、PIaと表す)塗料とポリアミドイミド(HI-406,日立化成工業社製;以下、PAIと表す)塗料とを、PIa樹脂分/PAI樹脂分(以下、単にPIa/PAIと表す)が100重量部/50重量部となるように混合し、よく攪拌して混合樹脂塗料を得た。この混合樹脂塗料の樹脂分100重量部に対してブチル化メラミン樹脂を1重量部添加し、絶縁塗料を得た。
(Example 1)
Polyimide a (Trenice # 3000, manufactured by Toray Industries, Inc .; hereinafter referred to as PIa) paint and polyamideimide (HI-406, manufactured by Hitachi Chemical Co., Ltd .; hereinafter referred to as PAI) paint are combined into PIa resin / PAI resin ( Hereinafter, the mixture was simply mixed so that PIa / PAI) would be 100 parts by weight / 50 parts by weight, and stirred well to obtain a mixed resin paint. 1 part by weight of butylated melamine resin was added to 100 parts by weight of the resin content of the mixed resin paint to obtain an insulating paint.
この絶縁塗料を、導体寸法が1.5×2.5mm、R部面取り半径が0.6mmの平角形状の銅導体上に塗布した後、熱風循環式堅型焼付炉により焼き付けを行い、皮膜厚さが8μmの最内層絶縁皮膜(混合樹脂絶縁層)を設けた。この最内層絶縁皮膜の周りに前述したPAI塗料単体を塗布した後、焼き付けを行い、皮膜厚さが32μmの最外層絶縁皮膜を設けた。これによって、絶縁皮膜全体の厚さが40μmの2層耐熱エナメル線を作製した。 After applying this insulating paint on a rectangular copper conductor with a conductor size of 1.5 x 2.5 mm and a chamfer radius of 0.6 mm, it is baked in a hot air circulation type solid baking furnace, and the film thickness is 8 μm. An innermost insulating film (mixed resin insulating layer) was provided. The aforementioned PAI paint alone was applied around the innermost layer insulating film and then baked to provide an outermost layer insulating film having a film thickness of 32 μm. Thereby, a two-layer heat-resistant enameled wire having a total thickness of 40 μm was produced.
(実施例2)
PIa/PAIを100重量部/100重量部とする以外は実施例1と同様にして、2層耐熱エナメル線を作製した。
(Example 2)
A two-layer heat-resistant enameled wire was produced in the same manner as in Example 1 except that PIa / PAI was 100 parts by weight / 100 parts by weight.
(実施例3)
PIa/PAIを100重量部/25重量部とする以外は実施例1と同様にして、2層耐熱エナメル線を作製した。
Example 3
A two-layer heat-resistant enameled wire was produced in the same manner as in Example 1 except that PIa / PAI was 100 parts by weight / 25 parts by weight.
(実施例4)
PIa塗料の代わりに、ポリイミドb(Pyre ML,デュポン社製;以下、PIbと表す)塗料を用いる以外は実施例1と同様にして、2層耐熱エナメル線を作製した。
Example 4
A two-layer heat-resistant enameled wire was produced in the same manner as in Example 1 except that polyimide b (Pyre ML, manufactured by DuPont; hereinafter referred to as PIb) paint was used instead of the PIa paint.
(実施例5)
酸成分としてピロメリット酸二無水物、ジアミン成分として4,4'−ジアミノジフェニルメタン及び4,4'−ジアミノジフェニルエーテルを、モル比で2対1対1となるように溶媒(2-メチルピロリドン)中に溶解した。この溶液を攪拌し、反応させることによりポリイミドc(以下、PIcと表す)塗料を作製した。
(Example 5)
Pyromellitic dianhydride as the acid component, 4,4'-diaminodiphenylmethane and 4,4'-diaminodiphenyl ether as the diamine component in a solvent (2-methylpyrrolidone) in a 2 to 1 to 1 molar ratio Dissolved in. This solution was stirred and reacted to prepare a polyimide c (hereinafter referred to as PIc) paint.
PIa塗料の代わりに、PIc塗料を用いる以外は実施例1と同様にして、2層耐熱エナメル線を作製した。 A two-layer heat-resistant enameled wire was produced in the same manner as in Example 1 except that the PIc paint was used instead of the PIa paint.
(実施例6)
最内層絶縁皮膜の厚さが5μm、最外層絶縁皮膜の厚さが35μmである以外は実施例1と同様にして、2層耐熱エナメル線を作製した。
Example 6
A two-layer heat-resistant enamel wire was produced in the same manner as in Example 1 except that the thickness of the innermost layer insulating film was 5 μm and the thickness of the outermost layer insulating film was 35 μm.
(実施例7)
最内層絶縁皮膜の厚さが2μm、最外層絶縁皮膜の厚さが38μmである以外は実施例1と同様にして、2層耐熱エナメル線を作製した。
(Example 7)
A two-layer heat-resistant enameled wire was produced in the same manner as in Example 1 except that the thickness of the innermost layer insulating film was 2 μm and the thickness of the outermost layer insulating film was 38 μm.
(実施例8)
実施例1と同じPAI塗料の樹脂分100重量部に対してブチル化メラミン樹脂を1重量部添加し、第1絶縁塗料を作製した。この第1絶縁塗料を、導体寸法が1.5×2.5mm、R部面取り半径が0.6mmの平角形状の銅導体上に塗布した後、焼き付けを行い、皮膜厚さが8μmの最内層絶縁皮膜を設けた。
(Example 8)
1 part by weight of butylated melamine resin was added to 100 parts by weight of the resin component of the same PAI paint as in Example 1 to produce a first insulating paint. This first insulating coating is applied on a rectangular copper conductor with a conductor size of 1.5 x 2.5 mm and a chamfer radius of 0.6 mm, and then baked to provide an innermost insulating film with a film thickness of 8 μm. It was.
この最内層絶縁皮膜の周りに、PIa塗料とPAI塗料とをPIa/PAIが100重量部/50重量部となるように混合し、よく攪拌してなる混合樹脂塗料(第2絶縁塗料)を塗布した後、焼き付けを行い、皮膜厚さが16μmの中間層絶縁皮膜(混合樹脂絶縁層)を設けた。 Around this innermost insulating film, a PIa paint and a PAI paint are mixed so that the PIa / PAI is 100 parts by weight / 50 parts by weight, and a mixed resin paint (second insulation paint) that is well stirred is applied. Thereafter, baking was performed to provide an intermediate insulating film (mixed resin insulating layer) having a film thickness of 16 μm.
この中間層絶縁皮膜の周りに前述したPAI塗料単体(第3絶縁塗料)を塗布した後、焼き付けを行い、皮膜厚さが16μmの最外層絶縁皮膜を設けた。これによって、絶縁皮膜全体の厚さが40μmの3層耐熱エナメル線を作製した。 The aforementioned PAI paint alone (third insulation paint) was applied around the intermediate layer insulation film, and then baked to provide an outermost insulation film having a film thickness of 16 μm. Thus, a three-layer heat-resistant enameled wire having a total thickness of 40 μm was produced.
(実施例9)
PIa/PAIを100重量部/100重量部とする以外は実施例8と同様にして、3層耐熱エナメル線を作製した。
Example 9
A three-layer heat-resistant enameled wire was produced in the same manner as in Example 8 except that PIa / PAI was 100 parts by weight / 100 parts by weight.
(実施例10)
PIa/PAIを100重量部/25重量部とする以外は実施例8と同様にして、3層耐熱エナメル線を作製した。
Example 10
A three-layer heat-resistant enameled wire was produced in the same manner as in Example 8 except that PIa / PAI was 100 parts by weight / 25 parts by weight.
(実施例11)
PIa塗料の代わりに、PIb塗料を用いる以外は実施例8と同様にして、3層耐熱エナメル線を作製した。
Example 11
A three-layer heat-resistant enameled wire was produced in the same manner as in Example 8 except that the PIb paint was used instead of the PIa paint.
(実施例12)
PIa塗料の代わりに、PIc塗料を用いる以外は実施例8と同様にして、3層耐熱エナメル線を作製した。
(Example 12)
A three-layer heat-resistant enameled wire was produced in the same manner as in Example 8 except that the PIc paint was used instead of the PIa paint.
(実施例13)
中間層絶縁皮膜の厚さが5μm、最外層絶縁皮膜の厚さが27μmである以外は実施例8と同様にして、3層耐熱エナメル線を作製した。
(Example 13)
A three-layer heat-resistant enameled wire was produced in the same manner as in Example 8 except that the thickness of the intermediate insulating film was 5 μm and the thickness of the outermost insulating film was 27 μm.
(実施例14)
中間層絶縁皮膜の厚さが2μm、最外層絶縁皮膜の厚さが30μmである以外は実施例8と同様にして、3層耐熱エナメル線を作製した。
(Example 14)
A three-layer heat-resistant enameled wire was produced in the same manner as in Example 8 except that the thickness of the intermediate insulating film was 2 μm and the thickness of the outermost insulating film was 30 μm.
(比較例1)
実施例1の混合樹脂塗料の代わりに、実施例8の第1絶縁塗料を用いる以外は実施例1と同様にして、2層耐熱エナメル線を作製した。
(Comparative Example 1)
A two-layer heat-resistant enameled wire was produced in the same manner as in Example 1 except that the first insulating paint of Example 8 was used instead of the mixed resin paint of Example 1.
実施例1〜14及び比較例1の各エナメル線について、混合樹脂絶縁層の300〜400℃における線膨張係数を求めた。但し、実施例1〜7の各エナメル線については最内層絶縁皮膜を構成する絶縁塗料を、実施例8〜14の各エナメル線については中間層絶縁皮膜を構成する第2絶縁塗料を、比較例1のエナメル線については最内層絶縁皮膜を構成する第1絶縁塗料を用いて線膨張係数の測定を行った。 For each of the enamel wires of Examples 1 to 14 and Comparative Example 1, the linear expansion coefficient at 300 to 400 ° C. of the mixed resin insulating layer was determined. However, for each enameled wire of Examples 1 to 7, the insulating paint constituting the innermost layer insulating film, and for each enameled wire of Examples 8 to 14, the second insulating paint constituting the intermediate layer insulating film, Comparative Example For the enamel wire No. 1, the linear expansion coefficient was measured using the first insulating paint constituting the innermost insulating film.
具体的には、先ず、ガラス板上にそれぞれの絶縁塗料をキャスト(塗布)した後、恒温槽を用いて、80℃×20分、200℃×20分、300℃×10分という熱履歴で加熱して各絶縁塗料を硬化させ、厚さ30μmの絶縁フィルムを作製した。各絶縁フィルムを、幅2mm、チャック間長さ20mmとなるよう治具に取り付けた後、熱機械分析測定装置を用いて、引張荷重48mN、昇温速度10℃/分という条件で絶縁フィルムの伸びを測定し、300℃から400℃における平均線膨張係数を測定した。 Specifically, after each insulating paint is cast (applied) on a glass plate, using a thermostatic bath, the heat history is 80 ° C. × 20 minutes, 200 ° C. × 20 minutes, 300 ° C. × 10 minutes. Each insulating coating was cured by heating to produce an insulating film having a thickness of 30 μm. After each insulating film is mounted on a jig so that the width is 2 mm and the length between chucks is 20 mm, the insulating film is stretched using a thermomechanical analysis measuring device under the conditions of a tensile load of 48 mN and a heating rate of 10 ° C./min. Was measured, and the average linear expansion coefficient from 300 ° C to 400 ° C was measured.
また、実施例1〜14及び比較例1の各エナメル線について、TIG溶接後の外観評価を行った。 Moreover, about each enamel wire of Examples 1-14 and the comparative example 1, the external appearance evaluation after TIG welding was performed.
TIG溶接後の外観評価は以下の方法で行った。先ず、各エナメル線を製造した後、評価時の環境によるばらつきを考慮して、各エナメル線を40℃−95%RHの恒温恒湿槽内に30分間放置した。その後、恒温恒湿槽から各エナメル線を取り出して10分以内に、各エナメル線から約5cmの長さの試料片をそれぞれ切り取り、各試料片の一方の端末から4.5mmの長さに亘って絶縁皮膜を剥離した。各試料片の一方の端末の端部から2.5mmの所を、断面寸法が1.5mm×2.0mmのクロム銅製アース棒で挟み込み、また、各試料片の一方の端末の端部から1.25mmの所に、溶接トーチの先端位置を合わせ、TIG溶接機により通電を行った。通電条件は、通電電流40A、通電時間0.5秒とした。 Appearance evaluation after TIG welding was performed by the following method. First, after each enamel wire was manufactured, each enamel wire was allowed to stand in a constant temperature and humidity chamber of 40 ° C.-95% RH for 30 minutes in consideration of variations due to the environment at the time of evaluation. After that, within 10 minutes after taking out each enamel wire from the thermo-hygrostat, each sample piece of about 5 cm length is cut out from each enamel wire, and 4.5 mm long from one end of each sample piece. The insulating film was peeled off. Place 2.5 mm from the end of one end of each sample piece with a chrome-copper ground rod with a cross-sectional dimension of 1.5 mm x 2.0 mm, and place 1.25 mm from the end of one end of each sample piece. In addition, the tip position of the welding torch was aligned and energized by a TIG welder. The energization conditions were an energization current of 40 A and an energization time of 0.5 seconds.
外観の評価は、通電後の各試料片における通電部近傍の表面を目視で観察し、皮膜浮きやブリスタ発生がほとんど見られないものを良、皮膜浮きの試料片長手方向の長さが4mm未満で、発泡(ブリスタ)の径が1mm未満、かつ、その数が5個以下と少数のものをほぼ良、これ以上の皮膜浮きやブリスタ発生が見られるものを不良とした。 Appearance is evaluated by visually observing the surface in the vicinity of the current-carrying part of each sample piece after energization, and the film floating and blister generation are almost unobservable. Thus, foams (blisters) with a diameter of less than 1 mm and a small number of foams of 5 or less were considered to be good, and those with more film floating or blistering were considered bad.
線膨張係数の測定結果及びTIG溶接後の外観評価結果を表1に示す。 Table 1 shows the linear expansion coefficient measurement results and the appearance evaluation results after TIG welding.
表1に示すように、実施例1〜14の各エナメル線は、絶縁皮膜の一部にPIとPAIとの混合樹脂で構成される絶縁層を有している。また、混合樹脂絶縁層の300℃〜400℃での線膨張係数は、PIを混合することで、PAI単体の線膨張係数(7.2×10-4/℃)よりも小さい5×10-4/℃以下(1.4×10-4/℃〜4.0×10-4/℃)に調整している。その結果、実施例1〜14の各エナメル線は、その溶接部近傍における耐熱性が十分で、熱分解しづらいものとなり、かつ、高温時に熱変形しにくいため、TIG溶接後の外観は、良好又はほぼ良好であった。 As shown in Table 1, each enamel wire of Examples 1 to 14 has an insulating layer made of a mixed resin of PI and PAI on a part of the insulating film. Further, the linear expansion coefficient of the mixed resin insulating layer at 300 ° C. to 400 ° C. is 5 × 10 −4 / 5 smaller than the linear expansion coefficient (7.2 × 10 −4 / ° C.) of the PAI alone by mixing PI. ° C. is adjusted in the following (1.4 × 10 -4 /℃~4.0×10 -4 / ℃). As a result, each enameled wire of Examples 1 to 14 has sufficient heat resistance in the vicinity of the welded portion, is difficult to be thermally decomposed, and is difficult to be thermally deformed at a high temperature. Therefore, the appearance after TIG welding is good. Or it was almost good.
これに対して、PIを混合させることなく、PAIだけで絶縁皮膜を構成した比較例1のエナメル線は、絶縁皮膜の300〜400℃における線膨張係数が7.2×10-4/℃と大きいことから、耐熱性が不十分で、高温時に熱変形し易いため、TIG溶接後の外観が不良であった。 On the other hand, the enameled wire of Comparative Example 1 in which the insulating film is composed only of PAI without mixing PI has a large linear expansion coefficient of 7.2 × 10 −4 / ° C. at 300 to 400 ° C. Therefore, since the heat resistance is insufficient and the film is easily deformed by heat at high temperatures, the appearance after TIG welding was poor.
10 エナメル線
11 導体
13 混合樹脂絶縁層
14 最外絶縁層
10
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004118957A JP3911274B2 (en) | 2004-04-14 | 2004-04-14 | Enamel wire and insulating coating used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004118957A JP3911274B2 (en) | 2004-04-14 | 2004-04-14 | Enamel wire and insulating coating used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005302597A JP2005302597A (en) | 2005-10-27 |
JP3911274B2 true JP3911274B2 (en) | 2007-05-09 |
Family
ID=35333821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004118957A Expired - Fee Related JP3911274B2 (en) | 2004-04-14 | 2004-04-14 | Enamel wire and insulating coating used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3911274B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008016266A (en) * | 2006-07-04 | 2008-01-24 | Sumitomo Electric Ind Ltd | Insulated wire |
KR20090031876A (en) * | 2006-07-04 | 2009-03-30 | 스미토모 덴키 고교 가부시키가이샤 | Heat-resistant resin varnish, heat-resistant resin films, heat-resistant resin composites, and insulated wire |
JP2011162733A (en) * | 2010-02-15 | 2011-08-25 | Hitachi Chem Co Ltd | Heat-resistant resin composition and coating using the same |
KR20130024880A (en) * | 2010-10-01 | 2013-03-08 | 후루카와 마그넷트 와이야 가부시키가이샤 | Insulated wire |
JP5972375B2 (en) * | 2013-02-07 | 2016-08-17 | 古河電気工業株式会社 | Insulated wire and motor |
US10950365B2 (en) * | 2014-09-05 | 2021-03-16 | Hitachi Metals, Ltd. | Insulated wire and winding |
KR20180075482A (en) * | 2015-10-28 | 2018-07-04 | 후루카와 덴키 고교 가부시키가이샤 | Insulated wires, methods of manufacturing insulated wires, coils, rotary electric and electric / electronic devices |
CN108878002A (en) * | 2018-06-29 | 2018-11-23 | 浙江龙鹰光电科技有限公司 | 220 grades of enamelling cuprum round line of starting motor of automobile |
-
2004
- 2004-04-14 JP JP2004118957A patent/JP3911274B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005302597A (en) | 2005-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9484124B2 (en) | Insulated electric wire and coil using same | |
US8946559B2 (en) | Insulation-coated electric conductor | |
US10498184B2 (en) | Insulated wire, coil, and electrical or electronic equipment | |
US20160322126A1 (en) | Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire | |
JP3911274B2 (en) | Enamel wire and insulating coating used therefor | |
JP4041471B2 (en) | Enamel wire and insulating coating used therefor | |
WO2018051991A1 (en) | Insulated wire, coil and electrical/electronic device | |
WO2017094789A1 (en) | Self-fusible insulated wire, coil and electrical/electronic device | |
JP4340185B2 (en) | Stator coil for alternator | |
JP2012224697A (en) | Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same | |
CN108028099A (en) | Insulated electric conductor, the manufacture method of insulated electric conductor, coil, electric rotating machine and electric/electronic | |
EP2579275B1 (en) | Insulated electric wire | |
JP3977305B2 (en) | Insulated conductor | |
JP2013051030A (en) | Insulated wire and armature coil using the same, motor | |
JP4191233B2 (en) | Insulated conductor | |
JP2013101759A (en) | Insulation wire, electric machine coil using the same, and motor | |
JP2001155551A (en) | Insulated wire | |
TW202044286A (en) | Insulated wire, coil, and electrical and electronic equipment | |
JP5837397B2 (en) | Insulated wire and electric coil and motor using the same | |
JP2016062775A (en) | Insulation wire | |
JP6439062B2 (en) | Insulated wire manufacturing method | |
JP2011159578A (en) | Insulation wire, and electric coil and motor using the same | |
JP2871820B2 (en) | Method of peeling off end of high heat resistant insulated wire | |
JP2017162769A (en) | Insulation wire and manufacturing method therefor | |
JPH05190027A (en) | Heat-resistant insulated wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070126 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100202 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120202 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |