JP3905617B2 - Separation membrane chemical wash - Google Patents
Separation membrane chemical wash Download PDFInfo
- Publication number
- JP3905617B2 JP3905617B2 JP30931997A JP30931997A JP3905617B2 JP 3905617 B2 JP3905617 B2 JP 3905617B2 JP 30931997 A JP30931997 A JP 30931997A JP 30931997 A JP30931997 A JP 30931997A JP 3905617 B2 JP3905617 B2 JP 3905617B2
- Authority
- JP
- Japan
- Prior art keywords
- separation membrane
- citric acid
- detergent
- water
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Detergent Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水浄化システムの分離膜の薬洗液に関し、更に詳しくは特定の薬洗液に分離膜を接触させることにより、分離膜に付着した水不溶性未ろ過物質を除去し、分離膜の機能を回復させる分離膜の薬洗液に関する。
【0002】
【従来の技術】
最近、膜分離技術を適用する水浄化システムは、従来の凝集−沈殿−砂ろ過−塩素殺菌工程を経る方法に代わる新たな方法として注目されている。分離膜を用いた水浄化システムとしてはクロスフローろ過と全量ろ過があり、クロスフローろ過は全量ろ過と比較して原水濁度の変動に対しても耐えられることから各種の試行がなされている。ここにクロスフローろ過とは、分離膜の一方の膜面(原水供給側分離膜面)に原水を供給し、分離膜を透過した透過水を分離膜の他方の膜面(透過側分離膜面)から回収する際、原水供給側分離膜面に平行に原水を流してろ過を行うことにより、分離膜表面に付着した原水に含まれていた濁質物質がその膜表面から剥ぎ取られる効果を有するろ過方法をいう。
しかし、このクロスフローろ過によっても、ろ過時間の経過によって原水に含まれる濁質物質が分離膜表面に積層して、分離膜の目詰まりを生じる。この目詰まりは水浄化システムの運転中断の原因となるため、この目詰まりを解消あるいは予防するために、一般的に逆圧流洗浄(以下、逆洗と称する。)が行われている。ここで、逆洗とは流体を透過側から原水側に膜を介して透過させる操作のことである。しかし、15〜120分に1回の割合で逆洗を行いながら、クロスフローろ過を実施しても、長時間の連続運転を行う中で次第に剥離できない非透過物質が膜面及び膜内部に蓄積し、水処理能力が低下する。
そこで、数ヶ月に一度程度の頻度で、分離膜モジュールを洗浄剤で処理して分離膜モジュールの表面等に付着した非透過物質を除去し、分離膜モジュールの水処理能力を回復させる薬液洗浄(以下、薬洗と称する)が行われている。
【0003】
この薬洗に使用される洗浄剤としては、界面活性剤、酸、アルカリ、次亜塩素酸ナトリウムおよび酵素等がある。
【0004】
【発明が解決しょうとする課題】
しかしながら、酸、アルカリあるいは次亜塩素酸ナトリウム等を使用する場合には、これらの高濃度の溶液の使用が要求されるが、これは分離膜モジュール自体の損傷を招き、洗浄条件の設定も難しい。
【0005】
一方、「水道協会雑誌」(第61巻第11号P24)には、非イオン性洗剤、酵素、シュウ酸、クエン酸が開示されている。また、特開平8−141375号公報には、次亜塩素酸ナトリウムを用いることが記載されている。また、特開平4−506475号公報には、界面活性剤単独の場合について示されている。
しかし、これらの洗浄剤はいずれも単独で用いられており、洗浄効果を上げるために、例えばクエン酸による洗浄の後にさらに界面活性剤による洗浄を行うという段階的な洗浄操作を行っており、洗浄に多くの時間がかかり、しかも操作が段階的で煩雑であるという問題点がある。
【0006】
なお、特開昭54−58686号公報には、中性洗剤及びクエン酸を含む水溶液に水酸化アンモニウム・水酸化ナトリウム・水酸化カリウムのうち少なくとも一つを加えることによってpHを2〜6に調整した水溶液が示されている。
しかしながら、pHの調整のために、水酸化ナトリウム等を加えねばならず、手間がかかるとともに、クエン酸/中性洗剤の比率が小さい場合、洗浄による機能回復が小さい場合があるという問題点がある。また、特開昭50−153778号公報には、EDTAとクエン酸の混合液が示され、特開昭58−20205号公報には、シュウ酸及び界面活性剤を含む液が示されている。
そこで表流水を浄化する分離膜モジュールの薬洗においては、洗浄剤が無害であることはもちろんのこと、分離膜モジュール自体に対する劣化の影響がなく、少量で安定で効果的な洗浄力を有し、かつ簡便な薬洗液の開発が強く望まれる。
【0007】
【課題を解決するための手段】
本発明者らは分離膜の薬洗に関する前記のような問題点を克服するため鋭意検討した結果、分離膜の薬洗液としてクエン酸と洗剤を特定割合で含有する混合水溶液を使用したところ、分離膜の材質を損なわず効率よく機能を回復させることができることを見い出し、本発明を完成するに至った。
ここで、本発明においては、界面活性剤単独、またはこれを含有する混合組成物からなる洗浄剤を便宜的に洗剤と称する。
【0008】
すなわち本発明は、表流水をろ過して浄化水を得るために用いられる分離膜の薬洗液であって、クエン酸及び洗剤を含有する混合水溶液からなり、該混合水溶液中にクエン酸が0.1〜2重量%、洗剤が0.05〜4重量%含まれ、かつ洗剤に対するクエン酸の含有量の比の値が0.1〜3の範囲にあることを特徴とする分離膜の薬洗液を提供するものである。
【0009】
【発明の実施の形態】
本発明の薬洗液が適用できる分離膜モジュールとしては、表流水の水浄化システムに用いられる分離膜モジュールであり、膜形態には中空糸型、プレート・アンド・フレーム型、プリーツ型、スパイラル型、チューブラー(管状)型等が挙げられるが、分離膜と薬洗液との接触後に行う膜表面のフラッシングあるいは逆洗が最も効果的にできる中空糸分離膜モジュールが好ましい。
また、分離膜の材質は特に限定されるものではなく、高分子材料やセラミック材料等が使用できる。高分子材料としては、酢酸セルロース、その他のセルロース誘導体、ポリスルホン系樹脂、ポリアクリロニトリル共重合体、ポリエチレン、ポリプロピレン、ポリアミド系樹脂、ポリイミド系樹脂、ポリビニリデンフルオライド等に適用できる。
酢酸セルロースを本発明の薬洗液の対象分離膜素材として用いる場合は、化学的耐久性の優れているものとして、酢化度が40〜62%の範囲にあるもの、好ましくは55〜62%の範囲にあるものが用いられる。また、平均重合度は100〜500の範囲にあるもの、好ましくは150〜350のものが用いられる。この範囲外の酢酸セルロースを用いた場合、分離膜が本発明の薬洗液により化学的に劣化する可能性があり、また、本発明の薬洗液を適用するためには、洗浄の際の薬洗液との接触時間とその薬洗液の濃度範囲をかなり狭くする必要があるため、洗浄の効果を期待できない結果となる。
【0010】
本発明の薬洗液はクエン酸と洗剤を含有するが、洗剤に使用される界面活性剤は従来より分離膜用洗浄剤として用いられており、表流水の水浄化システムにおける分離膜を目詰まりさせる物質のうちの有機成分を除去するものと考えられる。
本発明に適当な洗剤としては、ドデシル硫酸ナトリウム(以下、単にSDSという)、直鎖アルキルベンゼンスルホン酸ナトリウム(以下、単にLASという)、ポリオキシエチレンアルキルエーテル硫酸ナトリウム(ES)及びα−オレフィンスルホン酸ナトリウム等のアニオン性界面活性剤や、ショ糖脂肪酸エステル及びポリオキシエチレンアルキルアミン等のノニオン性界面活性剤が挙げられる。また、分離膜用洗剤として市販されている界面活性剤を含む混合組成物、例えばウルトラジル(ヘンケル・白水社、商品名)等も使用できる。
一方クエン酸は、無機成分の一部を溶解することによって目詰まり物質を分離膜から除去することができ、従って、分離膜の透水速度が回復できると考えられる。
【0011】
本発明の薬洗液は、クエン酸と洗剤を含有する混合水溶液からなり、分離膜の水処理能の回復の点から、該混合水溶液中にクエン酸が0.1〜2重量%、好ましくは0.1〜1重量%、同じく洗剤が0.05〜4重量%、好ましくは0.1〜2重量%の範囲で含まれ、さらに洗剤に対するクエン酸の含有量の比の値が0.1〜3の範囲、好ましくは0.1〜2の範囲にあるものである。
ここに、薬洗液中にクエン酸が0.1〜2重量%としたのは、0.1重量%未満でも、2重量%を超えても、洗浄による分離膜の機能回復力が低下するからである。また、洗剤が0.05〜4重量%としたのは、0.05重量%未満でも、4重量%を超えても、分離膜の機能回復力が低下するからである。さらに、洗剤に対するクエン酸の含有量の比の値を0.1〜3としたのは、0.1未満でも、3を超えても分離膜の機能回復力が不十分になるからである。
【0012】
本発明の薬洗液には、その洗浄効果を阻害しない範囲で、酵素、無機塩、りん酸系緩衝剤、キレート剤、酸、アルカリ等の添加剤を含んでいてもよい。
【0013】
本発明の薬洗液の接触方法としては、流動を与えない条件で前記薬洗液に分離膜を静置浸漬して分離膜の目詰まり物質を除去する方法と、前記薬洗液に流動を与えて分離膜の目詰まり物質を剥ぎ取ると共に目詰まり物質を除去する方法等が考えられるが、洗浄方法の簡便性の点から前者(浸漬静置法)の方が望ましい。
【0014】
本発明の薬洗液を用いた分離膜の洗浄においては、分離膜との接触後の洗浄操作が比較的重要である。すなわち、分離膜との接触後、膜間差圧が0.3kg/cm2以下で原水側の膜表面をフラッシングするか、あるいは、逆洗ないしは両者を併用して行うことが好ましい。ここでいう膜間差圧とは、フラッシング時の原水側(1次側)の圧力と透過側(2次側)の圧力との差を意味する。また、フラッシングとは、液体を原水側膜表面方向に比較的高速で流動させ、膜表面に付着した目詰まり物質を掃除する操作のことである。
【0015】
本発明の薬洗液を用いた分離膜の洗浄においては、フラッシング時の膜間差圧を0.3kg/cm2以下、好ましくは0.1kg/cm2以下にすることによって効果的な洗浄が可能となる。膜間差圧が0.3kg/cm2を越えてフラッシングを行うと、液体が原水側から膜を介して大きく透過する場合があり、この場合には、一旦薬洗液との接触によって剥離を受けた目詰まり物質が、このフラッシング操作によって再び分離膜を目詰まりさせるために、結局、分離膜の機能回復が出来ないこととなる惧れがある。なおフラッシングに用いる流体は、原水、浄化水およびこれらと空気との混合液体等がある。フラッシングの所要時間は特に限定されず、ろ過の透水速度がある一定のレベルに回復するまで行えばよいが、通常1〜100分程度である。一方、逆洗を行う場合は膜透過水等の浄化水、低濃度の次亜塩素酸ナトリウム溶液および空気等を用いることができ、逆洗圧力としては0.1〜2.0kg/cm2が望ましい。
【0016】
本発明の薬洗液による分離膜の洗浄においては、分離膜モジュールを水浄化システムから取り外して洗浄しても、分離膜モジュールを水浄化システムに装着したまま洗浄してもよい。
分離膜モジュールを水浄化システムから取り外して洗浄する場合には、薬洗液の入った容器に分離膜モジュールを浸漬し、静置することが望ましい。
一方、水浄化システムに分離膜モジュールの洗浄用の切り替え回路が用意されている場合には、分離膜モジュールをシステムに装着したまま薬洗液に置換し、所望の時間静置することにより洗浄することが可能となる。なお、洗浄用の回路とは、通常使用における透過水生成用の回路とは別の、供給原水の代わりに本発明の薬洗液並びにすすぎ用水が供給され、かつ、洗浄による処理廃液を排出することのできる回路である。
また、例えば分離膜モジュール4本によりろ過運転を行う水浄化システムにおいて、予め5本の分離膜モジュールを設置しておけば、4本の分離膜モジュールを運転しながら残り1本の分離膜モジュールを洗浄することができ、水浄化システムの運転を休止する必要がなくなる。
【0017】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0018】
(実施例1〜3,比較例1〜4)
まず、実施例1につき説明する。
分離膜モジュールとして三酢酸セルロース製中空糸膜モジュール(膜面積10m2、有効膜長さ1m)を用い、図1に示す水浄化システムにおいて平均濁度7度の表流水である河川水から浄化水を得るために、約200日間ろ過運転した。
図1に示す水浄化システムには、逆止弁1、ポンプ2、中空糸膜モジュール3、透過水自動弁4、洗浄水排出自動弁5の構成に加えて、透過水を蓄積するための透過水タンク8、蓄積された透過水を中空糸膜モジュール3の出口側に戻して逆洗を行うためのポンプ9、逆洗自動弁10とを設けている。7は循環経路、6は洗浄水排出経路である。
通常運転に際しては、透過水自動弁4を開、洗浄水排出自動弁5、逆洗自動弁10はともに閉とし、ポンプ9を停止状態にする。このようにして河川水を逆止弁1を介してポンプ2により昇圧し、中空糸膜モジュール3に供給する。中空糸膜モジュール3を透過した透過水は透過水自動弁4を経由して透過水タンク8に蓄積される。
逆洗時は、透過水自動弁4は閉とし、洗浄水排出自動弁5及び逆洗自動弁10はともに開とし、ポンプ2は停止し、ポンプ9を運転し、透過水タンク8中の透過水を中空糸膜モジュール3を透して洗浄水排出自動弁5経由でシステム外に排出する。
【0019】
具体的には、この水浄化システムで、原水(河川水)を中空糸膜モジュール3の中空糸膜の内側に流してろ過し、30分ごとに1分間、透過水を中空糸膜の外側から内側に流す逆洗を行った。運転後、分離膜モジュール中の任意の中空糸膜を50cmを切り出し、本発明による洗浄による分離膜の機能回復性を試験する試料とした。この試料中空糸膜中に気泡が入らないように注意して、LASを約0.17重量%含む市販の分離膜用洗剤であるウルトラジル53(ヘンケル・白水社製)の1重量%の水溶液とクエン酸1重量%の水溶液から得られた混合水溶液である薬洗液(クエン酸含有量/ウルトラジル53含有量=1.0)に8時間浸漬静置した。
この薬洗液はクエン酸と洗剤との2液の一定割合の混合であるので、調製が簡便であり、安定で効果的な洗浄力を有している。
浸漬した中空糸膜を取り出し、その一端からイオン交換水を膜間差圧0.1kg/cm2で100ml流し(フラッシング)、内表面に付着していた目詰まり物質を掃流した。この時、中空糸膜のもう一端は開放してある状態である。以上のようにして洗浄した中空糸膜の純水透過速度(以下、単にPWPという)を測定して洗浄による機能回復性を求めた。ここでPWPは、有効長50cmの中空糸膜の内側から外側に透過した25℃の純水の量から算出した。洗浄後の中空糸膜のPWPは438リットル/m2・hr・(kg/cm2)であり、99.5%の洗浄回復率(下式(1))を示した。ここに、洗浄回復率とは、本発明の薬洗液による洗浄により中空糸膜(分離膜)の機能の回復率を意味する。
【0020】
表−1に、薬洗液の内容、クエン酸/洗剤(ウルトラジル53)の重量比の値、洗浄回復率(%)、薬洗液のpH及びPWPを示した。また、1重量%クエン酸液と1重量%ウルトラジル53液の混合比の違いによる洗浄効果を図2に示す。なお洗浄前の機能低下した中空糸膜のPWPは51リットル/m2・hr(kg/cm2)であり、使用前の中空糸膜のPWPは440リットル/m2・hr(kg/cm2)である。また、ろ過運転後の中空糸膜のPWP低下率(すなわち、下式(2)の洗浄前PWP低下率)は11.6%であった。また、上記洗浄操作によって膜付着物の著しい流出が観察された。
また、本発明の薬洗液は、クエン酸と洗剤の特定割合の混合水溶液を用いているために、中空糸膜の洗浄時間は、約8時間であり、従来、3日間を要したのに比較して大幅な洗浄時間の短縮ができ、効率の大幅な向上が出来るとともに、洗浄時間の短縮により使用する洗浄剤量、人件費等の排水処理コストを上回る大幅なコスト低減をすることができた。
【0021】
次に、表1の実施例2〜3、比較例1〜4に示すように、薬洗液の内容、比率を変えて、実施例1と同様に測定し、その結果を表1に示した。
表1に示すように、クエン酸と洗浄剤(ウルトラジル53)を特定の割合とした実施例1〜3が、洗浄回復率が極めて優れていることが解る。
【0022】
【数1】
【0023】
【表1】
【0024】
(実施例4〜6,比較例5〜8)
洗浄剤としてLASを含むウルトラジル53の代りにSDSを使用し、その1重量%水溶液を用い、実施例1と同様にしてSDSに対するクエン酸の含有比を変えて洗浄を行った。結果を表−2に示す。また、1重量%クエン酸液と1重量%SDS液の混合比の違いによる洗浄効果を図3に示す。
この場合も、表2に示すように、クエン酸と洗浄剤(SDS)を特定の割合とした実施例4〜6が、洗浄回復率が極めて優れていることが解る。
【0025】
【表2】
【0026】
(実施例7〜9,比較例9〜10)
洗浄剤として、実施例1においてLASを含むウルトラジル53の代りにショ糖脂肪酸エステルを6重量%含有する洗剤(中性洗剤)であるサニーセーフA(第一工業製薬(株)、商品名)を使用し、その1重量%水溶液を用い、実施例1と同様にしてこの洗剤に対するクエン酸の含有比を変えて洗浄を行った。結果を表−3に示す。
また、比較例10においては、特開昭54−58686号公報の実施例3の場合、洗浄回復率は低いことを示す。ここでは混合溶液中の洗剤(中性洗剤)の濃度は0.4重量%、クエン酸の濃度は0.02重量%で、クエン酸/洗剤(中性洗剤)の重量比の値は0.05であり、本発明のいう重量比の値0.1〜3から外れている。実施例1と同様に水浄化システムで使用した酢酸セルロース中空糸膜を洗浄したが、洗浄回復率は74.3%と極めて低かった。すなわち、本発明のいうクエン酸/洗浄剤の重量比0.1〜3としてはじめて優れた洗浄回復率を有する。
この場合も、表3に示すように、クエン酸と洗剤(サニーセーフA)を特定の割合とした実施例7〜9が、洗浄回復率が極めて優れていることが解る。
【0027】
【表3】
【0028】
【発明の効果】
本発明による薬洗液は、クエン酸と洗剤を特定割合で含有する混合水溶液とするので、簡便に出来、安定で効果的な洗浄力を有している。また、分離膜モジュールの特別な管理を要することなく、分離膜の材質を損なうことなく、水処理能力(水処理機能)の回復を容易に行うことができる。しかも洗浄操作も単純で、洗浄時間の大幅な短縮ができ洗浄効率を向上できる。
【図面の簡単な説明】
【図1】 本発明の評価に用いた水浄化システムの構成を示す模式図である。
【図2】 本発明の薬洗液(表−1に対応)の混合比の違いによる分離膜の純水透過速度(PWP)を示すグラフである。
【図3】 本発明の他の薬洗液(表−2に対応)の混合比の違いによる分離膜の純水透過速度(PWP)を示すグラフである。
【符号の説明】
1 逆止弁
2 ポンプ
3 中空糸膜モジュール
4 透過水自動弁
5 洗浄水排出自動弁
6 洗浄水排出経路
7 循環経路
8 透過水タンク
9 ポンプ
10 逆洗自動弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical cleaning solution for a separation membrane of a water purification system. More specifically, the separation membrane is brought into contact with a specific chemical cleaning solution to remove water-insoluble unfiltered substances adhering to the separation membrane. The present invention relates to a chemical washing solution for a separation membrane that restores its function.
[0002]
[Prior art]
Recently, a water purification system to which membrane separation technology is applied has attracted attention as a new method that replaces the conventional method of undergoing a coagulation-precipitation-sand filtration-chlorine sterilization process. As water purification systems using separation membranes, there are crossflow filtration and total volume filtration. Since crossflow filtration can withstand fluctuations in raw water turbidity as compared with full volume filtration, various trials have been made. Cross flow filtration refers to the supply of raw water to one membrane surface of the separation membrane (raw water supply side separation membrane surface), and the permeated water that has permeated through the separation membrane to the other membrane surface of the separation membrane (permeation side separation membrane surface). ), The turbid substances contained in the raw water adhering to the separation membrane surface are stripped from the membrane surface by filtering the raw water flowing parallel to the separation membrane surface of the raw water supply side. The filtration method which has.
However, even with this cross-flow filtration, turbid substances contained in the raw water are laminated on the surface of the separation membrane as the filtration time elapses, resulting in clogging of the separation membrane. Since this clogging causes interruption of the operation of the water purification system, back pressure flow washing (hereinafter referred to as back washing) is generally performed in order to eliminate or prevent this clogging. Here, backwashing is an operation of allowing fluid to permeate through the membrane from the permeate side to the raw water side. However, even if cross-flow filtration is performed while backwashing at a rate of once every 15 to 120 minutes, non-permeating substances that cannot be gradually separated during continuous operation for a long time accumulate on the membrane surface and inside the membrane. However, the water treatment capacity decreases.
Therefore, the chemical membrane cleaning that recovers the water treatment capacity of the separation membrane module by removing the non-permeating substances adhering to the surface of the separation membrane module by treating the separation membrane module with a cleaning agent at a frequency of about once every several months. Hereinafter, it is referred to as “medicine wash”.
[0003]
Detergents used for this chemical washing include surfactants, acids, alkalis, sodium hypochlorite and enzymes.
[0004]
[Problems to be solved by the invention]
However, when using acid, alkali, sodium hypochlorite or the like, it is required to use these high-concentration solutions. However, this causes damage to the separation membrane module itself, and it is difficult to set cleaning conditions. .
[0005]
On the other hand, Non-ionic detergents, enzymes, oxalic acid, and citric acid are disclosed in “Water Supply Association Magazine” (Vol. 61, No. 11, P24). JP-A-8-141375 describes the use of sodium hypochlorite. JP-A-4-506475 discloses the case of a surfactant alone.
However, each of these cleaning agents is used alone, and in order to increase the cleaning effect, for example, a stepwise cleaning operation is performed in which cleaning with a surfactant is further performed after cleaning with citric acid. However, there is a problem that it takes a lot of time and the operation is stepwise and complicated.
[0006]
In JP-A-54-58686, the pH is adjusted to 2 to 6 by adding at least one of ammonium hydroxide, sodium hydroxide and potassium hydroxide to an aqueous solution containing a neutral detergent and citric acid. An aqueous solution is shown.
However, in order to adjust the pH, sodium hydroxide or the like has to be added, which is troublesome, and there is a problem that when the ratio of citric acid / neutral detergent is small, functional recovery by washing may be small. . JP-A-50-153778 shows a mixed solution of EDTA and citric acid, and JP-A-58-20205 shows a solution containing oxalic acid and a surfactant.
Therefore, in the chemical washing of separation membrane modules that purify surface water, the cleaning agent is harmless, and there is no deterioration effect on the separation membrane module itself, and it has a stable and effective cleaning power in a small amount. In addition, development of a simple chemical washing solution is strongly desired.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to overcome the above-described problems related to the chemical washing of the separation membrane, the present inventors used a mixed aqueous solution containing citric acid and a detergent at a specific ratio as the chemical washing solution of the separation membrane. It has been found that the function can be efficiently recovered without impairing the material of the separation membrane, and the present invention has been completed.
Here, in the present invention, a detergent consisting of a surfactant alone or a mixed composition containing it is referred to as a detergent for convenience.
[0008]
That is, the present invention is a chemical washing solution for a separation membrane used to obtain purified water by filtering surface water, comprising a mixed aqueous solution containing citric acid and a detergent, and citric acid is 0 in the mixed aqueous solution. 0.1 to 2% by weight, 0.05 to 4% by weight of detergent, and the ratio of the content of citric acid to the detergent is in the range of 0.1 to 3 A washing solution is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The separation membrane module to which the chemical washing solution of the present invention can be applied is a separation membrane module used in a surface water purification system, and the membrane form is a hollow fiber type, a plate-and-frame type, a pleated type, a spiral type. And a tubular (tubular) type. A hollow fiber separation membrane module that can most effectively flush or backwash the membrane surface after contact between the separation membrane and the chemical washing solution is preferable.
The material of the separation membrane is not particularly limited, and a polymer material, a ceramic material, or the like can be used. As the polymer material, it can be applied to cellulose acetate, other cellulose derivatives, polysulfone resin, polyacrylonitrile copolymer, polyethylene, polypropylene, polyamide resin, polyimide resin, polyvinylidene fluoride, and the like.
When cellulose acetate is used as the target separation membrane material of the chemical washing solution of the present invention, it has excellent chemical durability, and the acetylation degree is in the range of 40 to 62%, preferably 55 to 62%. Those in the range are used. The average degree of polymerization is in the range of 100 to 500, preferably 150 to 350. When cellulose acetate outside this range is used, the separation membrane may be chemically deteriorated by the chemical washing solution of the present invention, and in order to apply the chemical washing solution of the present invention, Since the contact time with the chemical cleaning solution and the concentration range of the chemical cleaning solution need to be considerably narrowed, the cleaning effect cannot be expected.
[0010]
Although the chemical washing solution of the present invention contains citric acid and a detergent, the surfactant used in the detergent has been conventionally used as a cleaning agent for a separation membrane, and clogs the separation membrane in a surface water purification system. It is thought that the organic component of the substance to be removed is removed.
Suitable detergents for the present invention include sodium dodecyl sulfate (hereinafter simply referred to as SDS), sodium linear alkylbenzene sulfonate (hereinafter simply referred to as LAS), polyoxyethylene alkyl ether sodium sulfate (ES) and α-olefin sulfonic acid. Anionic surfactants such as sodium, and nonionic surfactants such as sucrose fatty acid esters and polyoxyethylene alkylamines may be mentioned. Moreover, the mixed composition containing surfactant marketed as a detergent for separation membranes, for example, Ultrasil (Henkel-Shiramizu Co., Ltd., a brand name) etc. can be used.
On the other hand, citric acid is considered to be able to remove clogging substances from the separation membrane by dissolving a part of the inorganic components, and thus the water permeation rate of the separation membrane can be recovered.
[0011]
The chemical washing solution of the present invention comprises a mixed aqueous solution containing citric acid and a detergent, and from the viewpoint of recovery of water treatment ability of the separation membrane, citric acid is contained in the mixed aqueous solution in an amount of 0.1 to 2% by weight, preferably 0.1 to 1% by weight, detergent is also contained in the range of 0.05 to 4% by weight, preferably 0.1 to 2% by weight, and the value of the ratio of citric acid content to the detergent is 0.1 In the range of ~ 3, preferably in the range of 0.1-2.
Here, citric acid is contained in the chemical washing solution in an amount of 0.1 to 2% by weight. Even if it is less than 0.1% by weight or more than 2% by weight, the functional recovery ability of the separation membrane by washing is lowered. Because. In addition, the reason why the detergent is 0.05 to 4% by weight is that the functional recovery ability of the separation membrane decreases even if it is less than 0.05% by weight or exceeds 4% by weight. Furthermore, the reason why the value of the content ratio of citric acid to the detergent is set to 0.1 to 3 is that the function recovering ability of the separation membrane becomes insufficient when the ratio is less than 0.1 or exceeds 3.
[0012]
The chemical washing solution of the present invention may contain additives such as enzymes, inorganic salts, phosphate buffering agents, chelating agents, acids, alkalis and the like as long as the cleaning effect is not inhibited.
[0013]
As a method for contacting the chemical washing liquid of the present invention, a method for removing clogging substances from the separation membrane by allowing the separation membrane to stand still in the chemical washing liquid under conditions that do not give flow; A method for removing the clogging substance from the separation membrane and removing the clogging substance can be considered. However, the former (immersion standing method) is preferable from the viewpoint of simplicity of the cleaning method.
[0014]
In cleaning the separation membrane using the chemical cleaning solution of the present invention, the cleaning operation after contact with the separation membrane is relatively important. That is, after contact with the separation membrane, the membrane pressure on the raw water side is preferably flushed at a transmembrane differential pressure of 0.3 kg / cm 2 or less, or backwashing or a combination of both is preferably performed. The transmembrane differential pressure here means the difference between the pressure on the raw water side (primary side) and the pressure on the permeation side (secondary side) during flushing. In addition, flushing is an operation of cleaning a clogging substance adhering to the membrane surface by causing a liquid to flow toward the raw water side membrane surface at a relatively high speed.
[0015]
In cleaning the separation membrane using the chemical washing solution of the present invention, the transmembrane pressure during flushing 0.3 kg / cm 2 or less, preferably effective cleaning by below 0.1 kg / cm 2 It becomes possible. If flushing is performed with the transmembrane pressure exceeding 0.3 kg / cm 2 , the liquid may permeate through the membrane from the raw water side. Since the clogging substance received clogs the separation membrane again by this flushing operation, there is a possibility that the function of the separation membrane cannot be recovered after all. The fluid used for flushing includes raw water, purified water, and a mixed liquid of these and air. The time required for flushing is not particularly limited, and may be performed until the filtration water permeation speed recovers to a certain level, but is usually about 1 to 100 minutes. On the other hand, when backwashing is performed, purified water such as membrane permeated water, low-concentration sodium hypochlorite solution and air can be used, and the backwashing pressure is 0.1 to 2.0 kg / cm 2. desirable.
[0016]
In cleaning the separation membrane with the chemical cleaning solution of the present invention, the separation membrane module may be removed from the water purification system for cleaning, or the separation membrane module may be cleaned while attached to the water purification system.
When the separation membrane module is removed from the water purification system and washed, it is desirable to immerse the separation membrane module in a container containing a chemical washing solution and leave it stationary.
On the other hand, when a switching circuit for cleaning the separation membrane module is prepared in the water purification system, the separation membrane module is replaced with the chemical washing liquid while it is attached to the system, and then washed by leaving it for a desired time. It becomes possible. The circuit for cleaning is different from the circuit for generating permeated water in normal use, and the chemical cleaning solution and the rinsing water of the present invention are supplied in place of the raw feed water, and the processing waste liquid from the cleaning is discharged. It is a circuit that can.
For example, in a water purification system that performs filtration operation with four separation membrane modules, if five separation membrane modules are installed in advance, the remaining one separation membrane module is operated while the four separation membrane modules are operated. It can be cleaned, eliminating the need to suspend operation of the water purification system.
[0017]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0018]
(Examples 1-3, Comparative Examples 1-4)
First, Example 1 will be described.
A cellulose triacetate hollow fiber membrane module (membrane area 10 m 2 , effective membrane length 1 m) is used as the separation membrane module, and purified water from river water, which is surface water with an average turbidity of 7 degrees, in the water purification system shown in FIG. In order to obtain, about 200 days of filtration operation was carried out.
The water purification system shown in FIG. 1 includes a
During normal operation, the permeated water automatic valve 4 is opened, the washing water discharge automatic valve 5 and the backwashing automatic valve 10 are both closed, and the pump 9 is stopped. In this way, the river water is pressurized by the pump 2 through the
At the time of backwashing, the permeated water automatic valve 4 is closed, the washing water discharge automatic valve 5 and the backwashing automatic valve 10 are both opened, the pump 2 is stopped, the pump 9 is operated, and the permeation in the permeated water tank 8 is performed. Water passes through the hollow
[0019]
Specifically, in this water purification system, raw water (river water) is filtered by flowing inside the hollow fiber membrane of the hollow
Since this chemical washing solution is a mixture of citric acid and detergent in a certain ratio, the preparation is simple and has a stable and effective detergency.
The soaked hollow fiber membrane was taken out, and 100 ml of ion-exchanged water was flowed from one end thereof at a transmembrane differential pressure of 0.1 kg / cm 2 (flushing), and the clogging substance adhering to the inner surface was swept away. At this time, the other end of the hollow fiber membrane is open. The pure water permeation rate (hereinafter simply referred to as “PWP”) of the hollow fiber membranes washed as described above was measured to obtain the function recoverability by washing. Here, PWP was calculated from the amount of pure water at 25 ° C. permeated from the inside to the outside of the hollow fiber membrane having an effective length of 50 cm. The PWP of the hollow fiber membrane after washing was 438 liter / m 2 · hr · (kg / cm 2 ), and the washing recovery rate (the following formula (1)) was 99.5%. Here, the washing recovery rate means the recovery rate of the function of the hollow fiber membrane (separation membrane) by washing with the chemical washing solution of the present invention.
[0020]
Table 1 shows the contents of the chemical washing solution, the value of the weight ratio of citric acid / detergent (Ultrazil 53), the washing recovery rate (%), the pH of the chemical washing solution and the PWP. Further, FIG. 2 shows the cleaning effect due to the difference in the mixing ratio between the 1 wt% citric acid solution and the 1 wt% ultrazyl 53 solution. In addition, the PWP of the hollow fiber membrane with reduced function before washing is 51 liter / m 2 · hr (kg / cm 2 ), and the PWP of the hollow fiber membrane before use is 440 liter / m 2 · hr (kg / cm 2). ). Further, the PWP reduction rate of the hollow fiber membrane after the filtration operation (that is, the PWP reduction rate before washing in the following formula (2)) was 11.6%. In addition, significant outflow of film deposits was observed by the above washing operation.
In addition, since the chemical washing solution of the present invention uses a mixed aqueous solution of citric acid and detergent in a specific ratio, the washing time of the hollow fiber membrane is about 8 hours, which conventionally required 3 days. Compared with this, the cleaning time can be greatly shortened and the efficiency can be greatly improved, and the reduction of the cleaning time can greatly reduce the cost of waste water treatment such as the amount of cleaning agent used and labor costs. It was.
[0021]
Next, as shown in Examples 2 to 3 and Comparative Examples 1 to 4 in Table 1, the contents and ratios of the chemical washing solutions were changed and measured in the same manner as in Example 1. The results are shown in Table 1. .
As shown in Table 1, it can be seen that Examples 1 to 3 in which citric acid and a cleaning agent (Ultrasil 53) are in a specific ratio have an extremely excellent cleaning recovery rate.
[0022]
[Expression 1]
[0023]
[Table 1]
[0024]
(Examples 4-6, Comparative Examples 5-8)
In place of Ultrazil 53 containing LAS as a cleaning agent, SDS was used, and a 1% by weight aqueous solution thereof was used to perform washing in the same manner as in Example 1 but changing the content ratio of citric acid relative to SDS. The results are shown in Table-2. Further, FIG. 3 shows the cleaning effect due to the difference in the mixing ratio between the 1 wt% citric acid solution and the 1 wt% SDS solution.
Also in this case, as shown in Table 2, it can be seen that Examples 4 to 6 having a specific ratio of citric acid and cleaning agent (SDS) have an excellent cleaning recovery rate.
[0025]
[Table 2]
[0026]
(Examples 7 to 9, Comparative Examples 9 to 10)
As a cleaning agent, Sunny Safe A (Daiichi Kogyo Seiyaku Co., Ltd., trade name) which is a detergent (neutral detergent) containing 6% by weight of sucrose fatty acid ester instead of Ultrazil 53 containing LAS in Example 1 The 1 wt% aqueous solution was used, and washing was carried out in the same manner as in Example 1 while changing the content ratio of citric acid to this detergent. The results are shown in Table-3.
In Comparative Example 10, in Example 3 of JP-A-54-58686, the cleaning recovery rate is low. Here, the concentration of the detergent (neutral detergent) in the mixed solution is 0.4% by weight, the concentration of citric acid is 0.02% by weight, and the value of the citric acid / detergent (neutral detergent) weight ratio is 0.00. 05, which is out of the range of 0.1 to 3 by weight according to the present invention. The cellulose acetate hollow fiber membrane used in the water purification system was washed in the same manner as in Example 1, but the washing recovery rate was 74.3%, which was extremely low. That is, the cleaning recovery rate is excellent only when the citric acid / cleaning agent weight ratio of the present invention is 0.1-3.
Also in this case, as shown in Table 3, it can be seen that Examples 7 to 9 having a specific ratio of citric acid and detergent (Sunny Safe A) have an extremely excellent cleaning recovery rate.
[0027]
[Table 3]
[0028]
【The invention's effect】
Since the chemical washing solution according to the present invention is a mixed aqueous solution containing citric acid and a detergent at a specific ratio, it can be easily made and has a stable and effective detergency. Further, the water treatment capacity (water treatment function) can be easily recovered without requiring special management of the separation membrane module and without damaging the material of the separation membrane. In addition, the cleaning operation is simple, and the cleaning time can be greatly shortened and the cleaning efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of a water purification system used for evaluation of the present invention.
FIG. 2 is a graph showing the pure water permeation rate (PWP) of the separation membrane according to the difference in the mixing ratio of the chemical washing solution of the present invention (corresponding to Table 1).
FIG. 3 is a graph showing a pure water permeation rate (PWP) of a separation membrane according to a difference in mixing ratio of another chemical washing solution (corresponding to Table 2) of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30931997A JP3905617B2 (en) | 1997-10-23 | 1997-10-23 | Separation membrane chemical wash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30931997A JP3905617B2 (en) | 1997-10-23 | 1997-10-23 | Separation membrane chemical wash |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006214313A Division JP2007000869A (en) | 2006-08-07 | 2006-08-07 | Method for chemical washing separation membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11128700A JPH11128700A (en) | 1999-05-18 |
JP3905617B2 true JP3905617B2 (en) | 2007-04-18 |
Family
ID=17991592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30931997A Expired - Lifetime JP3905617B2 (en) | 1997-10-23 | 1997-10-23 | Separation membrane chemical wash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3905617B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4841430B2 (en) * | 2004-05-13 | 2011-12-21 | メタウォーター株式会社 | Filtration membrane backwash method |
CN110871034B (en) * | 2018-08-30 | 2022-07-12 | 中国石油化工股份有限公司 | MBR plate-type membrane cleaning agent and cleaning method |
-
1997
- 1997-10-23 JP JP30931997A patent/JP3905617B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11128700A (en) | 1999-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7662289B2 (en) | Method of cleaning fouled or scaled membranes | |
BRPI0610175A2 (en) | membrane filtration of a product | |
US20080271758A1 (en) | Method of cleaning fouled and/or scaled membranes | |
CN100506361C (en) | Detergent for selectively permeable film and method of cleaning | |
CN102145258B (en) | Method for cleaning heavy oil sludge-polluted membrane module | |
JP3905617B2 (en) | Separation membrane chemical wash | |
JP4580589B2 (en) | Cleaning method of separation membrane | |
Deqian | Cleaning and regeneration of membranes | |
JP2007000869A (en) | Method for chemical washing separation membrane | |
JP3194679B2 (en) | Cleaning method for filtration membrane module | |
JP2016049483A (en) | Detergent for reverse osmosis membrane and cleaning method of reverse osmosis membrane | |
KR101649918B1 (en) | Method for cleaning membrane | |
JP4691970B2 (en) | Selective permeable membrane cleaning agent and cleaning method | |
JPS58119304A (en) | Treatment of osmotic membrane | |
JP2004130307A (en) | Method for filtration of hollow fiber membrane | |
JP2000300969A (en) | Cleaning method for separating membrane module | |
CN111589305A (en) | Sulfur scale removal DTRO membrane cleaning agent and preparation method and use method thereof | |
JP4156984B2 (en) | Cleaning method for separation membrane module | |
JPH09313901A (en) | Washing method for filter for water purification | |
JPH10118471A (en) | Cleaning of membrane module | |
CN115193265B (en) | Cleaning and recovering method for reverse osmosis membrane | |
JPH07136474A (en) | Washing of filter membrane module | |
JP3395274B2 (en) | Membrane separation device | |
JPH11114384A (en) | Cleaning method of hollow fiber membrane module | |
WO2019171956A1 (en) | Method for cleaning membrane separation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041007 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140119 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |