[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3905290B2 - Process for producing polyhydroxy compounds - Google Patents

Process for producing polyhydroxy compounds Download PDF

Info

Publication number
JP3905290B2
JP3905290B2 JP2000271668A JP2000271668A JP3905290B2 JP 3905290 B2 JP3905290 B2 JP 3905290B2 JP 2000271668 A JP2000271668 A JP 2000271668A JP 2000271668 A JP2000271668 A JP 2000271668A JP 3905290 B2 JP3905290 B2 JP 3905290B2
Authority
JP
Japan
Prior art keywords
group
epoxide
water
ether
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000271668A
Other languages
Japanese (ja)
Other versions
JP2002088000A (en
Inventor
宗尚 奥津
智人 木附
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000271668A priority Critical patent/JP3905290B2/en
Publication of JP2002088000A publication Critical patent/JP2002088000A/en
Application granted granted Critical
Publication of JP3905290B2 publication Critical patent/JP3905290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は簡便かつ効率的なポリヒドロキシ化合物の製造方法に関する。
【0002】
【従来の技術】
エポキシドを加水分解により開環して得られるポリヒドロキシ化合物は化粧品、化成品、農薬や医薬品等の分野で有用な化合物である。特にα-オレフィンエポキシド、グリシジルエーテル等の末端エポキシドを加水分解して得られる末端1,2-ジオール類は非イオン性界面活性剤としても有用であり、その用途は多岐にわたる。なかでもグリシジルエーテルを加水分解して得られるグリセリルエーテルは、乳化剤、分散剤、洗浄剤として極めて優れた性能を有している。
【0003】
これらのエポキシドは一般に水に対する溶解度が低いことから、効率よく加水分解させるため幾つかの方法が知られている。グリシジルエーテルの加水分解を例に挙げれば、
(1) 酸又はアルカリ触媒の存在下にグリシジルエーテルを加水分解する方法、
(2) グリシジルエーテルと水に相溶する溶媒中でテトラブチルアンモニウムブロミド等の相間移動触媒存在下に加水分解する方法、
(3) グリシジルエーテルとカルボニル化合物を反応させて1,3-ジオキソラン化合物とし、これを加水分解する方法、
(4) グリシジルエーテルと低級脂肪酸又は酸無水物を反応させてグリセリルエステルとし、これを加水分解する方法
等が知られている。
【0004】
しかしながら、例えば、(1)の方法ではグリシジルエーテルと水の不均一性のためグリシジルエーテル同士の重合等の副反応を避けがたく、また、(2)や(3)の方法では溶媒やカルボニル化合物の回収も考慮する必要があり、更に(4)の方法ではグリセリルエーテルによるグリシジルエーテルの開環を防ぐため低級脂肪酸又は酸無水物を過剰に用いる必要があり、反応後に多量の脂肪酸を処理しなければならない等の問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、必ずしも触媒や溶媒を必要とすることなく、エポキシドの加水分解により、ポリヒドロキシ化合物を効率良くかつ選択的に得ることを課題とする。
【0006】
【課題を解決するための手段】
本発明は、亜臨界状態の水でエポキシドを加水分解するポリヒドロキシ化合物の製造法を提供するものである。
【0007】
【発明の実施の形態】
本発明においてエポキシドの加水分解に用いる亜臨界状態の水(亜臨界水)とは、亜臨界条件下にある水をいい、ここでは、温度250〜350℃かつ圧力4〜16.5MPaの状態にある水をいう。このうち温度としては特に270〜330℃の範囲が好ましく、また圧力は6〜13MPaの範囲が好ましい。亜臨界状態の水は誘電率が大きく減少しているため、常温の水に対して水不溶性であるエポキシドも溶解しやすくなると考えられ、また反応性も上がるため、無触媒でも反応が進行するものと考えられる。ただし、亜臨界状態を超え超臨界状態(372℃,22MPa)となると、炭化水素鎖等の主鎖の分解まで起こるため好ましくない。
【0008】
本発明で用いるエポキシドとしては、置換オレフィンのエポキシ化物、多価アルコールのモノ、ジ、トリ、あるいはそれ以上のグリシジルエーテル化物、及び一般式(1)
【0009】
【化2】

Figure 0003905290
【0010】
〔式中、Rは水素原子の一部若しくは全部がフッ素原子で置換されていてもよい炭素数4〜20の直鎖若しくは分岐鎖のアルキル基又はそのアルキレンオキシド付加物を示し、Xはメチレン基又は酸素原子を示す。〕
で表されるα-オレフィンエポキシド又はグリシジルエーテルが挙げられ、特に一般式(1)で表される末端エポキシドが好ましい。
【0011】
多価アルコールのグリシジルエーテル化物としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ペンタンジオールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、ヘプタンジオールジグリシジルエーテル、オクタンジオールジグリシジルエーテル、ノナンジオールジグリシジルエーテル、デカンジオールジグリシジルエーテル、ウンデカンジオールジグリシジルエーテル、ドデカンジオールジグリシジルエーテル等のジオール類のジグリシジルエーテル化物や同様のモノグリシジルエーテル化物;グリセリン、エリスリトール等のモノ、ジ、トリ、あるいはそれ以上のグリシジルエーテル化物が挙げられる。末端エポキシドの一般式(1)中のRで示される炭素数4〜20の直鎖又は分岐鎖のアルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、2-エチルヘキシル基、3,5,5-トリメチルヘキシル基等、及びこれらのアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)付加物が挙げられる。当該アルキル基にフッ素原子が置換している場合のフッ素置換度及び置換位置は特に限定されず全て好ましく使用できるが、好ましい具体例としては、ノナフルオロヘキシル基、ヘキサフルオロヘキシル基、トリデカフルオロオクチル基、ヘプタデカフルオロオクチル基、ヘプタデカフルオロデシル等のパーフルオロアルキル基、及びこれらのアルキレンオキシド付加物が挙げられる。
【0012】
亜臨界状態の水でエポキシドを加水分解するには、前記の水の亜臨界条件下で、エポキシドと水の反応を行なえばよい。また水とエポキシドの仕込み比としては、水をエポキシドに対して2〜100モル倍用いるのが好ましく、5〜20モル倍用いるのがより好ましい。
【0013】
本反応は触媒を用いなくても進行するが、触媒として酸やアルカリを添加することも可能である。特に、エポキシドとしてグリシジルエーテルを用いる場合は、一般的に原料グリシジルエーテルに混入する可能性のある微量の塩化物の影響を避けるためにアルカリを添加してもよい。この場合のアルカリとしては水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が好ましく、またその添加量としては塩化物の塩素含有量に相当するモル量が好ましい。
【0014】
本反応は必ずしも溶媒を必要としないが、原料の性状、水への溶解度に応じて、溶媒を用いることもできる。この場合の溶媒としては、水との反応性の低いものを用いるのが好ましい。
【0015】
また本発明における反応形態はバッチ式でも連続式でもよい。
【0016】
以上のようにして得られたポリヒドロキシ化合物は、公知の分離精製手段、具体的には蒸留、洗浄、再結晶、カラムクロマトグラフィー等により単離精製することができる。
【0017】
【実施例】
実施例1
100mLオートクレーブにオクチルグリシジルエーテル15g(0.08mol)及び水30gを仕込み、あらかじめ加熱したスズ浴に浸漬させ300℃(理論圧力8.6MPa)に昇温し、そのまま3分間反応させた。反応後、約80℃まで急冷した。水層を除去後、少量の低級炭化水素成分を除き、更に20mLの水で洗浄して、13.5gのオクチルグリセリルエーテルを得た(収率83%)。GC分析の結果、原料のオクチルグリシジルエーテルはすべて消費されていた。また反応生成物のオクチルグリセリルエーテル純度は96%であり、生成したオクチルグリセリルエーテルがオクチルグリシジルエーテルと反応した副反応物を4%含有していた。
【0018】
比較例1
100mL四つ口フラスコにオクチルグリシジルエーテル15g(0.08mol)、水30g及び触媒としてp-トルエンスルホン酸0.5gを仕込み、100℃で6時間還流させた。反応後、80℃まで冷却した後、水層を除去し、更に20mLの水で洗浄した。GC分析の結果、原料のオクチルグリシジルエーテルは99%が消費されていた。また反応生成物のオクチルグリセリルエーテル純度は81%であり、生成したオクチルグリセリルエーテルがオクチルグリシジルエーテルと反応した副反応物を19%含有していた。
【0019】
実施例2
エポキシドとしてドデカン-1,2-エポキシドを用い、実施例1と同様に反応後、15gのドデカン-1,2-ジオールを得た(収率90%)。GC分析の結果、原料はすべて消費されていた。また反応生成物のドデカン-1,2-ジオールの純度は97%であり、生成したドデカン-1,2-ジオールがドデカン-1,2-エポキシドと反応した副反応物を3%含有していた。
【0020】
【発明の効果】
本発明によれば、触媒や溶媒を必要とすることなく、目的とする1,2-ジオール類等のポリヒドロキシ化合物が効率良く、また選択的に得られる。特にグリシジルエーテルの加水分解は極めて短時間で進行し、副反応も非常に少なく、効率よくグリセリルエーテルを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a simple and efficient method for producing a polyhydroxy compound.
[0002]
[Prior art]
Polyhydroxy compounds obtained by ring opening of epoxides by hydrolysis are useful compounds in the fields of cosmetics, chemicals, agricultural chemicals and pharmaceuticals. In particular, terminal 1,2-diols obtained by hydrolyzing terminal epoxides such as α-olefin epoxides and glycidyl ethers are useful as nonionic surfactants, and their uses are diverse. Among them, glyceryl ether obtained by hydrolyzing glycidyl ether has extremely excellent performance as an emulsifier, a dispersant, and a cleaning agent.
[0003]
Since these epoxides generally have low solubility in water, several methods are known for efficient hydrolysis. Taking hydrolysis of glycidyl ether as an example,
(1) A method of hydrolyzing glycidyl ether in the presence of an acid or alkali catalyst,
(2) A method of hydrolysis in the presence of a phase transfer catalyst such as tetrabutylammonium bromide in a solvent compatible with glycidyl ether and water,
(3) A method in which glycidyl ether and a carbonyl compound are reacted to form a 1,3-dioxolane compound, which is hydrolyzed.
(4) A method is known in which glycidyl ether is reacted with a lower fatty acid or acid anhydride to form glyceryl ester, which is hydrolyzed.
[0004]
However, for example, in the method (1), it is difficult to avoid side reactions such as polymerization between glycidyl ethers due to the heterogeneity of glycidyl ether and water, and in the methods (2) and (3), solvents and carbonyl compounds are difficult to avoid. In the method (4), it is necessary to use an excessive amount of lower fatty acid or acid anhydride to prevent ring opening of glycidyl ether by glyceryl ether, and a large amount of fatty acid must be treated after the reaction. There was a problem such as having to.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to efficiently and selectively obtain a polyhydroxy compound by hydrolysis of an epoxide without necessarily requiring a catalyst or a solvent.
[0006]
[Means for Solving the Problems]
This invention provides the manufacturing method of the polyhydroxy compound which hydrolyzes an epoxide with the water of a subcritical state.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, water in a subcritical state (subcritical water) used for hydrolysis of epoxide refers to water under subcritical conditions. Here, the temperature is 250 to 350 ° C. and the pressure is 4 to 16.5 MPa. Say water. Of these, the temperature is preferably in the range of 270 to 330 ° C., and the pressure is preferably in the range of 6 to 13 MPa. Water in a subcritical state has a greatly reduced dielectric constant, so water-insoluble epoxides are likely to dissolve in water at room temperature, and the reactivity also increases, so the reaction proceeds even without a catalyst. it is conceivable that. However, exceeding the subcritical state and becoming the supercritical state (372 ° C., 22 MPa) is not preferable because the main chain such as a hydrocarbon chain is decomposed.
[0008]
Epoxides used in the present invention include epoxidized substituted olefins, mono-, di-, tri- or higher glycidyl ethers of polyhydric alcohols, and general formula (1)
[0009]
[Chemical 2]
Figure 0003905290
[0010]
[In the formula, R represents a linear or branched alkyl group having 4 to 20 carbon atoms in which part or all of the hydrogen atoms may be substituted with fluorine atoms, or an alkylene oxide adduct thereof, and X represents a methylene group. Or an oxygen atom is shown. ]
The terminal epoxide represented by the general formula (1) is particularly preferable.
[0011]
Polyglycol glycidyl ether products include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, butanediol diglycidyl ether, pentanediol diglycidyl ether, hexanediol diglycidyl ether, heptanediol diglycidyl ether, octanediol diglycidyl ether Diglycidyl ethers and similar monoglycidyl ethers of diols such as ether, nonanediol diglycidyl ether, decanediol diglycidyl ether, undecanediol diglycidyl ether, dodecanediol diglycidyl ether; mono, diesters such as glycerol and erythritol , Tri- or more glycidyl etherified compounds. Examples of the linear or branched alkyl group having 4 to 20 carbon atoms represented by R in the general formula (1) of the terminal epoxide include butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group. Group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, 2-ethylhexyl group, 3,5,5-trimethylhexyl group, and the like And adducts of alkylene oxide (ethylene oxide, propylene oxide, etc.). When the alkyl group is substituted with a fluorine atom, the degree of fluorine substitution and the substitution position are not particularly limited and can be preferably used. Preferred examples include nonafluorohexyl group, hexafluorohexyl group, tridecafluorooctyl. Groups, perfluoroalkyl groups such as heptadecafluorooctyl group, heptadecafluorodecyl, and the like, and alkylene oxide adducts thereof.
[0012]
In order to hydrolyze the epoxide with the water in the subcritical state, the reaction of the epoxide with water may be performed under the above-mentioned subcritical condition of water. Moreover, as a preparation ratio of water and epoxide, it is preferable to use water 2-100 mol times with respect to epoxide, and it is more preferable to use 5-20 mol times.
[0013]
Although this reaction proceeds without using a catalyst, it is also possible to add an acid or alkali as a catalyst. In particular, when glycidyl ether is used as the epoxide, an alkali may be added to avoid the influence of a small amount of chloride that may generally be mixed into the raw material glycidyl ether. The alkali in this case is preferably an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, and the amount added is preferably a molar amount corresponding to the chlorine content of the chloride.
[0014]
This reaction does not necessarily require a solvent, but a solvent can also be used depending on the properties of the raw material and the solubility in water. In this case, it is preferable to use a solvent having low reactivity with water.
[0015]
Moreover, the reaction form in this invention may be a batch type or a continuous type.
[0016]
The polyhydroxy compound obtained as described above can be isolated and purified by known separation and purification means, specifically, distillation, washing, recrystallization, column chromatography and the like.
[0017]
【Example】
Example 1
A 100 mL autoclave was charged with 15 g (0.08 mol) of octyl glycidyl ether and 30 g of water, immersed in a preheated tin bath, heated to 300 ° C. (theoretical pressure 8.6 MPa), and allowed to react for 3 minutes. After the reaction, it was rapidly cooled to about 80 ° C. After removing the aqueous layer, a small amount of the lower hydrocarbon component was removed and further washed with 20 mL of water to obtain 13.5 g of octyl glyceryl ether (yield 83%). As a result of GC analysis, the raw material octyl glycidyl ether was all consumed. Further, the purity of the octyl glyceryl ether of the reaction product was 96%, and the produced octyl glyceryl ether contained 4% of a side reaction product obtained by reacting with octyl glycidyl ether.
[0018]
Comparative Example 1
A 100 mL four-necked flask was charged with 15 g (0.08 mol) of octyl glycidyl ether, 30 g of water and 0.5 g of p-toluenesulfonic acid as a catalyst, and refluxed at 100 ° C. for 6 hours. After the reaction, the mixture was cooled to 80 ° C., and then the aqueous layer was removed and further washed with 20 mL of water. As a result of GC analysis, 99% of the raw material octyl glycidyl ether was consumed. Further, the purity of the octyl glyceryl ether of the reaction product was 81%, and the produced octyl glyceryl ether contained 19% of a side reaction product obtained by reacting with octyl glycidyl ether.
[0019]
Example 2
Using dodecane-1,2-epoxide as an epoxide, 15 g of dodecane-1,2-diol was obtained after the reaction in the same manner as in Example 1 (yield 90%). As a result of GC analysis, all raw materials were consumed. Further, the purity of the reaction product dodecane-1,2-diol was 97%, and it contained 3% of a side reaction product in which the produced dodecane-1,2-diol reacted with dodecane-1,2-epoxide. .
[0020]
【The invention's effect】
According to the present invention, a target polyhydroxy compound such as 1,2-diols can be efficiently and selectively obtained without the need for a catalyst or a solvent. In particular, hydrolysis of glycidyl ether proceeds in a very short time, and there are very few side reactions, and glyceryl ether can be obtained efficiently.

Claims (4)

亜臨界状態の水でエポキシドを無触媒で加水分解するポリヒドロキシ化合物の製造法。A process for producing a polyhydroxy compound in which epoxide is hydrolyzed without catalyst in subcritical water. 亜臨界状態の温度が270℃〜330℃である請求項1記載のポリヒドロキシ化合物の製造法。  The process for producing a polyhydroxy compound according to claim 1, wherein the temperature in the subcritical state is 270C to 330C. エポキシドが一般式(1)
Figure 0003905290
〔式中、Rは水素原子の一部若しくは全部がフッ素原子で置換されていてもよい炭素数4〜20の直鎖若しくは分岐鎖のアルキル基又はそのアルキレンオキシド付加物を示し、Xはメチレン基又は酸素原子を示す。〕で表されるものである請求項1又は2記載のポリヒドロキシ化合物の製造法。
Epoxide is represented by the general formula (1)
Figure 0003905290
[In the formula, R represents a linear or branched alkyl group having 4 to 20 carbon atoms or an alkylene oxide adduct thereof, in which part or all of the hydrogen atoms may be substituted with fluorine atoms, and X represents a methylene group. Or an oxygen atom is shown. The process for producing a polyhydroxy compound according to claim 1 or 2, wherein
エポキシドがグリシジルエーテル(一般式(1)中のXが酸素原子)である請求項3記載のポリヒドロキシ化合物の製造法。  The method for producing a polyhydroxy compound according to claim 3, wherein the epoxide is glycidyl ether (X in the general formula (1) is an oxygen atom).
JP2000271668A 2000-09-07 2000-09-07 Process for producing polyhydroxy compounds Expired - Fee Related JP3905290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271668A JP3905290B2 (en) 2000-09-07 2000-09-07 Process for producing polyhydroxy compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271668A JP3905290B2 (en) 2000-09-07 2000-09-07 Process for producing polyhydroxy compounds

Publications (2)

Publication Number Publication Date
JP2002088000A JP2002088000A (en) 2002-03-27
JP3905290B2 true JP3905290B2 (en) 2007-04-18

Family

ID=18757919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271668A Expired - Fee Related JP3905290B2 (en) 2000-09-07 2000-09-07 Process for producing polyhydroxy compounds

Country Status (1)

Country Link
JP (1) JP3905290B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738169B2 (en) * 2005-12-28 2011-08-03 花王株式会社 Method for producing glyceryl ether
EP1880988B1 (en) 2005-04-01 2011-12-21 Kao Corporation Process for producing glyceryl ether
JP5406422B2 (en) * 2005-12-28 2014-02-05 花王株式会社 Method for producing reaction product
WO2009084452A1 (en) 2007-12-27 2009-07-09 Kao Corporation Method for producing methyl cellulose
KR101878433B1 (en) * 2018-01-23 2018-07-13 대달산업주식회사 Methods for preparing alkylglyceryl ethers

Also Published As

Publication number Publication date
JP2002088000A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
EP3303454B1 (en) Method for producing organosilicon compounds having amino acid groups
EP2374789A1 (en) Method for producing beta-alkoxypropionamide
US2314039A (en) Process for the production of epoxide ethers
JP3905290B2 (en) Process for producing polyhydroxy compounds
Kang et al. Improvement of the phase‐transfer catalysis method for synthesis of glycidyl ether
EP3680316B1 (en) A process for preparing a narrow range alcohol alkoxylate
AU2005288959B2 (en) Process for preparing an alkoxylated alcohol or phenol
JPS6339578B2 (en)
JP2008308424A (en) Polyglycerylether derivative
JPH01502435A (en) Nonionic surfactant consisting of epoxy pyrrolidone
EP0277894B1 (en) Process for the preparation of trialkoxybenzaldehyde
JPS59130231A (en) Manufacture of alcohol mixture
JPH01223123A (en) Production of terminal blocked polyglycol ether
JP6957465B2 (en) Nonionic surfactant
US20100168450A1 (en) Novel branched alkoxylates
JP2001114719A (en) Production of glycerylether
KR102016016B1 (en) anufacturing Method of High Purity 1,2-Octanediol
US20240059973A1 (en) Capped alkoxylated alcohols
NL7907558A (en) PROCESS FOR PREPARING AMINOPHENOL ETHER
JP3955223B2 (en) Method for producing glyceryl ether
US4317938A (en) Preparation of secondary alkanol alkoxylates
KR102109133B1 (en) Method for producing 1,2-alkanediol
JP4519241B2 (en) Epoxide production method
JP4750477B2 (en) Fluorine-containing ether compound and method for producing the same
OROMí-FARRúS et al. [BMIM][PF6] Promotes the synthesis of halohydrin esters from diols using potassium halides

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R151 Written notification of patent or utility model registration

Ref document number: 3905290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees