[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3902737B2 - Ammonia injection control method for denitration catalyst device of waste treatment facility - Google Patents

Ammonia injection control method for denitration catalyst device of waste treatment facility Download PDF

Info

Publication number
JP3902737B2
JP3902737B2 JP2001369281A JP2001369281A JP3902737B2 JP 3902737 B2 JP3902737 B2 JP 3902737B2 JP 2001369281 A JP2001369281 A JP 2001369281A JP 2001369281 A JP2001369281 A JP 2001369281A JP 3902737 B2 JP3902737 B2 JP 3902737B2
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
concentration
denitration catalyst
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001369281A
Other languages
Japanese (ja)
Other versions
JP2003164725A (en
Inventor
義広 小野
信宏 谷垣
淳志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2001369281A priority Critical patent/JP3902737B2/en
Publication of JP2003164725A publication Critical patent/JP2003164725A/en
Application granted granted Critical
Publication of JP3902737B2 publication Critical patent/JP3902737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物処理設備において、溶融炉や焼却炉などの廃棄物処理炉の排ガス処理設備における脱硝触媒装置のアンモニア吹き込み量制御方法に関する。
【0002】
【従来の技術】
都市ごみなどの廃棄物の処理として、焼却炉を用いた焼却処理、溶融炉を用いた溶融処理などが知られている。これらの廃棄物処理設備は、廃棄物処理炉から排出される排ガス中の有害物質を除去して無害化するために、排ガス処理設備を備えている。
【0003】
図5は従来の廃棄物溶融処理設備の排ガス処理の系統図で、廃棄物溶融炉1、燃焼室2、廃熱ボイラ3、排ガス温度調節器4、集じん器5、脱硝触媒装置6、煙突7が順次接続されている。廃棄物溶融炉1で発生した可燃性の排ガスは燃焼室2へ送って燃焼させ、燃焼により発生した排ガスは廃熱ボイラ3に送られて熱回収され、排ガス温度調節器4で排ガス温度を調整し、集じん器5に導入して集じんする。
【0004】
集じん器5から排出される排ガスは、触媒層が形成された脱硝触媒装置(以下「SCR」という。)に導入され、窒素酸化物(NO)がアンモニアによって還元分解され、煙突7から放出される排ガスのNO濃度を低減している。NOとアンモニア(NH)とは、
4NO+4NH+O→4N+6H
の反応式で反応するので、この反応式から最適なアンモニア吹き込み量を決定し、リークアンモニアを出さないようにし、かつNO濃度を規制値以下に抑えている。
【0005】
図4(a)は従来のSCRへのアンモニア吹き込みのフィードバック制御システムを示す図であり、(b)はフィードフォワード制御システムの例を示す図である。
【0006】
理想的なアンモニア吹き込み量の制御方法は、図4(b)のようなフィードフォワード制御であるが、NO測定器15をもう1台必要とすること、及びNO測定の時間遅れがあり、実際のNO濃度変化に十分追従できないこと等のために図4(a)に示すようなフィードバック制御がよく採用されている。
【0007】
図4(a)では、SCR11に吹き込むアンモニア吹き込み量は、SCR11の出口の排ガス流量を流量計12で測定するとともに、NO測定器13でNO濃度を測定して制御弁14によりアンモニア吹き込み量を制御する。
【0008】
図4(a)では、SCR11入口のNO濃度をある値として仮定し、これに排ガス流量をかけることで必要なアンモニア供給量を算出して吹き込む方法である。この際反応の過不足は出口NO濃度によってアンモニア吹込量の過不足の修正を行う。
【0009】
NO濃度(仮定値)×排ガス量=NH吹込量
図3(a)は従来のフィードバック制御の場合のSCR1の入口NO濃度と排ガス量との関係を示すグラフ、(b)はアンモニア吹き込み量と排ガス量との関係を示すグラフである。
【0010】
図4(a)に示すフィードバック制御の場合、図3(a)に示すように排ガス量に関係なくSCR入口NO濃度を一定に設定し、排ガス量とアンモニア吹き込み量との関係が図3(b)に示すように比例関係となるように、アンモニア吹き込み量を制御し、SCR11出口NO測定器13の測定結果にて過不足の調整を行っている。
【0011】
【発明が解決しようとする課題】
しかしながら、従来のフィードバック制御の場合、SCRの入口NO濃度を図3(a)に示すように実績値から一定値に設定し、また、図3(b)に示すように、SCRの入口NO濃度を一定に設定していることからアンモニアを排ガス量と比例関係で吹き込む制御を行っている。しかし、実際は、廃棄物の量及び質、排ガス量などによりNO濃度が変化しており、SCR入口のNO濃度の変動に対して適正量のアンモニア吹き込みが難しい。
【0012】
そのため、アンモニア過剰吹き込みによる脱硝触媒の機能が低下や、あるいは逆にアンモニア吹き込み量が不足によるSCR出口NO濃度が増加したりし、その結果として煙突NO濃度は、図2の煙突NO濃度と処理時間との関係を示すグラフの従来例に示すようにふれ幅が大きくなっている。
【0013】
そこで、本発明は、廃棄物処理炉の排ガス処理設備において、煙突NO濃度を安定して制御でき、リークアンモニア量を低減することができる、脱硝触媒装置におけるアンモニア吹き込み量制御方法を提供するものである。
【0014】
【課題を解決するための手段】
本発明は、廃棄物処理設備の廃棄物処理炉から排出される排ガスを処理する排ガス処理設備における脱硝触媒装置にアンモニアを吹き込んでNOxを分解する脱硝触媒装置のアンモニア吹き込み制御方法において、前記脱硝触媒装置の出側あるいは入側に設置した流量計により排ガス量を測定し、脱硝触媒装置入口のNO 濃度が排ガス量に比例するという関係から前記排ガス量に基づいて脱硝触媒装置の入口のNOx濃度を算出し、該NOx濃度の分解に必要なアンモニア吹込量脱硝触媒装置の入側から制御弁により制御して吹き込んで煙突出口のNOx濃度を制御することを特徴とする。
【0016】
【発明の実施の形態】
本発明者は、排ガス量とSCR入口NO濃度の関係及び排ガス量とアンモニア吹き込み量の関係について実験・検討した結果、排ガス量によってSCR入口NO濃度が変化することを知見した。
【0017】
すなわち、図1(a)の排ガス量とSCR入口NO濃度の関係のグラフに示されるように、排ガス量が増加するとSCR入口NO濃度も増加し、排ガス量とSCR入口NO濃度が比例関係にあることを知見した。これは、排ガス量の増減は燃焼負荷の増減と同義であることから、燃焼負荷の増加により燃焼室内部で高温部が多くなることでNO濃度が高くなり、逆に燃焼負荷が減少すると燃焼室内部で高温部が少なくなることから、NO濃度が低くなることになるものと考えられる。
【0018】
本発明は、SCR入口NO濃度が排ガス量に比例するという関係から排ガス量に基づいてSCR入口NO濃度を予測し、NO分解に必要なアンモニア吹き込み量を算出して煙突出口NO濃度を制御することが可能となる。
【0019】
本発明は、図4(a)に示すフィードバック制御システムと同様のシステム構成で実施することが可能であり、脱硝触媒装置を通過する排ガス量を脱硝触媒装置の出側に設けられた流量計で測定し、排ガス量により求められるSCR入口NOx濃度(図1(a))を求めNOx分解に必要なアンモニア吹き込み量(図1(b))を制御弁4により制御して脱硝触媒装置にアンモニアを吹き込んで煙突出口NOx濃度を制御する。その結果、図2の煙突NOx濃度と処理時間との関係を示すグラフの実施例に示すように、煙突出口NOx濃度のふれ幅を小さくし、安定した煙突NOx濃度に制御することができる。また、排ガス量により予測されたSCR入口NOx濃度に対してNOx分解に必要なアンモニアが吹き込まれるので、アンモニア過剰吹き込みによるリークアンモニアを低減させ、また、アンモニア過剰吹き込みによる脱硝触媒の機能低下の防止を図ることができる。
【0020】
また、フィードフォワード制御に必要であるSCR入口NO測定器を設置する必要もない。
【0021】
また、図4(a)に示すように、SCR出口にNO濃度測定器13を設け、SCR出口NO濃度の増減にあわせてNH供給量の補正を加えるフィードバック制御もかけてもよい。
【0022】
さらに、触媒が健全な状態であれば、SCR出口NO濃度+(アンモニア吹き込み量/排ガス量)=SCR入口NO濃度であることから、図1(a)の関係と随時更新することで、より精度の高いSCR入口NO濃度の予測も可能である。
【0023】
【発明の効果】
脱硝触媒入口NO計を設置することなく、入口NO濃度を予測することで適正量のアンモニア供給が可能になり、リークアンモニア量を減らし、かつ、煙突NO濃度を一定に制御することができる。
【図面の簡単な説明】
【図1】 (a)の排ガス量とSCR入口NO濃度の関係のグラフ、(b)は排ガス量とアンモニア吹き込み量の関係を示すグラフ
【図2】 煙突NO濃度と処理時間との関係を示すグラフ
【図3】 (a)は従来のフィードバック制御の場合のSCR1の入口NO濃度と排ガス量との関係を示すグラフ、(b)はNH吹込量と排ガス量との関係を示すグラフ
【図4】 (a)はSCRへのNH吹き込みのフィードバック制御システムを示す図であり、(b)はフィードフォワード制御システムの例を示す図
【図5】 従来の廃棄物溶融処理設備の排ガス処理の系統図。
【符号の説明】
1:廃棄物溶融炉 2:燃焼室 3:廃熱ボイラ 4:排ガス温度調節器 5:集じん器 6:脱硝触媒装置 7:煙突 11:SCR 12:流量計 13:NO濃度測定器 14:制御弁 15:NO濃度測定器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the amount of ammonia blown in a denitration catalyst device in an exhaust gas treatment facility of a waste treatment furnace such as a melting furnace or an incinerator in a waste treatment facility.
[0002]
[Prior art]
As treatment of waste such as municipal waste, incineration processing using an incinerator, melting processing using a melting furnace, and the like are known. These waste treatment facilities include an exhaust gas treatment facility in order to remove harmful substances in the exhaust gas discharged from the waste treatment furnace and make them harmless.
[0003]
FIG. 5 is a system diagram of exhaust gas treatment of a conventional waste melting treatment facility. Waste melting furnace 1, combustion chamber 2, waste heat boiler 3, exhaust gas temperature controller 4, dust collector 5, denitration catalyst device 6, chimney 7 are sequentially connected. The combustible exhaust gas generated in the waste melting furnace 1 is sent to the combustion chamber 2 for combustion, and the exhaust gas generated by the combustion is sent to the waste heat boiler 3 for heat recovery, and the exhaust gas temperature controller 4 adjusts the exhaust gas temperature. Then, it is introduced into the dust collector 5 and collected.
[0004]
The exhaust gas discharged from the dust collector 5 is introduced into a denitration catalyst device (hereinafter referred to as “SCR”) in which a catalyst layer is formed, and nitrogen oxides (NO X ) are reduced and decomposed by ammonia and released from the chimney 7. thereby reducing the concentration of NO X exhaust gas to be. NO X and ammonia (NH 3 )
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
Thus, the optimum ammonia blowing amount is determined from this reaction formula so as not to emit leaked ammonia, and the NO x concentration is kept below the regulation value.
[0005]
FIG. 4A is a diagram showing a conventional feedback control system for injecting ammonia into the SCR, and FIG. 4B is a diagram showing an example of a feedforward control system.
[0006]
The ideal method for controlling the ammonia injection amount is feedforward control as shown in FIG. 4B, but requires another NO X measuring device 15 and there is a time delay in NO X measurement. Feedback control as shown in FIG. 4 (a) is often adopted for such may not be sufficiently follow the actual of the nO X concentration change.
[0007]
In FIG. 4A, the amount of ammonia blown into the SCR 11 is determined by measuring the exhaust gas flow rate at the outlet of the SCR 11 with the flow meter 12, measuring the NO x concentration with the NO x measuring device 13, and feeding the ammonia with the control valve 14. To control.
[0008]
In FIG. 4 (a), assuming a value in the concentration of NO X inlet SCR11, this is a method of blowing calculates the ammonia supply amount required by applying the exhaust gas flow rate. Excess and deficiency of this time the reaction is carried out to correct the excess and deficiency of ammonia blowing amount by the outlet NO X concentration.
[0009]
NO X concentration (assumed value) × exhaust gas amount = NH 3 injection amount FIG. 3A is a graph showing the relationship between the SCR 1 inlet NO X concentration and the exhaust gas amount in the case of conventional feedback control, and FIG. 3B is ammonia injection. It is a graph which shows the relationship between quantity and waste gas quantity.
[0010]
For feedback control shown in FIG. 4 (a), FIG. 3 SCR inlet NO X concentration regardless the amount of exhaust gas as shown in (a) were set to a constant, FIG relationship between the exhaust gas amount and the ammonia blown amount 3 ( as it will be proportional as shown in b), to control the ammonia blown quantity is performed to adjust the excess and deficiency in the measurement results of SCR11 outlet NO X meter 13.
[0011]
[Problems to be solved by the invention]
However, in the case of the conventional feedback control, to set the inlet concentration of NO X SCR from actual values, as shown in FIG. 3 (a) to a constant value, and as shown in FIG. 3 (b), the inlet of the SCR NO Since the X concentration is set constant, control is performed to blow ammonia in proportion to the amount of exhaust gas. However, in practice, the amount and quality of waste due amount of exhaust gas and NO X concentration is changed, it is difficult blowing ammonia proper amount to variations in concentration of NO X SCR inlet.
[0012]
Therefore, ammonia excess blowing function of the denitration catalyst by the or increased SCR outlet NO X concentration by insufficient amount blown ammonia reduction and or reverse, chimney NO X concentration as a result of which, chimney concentration of NO X 2 As shown in the conventional example of the graph showing the relationship between the processing time and the processing time, the deflection width is large.
[0013]
Therefore, what the present invention is the exhaust gas treatment system of the waste treatment furnace, which can stably control the chimney NO X concentration, it is possible to reduce the leakage amount of ammonia, which provides ammonia blowing amount control method in the denitration catalyst device It is.
[0014]
[Means for Solving the Problems]
The present invention relates to an ammonia blowing control method of a denitration catalyst device for decomposing NOx by blowing ammonia into a denitration catalyst device in an exhaust gas treatment facility for treating exhaust gas discharged from a waste treatment furnace of a waste treatment facility. the exhaust gas amount determined by the exit side or flow meter installed on the entry side of the apparatus, NOx concentration at the inlet of the denitration catalyst device based on the amount of exhaust gas from the relationship of concentration of NO X denitration catalyst device inlet is proportional to the amount of exhaust gas Is calculated, and the amount of ammonia injection necessary for the decomposition of the NOx concentration is controlled by a control valve from the inlet side of the denitration catalyst device to control the NOx concentration at the smoke outlet.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor has exhaust gas amount and the SCR inlet concentration of NO X relationship, and the exhaust gas amount and the ammonia blown amount of results of experiments and study the relationship was found that the SCR inlet NO X concentration varies with the amount of exhaust gas.
[0017]
That is, as shown in graph of the exhaust gas amount and the SCR inlet concentration of NO X Figure 1 (a), SCR inlet NO X concentration when the amount of exhaust gas increases also increases, proportionally quantity of exhaust gas and the SCR inlet NO X concentration I found out that there is a relationship. This is a decrease of the quantity of exhaust gas from being synonymous with increase or decrease of the combustion load, NO X concentration to become many high-temperature portion in the combustion chamber by the increase of the combustion load is high, conversely combustion load decreases combustion since the high-temperature portion is reduced in the indoor unit, it is believed to be that the NO X concentration is low.
[0018]
The present invention, SCR inlet NO X concentration predicts the SCR inlet NO X concentration based on the amount of exhaust gas from the relationship that is proportional to the amount of exhaust gas, ammonia blowing amount calculated by the chimney outlet NO X concentration required in the NO X decomposition Can be controlled.
[0019]
The present invention can be implemented with a system configuration similar to the feedback control system shown in FIG. 4 (a), and is a flow meter provided on the outlet side of the denitration catalyst device for the amount of exhaust gas passing through the denitration catalyst device. Measure the SCR inlet NOx concentration (Fig. 1 (a)) determined by the exhaust gas amount, and control the ammonia injection amount (Fig. 1 (b)) required for NOx decomposition by the control valve 4 to supply ammonia to the denitration catalyst device. Blow in to control the NOx concentration at the smoke outlet. As a result, as shown in the embodiment of the graph showing the relationship between the chimney NOx concentration and the processing time in FIG. 2, the fluctuation width of the chimney outlet NOx concentration can be reduced and controlled to a stable chimney NOx concentration. In addition, ammonia required for NOx decomposition is injected into the SCR inlet NOx concentration predicted by the amount of exhaust gas, so that leakage of ammonia due to excessive ammonia injection is reduced, and deterioration of the function of the denitration catalyst due to excessive ammonia injection is prevented. Can be planned.
[0020]
Moreover, there is no need to install an SCR inlet NO X meter is required to feed-forward control.
[0021]
Further, as shown in FIG. 4A, a NO X concentration measuring device 13 may be provided at the SCR outlet, and feedback control for correcting the NH 3 supply amount in accordance with the increase or decrease of the SCR outlet NO X concentration may be applied.
[0022]
Further, if the catalyst is in a healthy state, SCR outlet NO X concentration + (ammonia blown amount / quantity of exhaust gas) = since SCR is the inlet NO X concentration, by relating the constantly updated in FIG. 1 (a), it is also possible more predictable high SCR inlet NO X concentration precision.
[0023]
【The invention's effect】
Without installing a denitration catalyst inlet NO X meter, it enables the proper amount of ammonia supplied to predict the inlet NO X concentration, reduce the leakage amount of ammonia, and, to control the chimney NO X concentration constant it can.
[Brief description of the drawings]
[1] the amount of exhaust gas and the SCR inlet NO X concentration graph of the (a), (b) the relationship between the graph Figure 2 chimney NO X concentration and the treatment time showing the relationship between the quantity of exhaust gas and ammonia blowing amount graph Figure 3 showing the (a) shows a graph, the relationship between (b) is NH 3 blow amount and the exhaust gas amount indicating the relationship between the inlet NO X concentration and the exhaust gas amount of SCR1 for a conventional feedback control Graph [FIG. 4] (a) is a diagram showing a feedback control system of NH 3 blowing into the SCR, (b) is a diagram showing an example of a feedforward control system [FIG. 5] of a conventional waste melting treatment facility System diagram of exhaust gas treatment.
[Explanation of symbols]
1: Waste melting furnace 2: Combustion chamber 3: Waste heat boiler 4: Exhaust gas temperature controller 5: Dust collector 6: Denitration catalyst device 7: Chimney 11: SCR 12: Flow meter 13: NO X concentration meter 14: Control valve 15: NO X concentration measuring device

Claims (1)

廃棄物処理設備の廃棄物処理炉から排出される排ガスを処理する排ガス処理設備における脱硝触媒装置にアンモニアを吹き込んでNOxを分解する脱硝触媒装置のアンモニア吹き込み制御方法において、
前記脱硝触媒装置の出側あるいは入側に設置した流量計により排ガス量を測定し、脱硝触媒装置入口のNO 濃度が排ガス量に比例するという関係から前記排ガス量に基づいて脱硝触媒装置の入口のNOx濃度を算出し、該NOx濃度の分解に必要なアンモニア吹込量脱硝触媒装置の入側から制御弁により制御して吹き込んで煙突出口のNOx濃度を制御することを特徴とする廃棄物処理設備の脱硝触媒装置のアンモニア吹き込み制御方法。
In the ammonia blowing control method of the denitration catalyst device for decomposing NOx by blowing ammonia into the denitration catalyst device in the exhaust gas treatment facility for treating the exhaust gas discharged from the waste treatment furnace of the waste treatment facility,
The measured amount of exhaust gas by the exit side or flow meter installed on the entry side of the denitration catalyst device, the inlet of the NO X concentration of the denitration catalyst device inlet based on the amount of exhaust gas from the relationship that is proportional to the amount of exhaust gas denitration catalyst device Waste treatment characterized in that NOx concentration of NOx concentration is calculated and the amount of ammonia injection required for decomposition of the NOx concentration is controlled by a control valve from the inlet side of the denitration catalyst device to control NOx concentration at the smoke outlet Ammonia injection control method for denitration catalyst equipment of equipment.
JP2001369281A 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility Expired - Lifetime JP3902737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369281A JP3902737B2 (en) 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369281A JP3902737B2 (en) 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility

Publications (2)

Publication Number Publication Date
JP2003164725A JP2003164725A (en) 2003-06-10
JP3902737B2 true JP3902737B2 (en) 2007-04-11

Family

ID=19178700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369281A Expired - Lifetime JP3902737B2 (en) 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility

Country Status (1)

Country Link
JP (1) JP3902737B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792696B2 (en) * 2003-12-15 2011-10-12 Jfeエンジニアリング株式会社 Denitration control method, denitration control device and program thereof
JP5677787B2 (en) * 2010-08-31 2015-02-25 新日鉄住金エンジニアリング株式会社 Denitration control device and denitration control method
JP5769614B2 (en) * 2011-12-26 2015-08-26 日立造船株式会社 Reducing agent supply method and reducing agent supply apparatus in incineration facility
JP6049809B2 (en) * 2015-06-22 2016-12-21 日立造船株式会社 Reducing agent supply method in incinerator
CN113304609A (en) * 2021-05-28 2021-08-27 上海明华电力科技有限公司 Balance control method for thermal power generating unit denitration system

Also Published As

Publication number Publication date
JP2003164725A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
US7712306B2 (en) Dynamic control of selective non-catalytic reduction system for semi-batch-fed stoker-based municipal solid waste combustion
US7824636B1 (en) Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
TWI450755B (en) Method of controlling the operation of a selective catalytic reduction plant
KR101669598B1 (en) Cascade control method using IDF outlet NOx analyzer for De-NOx process
JP5677787B2 (en) Denitration control device and denitration control method
JPH06205935A (en) Denitrification control device
CN105080315A (en) Flue gas denitrification system used for dry-process cement kiln
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
JP5276460B2 (en) Exhaust gas purification device
KR100294991B1 (en) Method and apparatus for controlling the amount of treated material administered to reduce the content of nitrogen oxides in the exhaust gases emitted from the combustion process
JP5838034B2 (en) Denitration control method and exhaust gas treatment facility
JP4690597B2 (en) Combustion type abatement system
JP4455349B2 (en) NOx treatment method and apparatus for waste treatment facility
JPH0633743A (en) Denitration control device
JP3831804B2 (en) Exhaust gas denitration equipment
JP2010127598A (en) Treated object combustion system and method of controlling concentration of nitrogen oxide in exhaust gas
JP2006064291A (en) Non-catalytic denitrification method and non-catalytic denitrification device for in-boiler gas
JP2010099603A (en) Method for treating exhaust gas and apparatus for treating exhaust gas
JP6458298B2 (en) Incineration equipment
JP6413034B1 (en) Combustion control method for an incinerator with a biogas combustion engine
JPS62276322A (en) Nitrogen oxide reducing device
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JP2000070676A (en) Highly efficient flue gas denitration system
JPH06272809A (en) Combustion device and combustion method
JP2019063765A (en) Exhaust gas treatment apparatus and exhaust gas treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070104

R150 Certificate of patent or registration of utility model

Ref document number: 3902737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term