JP3999701B2 - 分光分析装置 - Google Patents
分光分析装置 Download PDFInfo
- Publication number
- JP3999701B2 JP3999701B2 JP2003155635A JP2003155635A JP3999701B2 JP 3999701 B2 JP3999701 B2 JP 3999701B2 JP 2003155635 A JP2003155635 A JP 2003155635A JP 2003155635 A JP2003155635 A JP 2003155635A JP 3999701 B2 JP3999701 B2 JP 3999701B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- cross
- measurement
- scanning
- correlation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【発明の属する技術分野】
本発明は、生物試料内の蛍光分子の揺らぎを解析することにより、蛍光分子の状態を解析する蛍光相関分光分析法が用いられ、特に、異なる測定地点間で蛍光強度の相関を解析する分光分析装置に関するものである。
【0002】
【従来の技術】
蛍光相関分光分析法(FCS法)は、顕微鏡視野の微小観測領域内で蛍光分子のブラウン運動が作り出す光の揺らぎを解析することにより、蛍光強度の自已相関関数を求め、分子毎の拡散時間や平均分子数を解析する手法であり、例えば、非特許文献1に詳述されている。ここでは、蛍光強度をI(t)とすると、自已相関関数は、式1の形で表される。
【0003】
【数1】
【0004】
図13は、このようなFCS法による測定に用いられる光学系の一例を示している。この場合、励起光源としてレーザ光源100が用いられ、レーザ光源100からのレーザ光をダイクロイックミラー101で反射した後、対物レンズ102に入射する。対物レンズ102の焦点位置には蛍光色素で標識された試料103が置かれている。対物レンズ102により焦点部分に集光されたレーザ光は蛍光色素を励起し蛍光を誘起する。試料103の蛍光色素から発した蛍光は、再び対物レンズ102で補足されダイクロイックミラー101に達する。ここでのダイクロイックミラー101には、励起光は反射するが蛍光を透過する光学特性を有するものが用いられている。これにより試料103からの蛍光はダイクロイックミラー101を通過し、集光レンズ104を経て集光される。この集光レンズ104の焦点位置にはピンホール105が配置されており、対物レンズ102の焦点位置以外からの蛍光を遮断することにより高い空間分解能を与えている。ピンホール105を通過した蛍光は光検出器106に入射し、蛍光強度の揺らぎが計測される。
【0005】
また、図14は、2つの測定地点で同時に計測できるようにした光学系の例を示している。この場合も、励起光源としてレーザ光源200が用いられ、レーザ光源200からの励起光であるレーザ光は、ビームスプリッタ201で2つの光束に分割され互いに僅かに光軸が傾けられた後、それぞれミラー202、203を介して再びビームスプリッター204で合成される。合成光束はダイクロイックミラー205で反射した後、対物レンズ206に入り、試料207上の僅かに離れた2点で、それぞれ焦点を結ぶ。そして、試料207上のそれぞれの焦点領域から発した蛍光は、再び対物レンズ206で補足され、ダイクロイックミラー205を通過し、集光レンズ208を経て、それぞれ対応する2点で焦点を結ぶ。そして、この焦点位置からは、それぞれ光ファイバー209a、209bを経て光検出器210a、210bに入射し、それぞれの蛍光強度の揺らぎが計測される。この例ではピンホールは用いていないが光ファイバー209a、209bのコア径がピンホールとして機能している。
【0006】
一方、このような蛍光相関分光分析法(FCS法)を拡張した解析法として、蛍光相互相関分光分析法(FCCS法)が考えられている。この蛍光相互相関分光分析法(FCCS法)は、異なる蛍光信号間の相互相関関数を求めることにより、両者の関連性を解析する手法である。蛍光相互相関分光分析(FCCS法)は、同一の測定地点に於いて2色の蛍光色素間について関連性を求める場合や、2つの測定地点間において関連性を求める場合があるが、これらの相互相関関数は式2の形で表される。ここでIA(t)、IB(t)は、それぞれの蛍光強度信号を表している。
【0007】
【数2】
【0008】
同一の測定地点に於いて2色の蛍光色素間の相互相関分析は、非特許文献2に詳述されているが、2色の蛍光色素で標識した分子間の相互作用の解析等に用いられる。異なる地点間での相関を解析する方法は、非特許文献3に記載があり、流体の流れの速度と方向を測定する方法が紹介されている。
【0009】
これら蛍光相関分光分析法(FCS法)や蛍光相互相関分光分析法(FCCS法)は、測定が非侵襲に行える利点が注目され、近年では細胞系などの不均質な試料にも用いられるようになってきている。吸着等の特異現象が発生しやすい容器界面の近傍を避けると、溶液系では基本的に全ての場所が均一であるため、溶液中の1点を測定すれば系全体の様子を把握することができる。しかし、細胞のように不均質な系では、個々の場所で起っている事象が異なり、測定結果は測定場所に大きく依存する。また、このような系、特に細胞系では、異なる地点間の事象が互いに関連をもっており、ある地点のある事象が別の地点の別の事象を引き起すと言った時間的空問的な関連を持っている場合も多い。このような系を的確に把握しようとすると、異なる地点間で同時に測定を行うことが不可欠であり、近年研究者の間でこの要望が高まってきている。
【0010】
複数の測定地点間で同時に蛍光測定を行うため光学系としては、例えば、特許文献1に開示されているように、複数の励起光源と複数の検出器を用いる方法が提案されている。
【0011】
また別の方法としては、特許文献2に開示されているように一つの励起光源をビームスプリッターで分割し、この分割した励起光源を複数の測定点に供給する光学系を用いる方法が提案されている。
【0012】
【特許文献1】
米国特許第6320196号明細書
【0013】
【特許文献2】
特開平9−113448号公報
【0014】
【非特許文献1】
「蛍光相関分光法による1分子検出」金城著、蛋白質核酸酵素,1999,vo1.44NO9 1431-1438
【0015】
【非特許文献2】
Dua1-Co1or F1uorescence Cross-Corre1ation Spectroscopy for Mu1ticomponent Diffusiona1 Ana1ysis in So1ution,P.Schwi11e et a1,Biophysica1 Journa1 1997,72,1878-1886
【0016】
【非特許文献3】
"Two-Beam Cross-Corre1ation:Amethod To Characterize Transport Phenomena in Micrometer Sized Structures" M.Brinkmeier et a1.Ana1.Chem.1999,71,609-616
【0017】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示される方法では、励起光源と検出器を有する光学系を複数配置するため装置が複雑化するという欠点がある。また、検出器間の間隔により測定地点の距離が制限を受け、非常に近接した測定点を計測することは困難である。
【0018】
特許文献2に開示される方法では、検出器は測定地点毎に独立して用いるようにしているため、検出光学系の複雑化は避けられない。
【0019】
蛍光相関分光分析で用いられる光学系は、レーザと単光子計測が可能な超高感度の光検出器とを組合わせて用いられるが、一般にこれらの光学部品は非常に高価である。このため、これらの測定系を複数設置することは装置が極めて高価になるとともに、大型化するといういう問題を生じる。さらに、複数の測定地点を単一の細胞に設定する場合、測定点の間隔は非常に近接し、また、常に一定ではないく、測定対象の細胞によっても異なってくることがあり、従来の方法では、これらの要求への対応が困難であるという問題もあった。
【0020】
本発明は上記事情に鑑みてなされたもので、共通に設けられた光学系により複数の測定地点間の相互相関解析を行うことが可能で、小型で価格的にも安価な分光分析装置を提供することを目的とする。
【0021】
【課題を解決するための手段】
請求項1記載の発明は、光源と、前記光源からの光を試料上に集光させる集光手段と、前記光を前記試料上の少なくとも2つの測定地点で走査する光走査手段と、前記光により前記測定地点でそれぞれ発生する光強度を検出する光検出手段と、前記光走査手段による前記光の走査にともなう前記試料上での少なくとも2つの測定地点で検出された前記光検出手段からの光強度情報を時系列情報として取込むとともに、前記光走査手段の走査位置情報と関連づけて各測定地点の光強度情報を特定し、前記測定地点間の光強度情報の相互相関演算を行う相互相関演算手段とを具備したことを特徴としている。
【0022】
請求項2記載の発明は、請求項1記載の発明において、前記光走査手段は、2つの測定地点を繰返し走査し、前記相互相関演算手段は、前記2つの測定地点で検出された前記光検出手段からの光強度情報を時系列情報として取込むとともに、前記光走査手段の走査位置情報と関連づけて各測定地点の光強度情報を特定し、前記測定地点間の相互相関演算を行うことを特徴としている。
【0023】
請求項3記載の発明は、請求項1記載の発明において、前記光走査手段は、閉じたループ状で繰返し走査を行ない、前記相互相関演算手段は、前記ループの一周を複数の領域に分割し、これら分割した領域の少なくとも2つの領域内のそれぞれの測定地点で検出された前記光検出手段からの光強度情報を時系列情報として取込むとともに、前記光走査手段の走査位置情報と関連づけ各測定地点の光強度情報を特定し、前記領域間の相互相関演算を行うことを特徴としている。
【0024】
請求項4記載の発明は、請求項1乃至3のいずれかに記載の発明において、前記相互相関演算手段は、前記測定地点での前記光検出手段からの光強度情報を単一または複数の統計値に一旦変換し、これらの統計値を用いて相互相関演算を行うことを特徴としている。
【0025】
請求項5記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記光走査手段は、前記試料の画像取得の走査系を兼ねることを特徴とする請求項1乃至4のいずれかに記載の分光分析装置。
【0026】
請求項6記載の発明は、請求項1乃至5のいずれかに記載の発明において、光走査手段は、測定点の数に応じて走査パターンを変更することを特徴としている。
【0027】
この結果、本発明によれば、共通に設けられた光学系の光走査手段により複数の測定点の蛍光強度情報を測定できるので、これら測定点間における相互相関解析を簡単な構成で実現できる。
【0028】
また、本発明によれば、光走査手段を用いることにより、複数の測定点を近接して配置することが可能となり、細胞を対象とした測定に最適な効果を発揮できる。
【0029】
さらに、本発明によれば、光走査手段の走査をループ状で繰り返し行い、複数の領域間の相互相関関数を求めることで、各領域間の相互相関の対称性の比較、解析などを行なうことができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従い説明する。
【0031】
図1は、本発明が適用される分光分析装置の一実施の形態の概略構成を示すものである。図において、1は励起光源としてのレーザ光源で、このレーザ光源1からのレーザ光の光路には、ダイクロイックミラー2が配置されている。このダイクロイックミラー2には、励起光を反射し、励起光と比べ波長の長い蛍光を透過するような光学特性を有するものが用いられている。
【0032】
ダイクロイックミラー2の反射光路には、光走査手段としてのXYスキャナー3が配置されている。XYスキャナー3は、直交する2方向に光を偏向するための不図示の2枚のガルバノミラーを有し、これらのガルバノミラーによりダイクロイックミラー2で反射されるレーザ光を2次元方向に偏向するようになっている。つまり、XYスキャナー3は、入射光を任意の角度だけX軸、Y軸方向にそれぞれ偏向可能にしたもので、ここでは、後述する対物レンズ5の視野内をラスタースキャンすることもできるし、任意の一つまたは複数の測定点を順次走査したり停止させることもできるようになっている。
【0033】
このようなXYスキャナー3の各種の動きは、XYスキャナー駆動装置10により制御されるようになっている。
【0034】
XYスキャナー3の反射光路には、ミラー4を介して対物レンズ5が配置されている。対物レンズ5の焦点位置には、蛍光色素で標識された試料6が配置されている。
【0035】
一方、ダイクロイックミラー2の蛍光の透過光路には、ピンホール7を介して光検出手段としての光検出器8が配置されている。ピンホール7は、対物レンズ5の焦点位置以外からの蛍光を遮断して高い空間分解能を与えるためのものである。光検出器8は、ピンホール7を通過した蛍光の強度を検出するもので、ここでは、APD(アバランシェフォトダイオード)、PMT(フォトマルチプライア)などが用いられている。
【0036】
光検出器8には、相互相関演算手段としての相関解析装置9が接続されている。また、相関解析装置9には、XYスキャナー駆動装置10が接続されている。相関解析装置9は、光検出器8からの蛍光の強度信号とXYスキャナー駆動装置10からの試料6上の測定地点の位置情報とを対応づけて相関演算を実行し、各測定点の間の相互相関関数を求めるようになっている。
【0037】
相関解析装置9には、コンピュータ(PC)11が接続されている。PC11は、相関解析装置9での解析結果を処理し、モニタ表示などをするようになっている。
【0038】
このような構成において、まず、装置全体の動作を簡単に説明する。
【0039】
レーザ光源1より励起光としてのレーザ光が発せられると、レーザ光は、ダイクロイックミラー2で反射して、XYスキャナー3に入射する。XYスキャナー3で偏向されたレーザ光は、対物レンズ5により集光され、XYスキャナー3のXY偏向に対応した試料6上の位置に焦点を結ぶ。
【0040】
この状態で、試料6中の蛍光色素が励起され、蛍光を発する。蛍光色素から発した蛍光は、対物レンズ5で補足され、逆の光路を通りダイクロイックミラー2に導かれ、ダイクロイックミラー2を透過してピンホール7に入射される。
【0041】
ピンホール7では、対物レンズ5の焦点位置以外からの蛍光を遮断し、ピンホール7を通過した蛍光のみが光検出器8に入射する。
【0042】
光検出器8で光電変換された蛍光の強度信号は、相関解析装置9に入力される。相関解析装置9は、光検出器8からの蛍光の強度信号とXYスキャナー駆動装置10からの試料6上の測定点の位置情報とを対応づけた相関演算を実行し、測定点の間の相互相関関数を求める。
【0043】
次に、相関解析装置9での相互相関演算を説明する。ここでは、試料6上の2つの測定地点を繰返し走査して、それぞれの測定地点での蛍光強度を検出する場合について説明を行う。
【0044】
この場合、XYスキャナー3は、図2に示すように、一方の測定地点Aで一定時間(tw)、例えば1ms停止し、その後、次の測定地点Bに移動して、この測定地点Bで一定時間(tw)、例えば1ms停止し、その後、測定地点Aに戻るようになっており、このような動作を繰返し走査するようになっている。
【0045】
このときの時間と位置の関係を模式的に表したものが図3であり、時間tとともに、測定点が測定地点AとBを交互に移動しながら、それぞれの測定地点A、Bでの蛍光強度が測定される。このため、光検出器8から出力される信号は、図4に示すように測定地点Aで測定される蛍光強度信号ASと測定地点Bで測定される蛍光強度信号BSの他に、測定地点Aから測定地点Bに移動するまでの間の無効信号Cが混じったものになる。
【0046】
相関解析装置9には、これら測定地点Aの蛍光強度信号ASと測定地点Bの蛍光強度信号BSの他、無効信号Cが混入したものが入力信号とし与えられる。そして、蛍光強度信号AS、BSと測定地点A、Bの位置情報(XYスキャナー駆動装置10によるXYスキャナー3の測定地点A、Bでの位置情報)とを対応づけた相関演算を行うことにより、2点間相互相関関数を求めることになる。
【0047】
この場合、2点間相互相関関数を求める方法として、第1の方法を図5に従い説明する。
【0048】
この第1の方法では、測定地点Aの蛍光強度信号ASからτだけ時間が経過した所に測定地点Bからの蛍光強度信号BSが存在することから、この時間τを経過した範囲について、部分的に集積演算することによって2点間相互相関関数を求めるようにしている。この場合、測定地点A、Bでの測定時間をtw、測定地点Aから測定地点Bに移動するまでの無効信号Cを有する無効時間をtv、測定周期をtcで表すと、時間τの最小値は、無効時間tvで、測定地点Aの蛍光強度信号ASの最後データと測定地点Bの蛍光強度信号BSの最初データの間で得られる。それより大きな時間τの値は、2tw+tvまで、連続的に求まる(式3参照)。
【0049】
さらに、それより大きな時間τは、次に測定地点Bの蛍光強度信号BSが現れるまで存在しない。このようにして時間τは、不連続な形で得られるようになり、これを式3を含めて一般化すると式4で表される。
【0050】
【数3】
【0051】
さらに、式4の範囲の時間τであっても、測定地点Aの蛍光強度信号ASからτだけ時間が経過した所に測定点Bの蛍光強度信号BSが存在する組合せは全体の一部であるので、これを満たす組み合せの範囲のみを部分集積すれば、該当する時間τに対する相互相関値を求めることができる。この部分集積についての例を式5に表す。なお、式3〜式5は、図5に対応した場合の例であり、部分的な集積の演算は、必ずしも同じ形態を取るとは限らない。
【0052】
【数4】
【0053】
なお、測定地点Bから測定地点Aに向う方向の場合は、負のτ値とし表す。以上の方法は、時間τが無効時間tvより大きな範囲でしか求めることができないが、測定事象に比べて無効時間tvが十分に小さければ、事実上τ=0と見なすことができる。
【0054】
次に、2点間相互相関関数を求める第2の方法について説明する。この第2の方法では、測定地点A、Bにおいて、それぞれ時間tw内で取得される蛍光強度信号AS、BS(蛍光強度値)を単一または複数の統計値に一旦変換し、これらの統計値を用いて相関関数を演算するようにしている。この場合の統計値としては、図6に示すように各時間tw内で取得される各測定地点A、Bの蛍光強度信号AS、BSの平均値が用いられている。また、演算例としては、式6で表わされる。
【0055】
【数5】
ここでの時間τの最小値はtcとなり、以後、この整数倍で離散的に与えられる。
【0056】
このような第2の方法は、第1の方法に比べると最小のτ値が大きくなるが、tcが測定事象に比べ十分に小さい場合には、事実上τ=0と見なすことができる。また、この第2の方法は、集積演算数が少なく演算の高速化に適している。また、蛍光強度信号AS、BSを取得する時間twの間だけ、不図示のゲートを開けて、光検出器からの出力をカウントし、その値を直接相関演算に用いればよいため、装置の構成を簡単にできるという利点も有する。
【0057】
上述では、統計値として平均値を用いたが、平均値に限らない。例えば、蛍光強度の積分値またはフォトンカウントの総和を用いてもよい。さらに時間に対して重みづけをした平均を用いたり、あるいは、しきい値を越えた値のみ選別して使用するなどの統計処理を行なうことにより、S/N比を向上することが可能である。
【0058】
従って、このようにすれば、XYスキャナー3により複数の測定地点A、Bを交互に移動しながら、それぞれの測定地点A、Bでの蛍光強度信号AS、BSを光検出器8により測定し、これらの蛍光強度信号AS、BSをXYスキャナー3の測定地点A、Bでの位置情報と関連づけて測定地点A、B間の相互相関演算を行うようにしたので、共通に設けられた光学系、ここでは、一つの光学系により複数の測定点間に於ける相互相関解析を行うことができる。これにより、装置の構成の簡単化を実現でき、装置の小型化とともに、価格的にも安価な装置を実現できる。
【0059】
また、XYスキャナー3によるXY方向の走査により試料6上の測定点を設定しているので、複数の測定点を近接して配置することも可能となり、このことは、特に試料6として細胞を対象とした測定には、生きたまま迅速に結果が得られたり、走査長が所望の地点間距離に応じた長さに設定されるので、無駄なデータが最小限になって、解析の精度が向上するなど、生体分子の解析にとって最適な効果を発揮できる。
【0060】
なお、上述した実施の形態では、測定地点が2点(1次元)の場合について述べたが、測定地点の数は3点でも、またそれ以上の場合(2次元または3次元)であっても構わない。なお、測定地点が3点以上の場合には、全ての点を最短で通過し終える経路に設定するようにプログラムを設計するのが好ましい。
【0061】
また、上述した実施の形態では、各測定値点でXYスキャナー3の走査を一時停止して蛍光強度信号を測定するようにしたが、常に動かしながら(走査しながら)、蛍光強度信号を測定し、特定の位置に対してのみ相関演算を行なうようにしてもよい。
【0062】
さらに、XYスキャナー3の停止時にリンギングが大きいような場合は、目的位置に停止後、リンギングが収まってから蛍光強度信号を測定するようにしてもよい。
【0063】
(変形例1)
測定事象が高速のため走査によって生じるτの時間差が問題になる場合は、2つのXYスキャナーを用いるようにすればよい。
【0064】
図7は、このような他のXYスキャナーを用いた変形例の概略構成を示すもので、図1と同一部分には、同符号を付している。
【0065】
この場合、図1で述べた対物レンズ5および試料6を共通にして、その他の構成を2組用意し、第1の光学系21の第1のXYスキャナー22と、第2の光学系31の第2のXYスキャナー32を同期させて走査するようにしている。
【0066】
このようにすると、光学系は多少複雑になるが、第1のXYスキャナー22と第2のXYスキャナー32を同期して走査させ、例えば、図8に示すように第1のXYスキャナー22により測定地点AとCの間を繰返して1次元的に走査し、第2のXYスキャナー32により測定地点BとDの間を繰返して1次元的に走査することにより、τ=0の相互相関値を精度よく得ることができる。
【0067】
測定周期tcや測定時間twは、固定値ではなく可変値としてもよい。図9は、測定周期tcを時間とともにmaxからminまでの間で可変した場合の例を示している。このようにすれば、τ値の存在しない区問を減少させることも可能となる。
【0068】
(変形例2)
XYスキャナー3の走査を閉じたループ状で繰り返して行い、このループ一周を複数の領域に分割し、これら分割した領域間で相関演算を行ってもよい。図10(a)は、走査ループの形状が円形の場合で、このような円形のループの一周をA1、B1の2つの等しい領域に分け、これら領域A1、領域B1内で取得した蛍光強度信号間で相関演算を行うようにしている。この場合の時間と位置の関係を模式的に表したものが図11であり、領域A1とB1を交互に通過しながら、領域A1、B1内のそれぞれの測定地点での蛍光強度が測定される。なお、図11において、twは領域A1、B1での測定時間、tcは測定周期である。そして、領域A1、B1間の相互相関関数を求める方法としては、第2の方法を用いるとよいが、第1の方法でもよい。
【0069】
図10(b)は、円形のループ走査を、A1、B1、C1の3つの等しい領域に分割した例、同図(c)は、三角形のループ走査をA1、B1、C1の3つの等しい領域に分割した例である。このようにループ走査の形状は円形でも多角形でも構わない。また、走査パターンは、ループ以外にも一筆書きの軌跡を辿る形状でもよいし、2次元的走査でも、3次元的走査でもよい。
【0070】
勿論、分割数は、4以上でも構わない。各領域を均等に分割すると、環境の差がなければ、各領域間の相互相関関数は対称形となる。また、分割数、地点間距離、走査形状乃至パターンを多様に組み合わせてもよい。従って、相関解析のための地点間走査は、ランダムな走査ということができる。
【0071】
従って、このようにすれば、各領域間の相互相関の対称性を比較、解析することにより、例えば、試料6が細胞やマイクロフローセル等のような測定対象物質を溶液中に含んだ状態の生物学的試料である場合に、細胞やマイクロフローセル内部の対流、拡散、その他信号伝達の方向や速度に関する情報を得ることができる。
【0072】
(変形例3)
蛍光強度信号の測定系は、顕微鏡画像取得系と組合わせて用いると、その効果が大きく発揮できる。特に、光学系が類似であるため、共焦点レーザー走査型顕微鏡と組合わせると一層効果が大きい。例えば、画像取得の際は、サーボ系のラスタースキャンを網羅的に実行して、画像中の複数の測定点については上述したようなランダムな走査を行なうことにより、ラスタースキャンだけで実行する場合に比べて迅速である。このことは、相関解析における複数の測定点から効率よく多くの測定値を得ることかになるので、高精度の結果につながる。この場合、図1と同一部分には同符号を付した図12に示すように相関解析装置9の他に、画像取得用の画像処理装置12が設けられ、これら相関解析装置9および画像処理装置12に対し光検出器8からの蛍光強度信号を入力するようになる。そして、これら相関解析装置9および画像処理装置12での結果は、PC11に出力される。
【0073】
この場合、相関解析装置9および画像処理装置12に対し光検出器8を共通に用いているが、相関解析装置9には、アバランシェフォトダイオード、画像処理装置12には、光電子増倍管のように別々の光検出器を用いてもよい。
【0074】
その他、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。例えば、上述した実施の形態では、走査装置としてガルバノミラーを採用しているが、高速な走査装置であれば、光ファイバを振動させるなどの他の手段であってもよい。また、使用する蛍光色素は、単色でも多色でもよい。さらに測定する光強度は、上述した以外の光信号、例えば、電気化学発光、蛍光共鳴エネルギー転移などによる複数地点間の相互作用についての相関であってもよい。さらに、上述した実施の形態では、光源としてレーザ光源について述べたが、キセノンランプや水銀ランプなどを光源として用いることもできる。
【0075】
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
【0076】
【発明の効果】
以上述べたように本発明によれば、共通に設けられた光学系により複数の測定地点間の相互相関解析を行うことが可能で、小型で価格的にも安価な分光分析装置を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の概略構成を示す図。
【図2】第1の実施の形態の走査の様子を平面的な模式図で表した図。
【図3】第1の実施の形態の走査の時間と位置の関係を模式的に表した図。
【図4】第1の実施の形態の光検出器から出力される信号状態を示す図。
【図5】第1の実施の形態の2点間相互相関関数を求める第1の方法を説明する図。
【図6】第1の実施の形態の2点間相互相関関数を求める第2の方法を説明する図。
【図7】第1の実施の形態の変形例1の概略構成を示す図。
【図8】変形例1の走査の様子を平面的な模式図で表した図。
【図9】変形例1の測定周期を可変した場合の例を示す図。
【図10】第1の実施の形態の変形例2のXYスキャナー走査を閉じたループ状で行なう場合の例を示す図。
【図11】変形例2の光検出器から出力される信号状態を示す図。
【図12】第1の実施の形態の変形例3の概略構成を示す図。
【図13】従来のFCS法による測定に用いられる光学系の一例の概略構成を示す図。
【図14】従来のFCS法による測定に用いられる光学系の他例の概略構成を示す図。
【符号の説明】
1…レーザ光源
2…ダイクロイックミラー
3…XYスキャナー
4…ミラー
5…対物レンズ
6…試料
7…ピンホール
8…光検出器
9…相関解析装置
10…XYスキャナー駆動装置
11…PC
12…画像処理装置
21…第1の光学系
22…第1のXYスキャナー
31…第2の光学系
32…第2のXYスキャナー
Claims (6)
- 光源と、
前記光源からの光を試料上に集光させる集光手段と、
前記光を前記試料上の少なくとも2つの測定地点で走査する光走査手段と、
前記光により前記測定地点でそれぞれ発生する光強度を検出する光検出手段と、
前記光走査手段による前記光の走査にともなう前記試料上での少なくとも2つの測定地点で検出された前記光検出手段からの光強度情報を時系列情報として取込むとともに、前記光走査手段の走査位置情報と関連づけて各測定地点の光強度情報を特定し、前記測定地点間の光強度情報の相互相関演算を行う相互相関演算手段と
を具備したことを特徴とする分光分析装置。 - 前記光走査手段は、2つの測定地点を繰返し走査し、
前記相互相関演算手段は、前記2つの測定地点で検出された前記光検出手段からの光強度情報を時系列情報として取込むとともに、前記光走査手段の走査位置情報と関連づけて各測定地点の光強度情報を特定し、前記測定地点間の相互相関演算を行うことを特徴とする請求項1記載の分光分析装置。 - 前記光走査手段は、閉じたループ状で繰返し走査を行ない、
前記相互相関演算手段は、前記ループの一周を複数の領域に分割し、これら分割した領域の少なくとも2つの領域内のそれぞれの測定地点で検出された前記光検出手段からの光強度情報を時系列情報として取込むとともに、前記光走査手段の走査位置情報と関連づけ各測定地点の光強度情報を特定し、前記領域間の相互相関演算を行うことを特徴とする請求項1記載の分光分析装置。 - 前記相互相関演算手段は、前記測定地点での前記光検出手段からの光強度情報を単一または複数の統計値に一旦変換し、これらの統計値を用いて相互相関演算を行うことを特徴とする請求項1乃至3のいずれかに記載の分光分析装置。
- 前記光走査手段は、前記試料の画像取得の走査系を兼ねることを特徴とする請求項1乃至4のいずれかに記載の分光分析装置。
- 前記光走査手段は、測定点の数に応じて走査パターンを変更することを特徴とする請求項1乃至5のいずれかに記載の分光分析装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003155635A JP3999701B2 (ja) | 2003-05-30 | 2003-05-30 | 分光分析装置 |
EP04734949A EP1630546A4 (en) | 2003-05-30 | 2004-05-26 | SPECTROSCOPIC ANALYSIS APPARATUS |
PCT/JP2004/007553 WO2004106904A1 (ja) | 2003-05-30 | 2004-05-26 | 分光分析装置 |
US11/290,264 US7355701B2 (en) | 2003-05-30 | 2005-11-30 | Spectroscopy analysis apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003155635A JP3999701B2 (ja) | 2003-05-30 | 2003-05-30 | 分光分析装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004354348A JP2004354348A (ja) | 2004-12-16 |
JP3999701B2 true JP3999701B2 (ja) | 2007-10-31 |
Family
ID=33487368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003155635A Expired - Fee Related JP3999701B2 (ja) | 2003-05-30 | 2003-05-30 | 分光分析装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7355701B2 (ja) |
EP (1) | EP1630546A4 (ja) |
JP (1) | JP3999701B2 (ja) |
WO (1) | WO2004106904A1 (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9040305B2 (en) | 2004-09-28 | 2015-05-26 | Singulex, Inc. | Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry |
US8685711B2 (en) | 2004-09-28 | 2014-04-01 | Singulex, Inc. | Methods and compositions for highly sensitive detection of molecules |
US7473906B2 (en) * | 2005-04-28 | 2009-01-06 | Claudio Oliveira Egalon | Reversible, low cost, distributed optical fiber sensor with high spatial resolution |
US20060249652A1 (en) * | 2005-05-03 | 2006-11-09 | Kyle Schleifer | Methods and systems for pixilation processing of precision, high-speed scanning |
JP4740952B2 (ja) * | 2005-09-27 | 2011-08-03 | オリンパス株式会社 | 光信号解析装置および光信号解析方法 |
JP4830087B2 (ja) * | 2005-09-27 | 2011-12-07 | 国立大学法人北海道大学 | 光信号解析装置 |
DE602005016283D1 (de) * | 2005-12-01 | 2009-10-08 | Pergam Suisse Ag | Mobile Ferndetektion von Fluiden mittels Laser |
WO2008010120A2 (en) * | 2006-07-17 | 2008-01-24 | Koninklijke Philips Electronics N.V. | Employing beam scanning for optical detection |
EP1935987A1 (en) * | 2006-12-22 | 2008-06-25 | Rigler, Rudolf | Detection of gene expression in cells by scanning FCS |
DE102007033737A1 (de) * | 2007-07-18 | 2009-01-22 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zum Bestimmen eines Messwerts auf der Basis von Einzelmolekülereignissen |
AU2008352940B2 (en) * | 2007-12-19 | 2014-06-05 | Singulex, Inc. | Scanning analyzer for single molecule detection and methods of use |
US7952374B2 (en) * | 2008-06-02 | 2011-05-31 | Quantum Focus Instruments Corporation | Transient emission scanning microscopy |
US20110310384A1 (en) * | 2008-12-23 | 2011-12-22 | Irene Georgakoudi | Methods and system for confocal light scattering spectroscopic imaging |
US8463083B2 (en) | 2009-01-30 | 2013-06-11 | Claudio Oliveira Egalon | Side illuminated multi point multi parameter optical fiber sensor |
JP5466876B2 (ja) * | 2009-05-14 | 2014-04-09 | オリンパス株式会社 | 画像取得装置、画像取得装置の制御方法、及び顕微鏡システム |
JP5566055B2 (ja) * | 2009-07-10 | 2014-08-06 | オリンパス株式会社 | 画像解析方法および画像解析装置 |
JP5508808B2 (ja) * | 2009-10-15 | 2014-06-04 | オリンパス株式会社 | 画像解析方法および画像解析装置 |
JP2012008055A (ja) | 2010-06-25 | 2012-01-12 | Olympus Corp | 画像解析方法および画像解析装置 |
CN103189737B (zh) | 2010-10-29 | 2017-05-31 | 奥林巴斯株式会社 | 图像分析方法以及图像分析装置 |
EP2623956A4 (en) | 2010-10-29 | 2014-10-08 | Olympus Corp | IMAGE ANALYSIS METHOD AND IMAGE ANALYSIS DEVICE |
JP5885738B2 (ja) * | 2011-04-13 | 2016-03-15 | オリンパス株式会社 | 単一発光粒子検出を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム |
WO2014192257A1 (en) * | 2013-05-29 | 2014-12-04 | Canon Kabushiki Kaisha | Spectral microscopy device |
FR3010785B1 (fr) * | 2013-09-18 | 2015-08-21 | Snecma | Procede de controle de la densite d'energie d'un faisceau laser par analyse d'image et dispositif correspondant |
GB201317429D0 (en) * | 2013-10-02 | 2013-11-13 | Renishaw Plc | Spectroscopy apparatus and method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4872105A (en) * | 1987-03-09 | 1989-10-03 | Vectorvision Corporation | Curve following apparatus |
DE19533092A1 (de) | 1995-09-07 | 1997-03-13 | Basf Ag | Vorrichtung zur parallelisierten Zweiphotonen-Fluoreszenz-Korrelations-Spektroskopie (TPA-FCS) und deren Verwendung zum Wirkstoff-Screening |
EP0852716B1 (en) * | 1995-09-19 | 2005-11-30 | Cornell Research Foundation, Inc. | Multi-photon laser microscopy |
US6320196B1 (en) | 1999-01-28 | 2001-11-20 | Agilent Technologies, Inc. | Multichannel high dynamic range scanner |
JP2001194305A (ja) * | 2000-01-13 | 2001-07-19 | Bunshi Biophotonics Kenkyusho:Kk | 蛍光相関分光解析装置 |
DE10040988A1 (de) * | 2000-08-22 | 2002-03-21 | Evotec Biosystems Ag | Verfahren und Vorrichtung zum Messen chemischer und/oder biologischer Proben |
JP3984132B2 (ja) * | 2002-09-17 | 2007-10-03 | オリンパス株式会社 | 蛍光分光分析装置 |
DE10327531B4 (de) * | 2003-06-17 | 2006-11-30 | Leica Microsystems Cms Gmbh | Verfahren zur Messung von Fluoreszenzkorrelationen in Gegenwart von langsamen Signalschwankungen |
-
2003
- 2003-05-30 JP JP2003155635A patent/JP3999701B2/ja not_active Expired - Fee Related
-
2004
- 2004-05-26 WO PCT/JP2004/007553 patent/WO2004106904A1/ja active Application Filing
- 2004-05-26 EP EP04734949A patent/EP1630546A4/en not_active Withdrawn
-
2005
- 2005-11-30 US US11/290,264 patent/US7355701B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US7355701B2 (en) | 2008-04-08 |
EP1630546A4 (en) | 2012-01-11 |
JP2004354348A (ja) | 2004-12-16 |
US20060109461A1 (en) | 2006-05-25 |
WO2004106904A1 (ja) | 2004-12-09 |
EP1630546A1 (en) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3999701B2 (ja) | 分光分析装置 | |
US6603537B1 (en) | Optical architectures for microvolume laser-scanning cytometers | |
JP5904996B2 (ja) | 単一発光粒子検出を用いた光分析装置、光分析方法並びに光分析用コンピュータプログラム | |
US8921809B2 (en) | Device for microscopy having selective illumination of a plane | |
EP2615445B1 (en) | Method of measuring a diffusion characteristic value of a particle | |
JP5914341B2 (ja) | 単一発光粒子検出を用いた光分析方法 | |
US20080085550A1 (en) | Apparatus and method for tracking a molecule or particle in three dimensions | |
US7196339B2 (en) | Light-receiving unit and measuring apparatus including the same | |
JP2014507662A (ja) | ラインスキャン血球計算システムおよび方法 | |
US8633432B2 (en) | Reflective focusing and transmissive projection device | |
CN108700520B (zh) | 用于高吞吐量成像的方法和设备 | |
CN107209110B (zh) | 高吞吐量生化筛查 | |
US8964183B2 (en) | Systems and methods for screening of biological samples | |
EP1674852A1 (en) | Time-multiplexed scanning light source for multi-probe, multi-laser fluorescence detection systems | |
JP3984132B2 (ja) | 蛍光分光分析装置 | |
US9103718B2 (en) | Optical analysis device and optical analysis method using a wavelength characteristic of light of a single light-emitting particle | |
JP2004361087A (ja) | 生体分子解析装置 | |
US20230221178A1 (en) | Apparatus and a method for fluorescence imaging | |
JP2004354345A (ja) | 生体分子解析装置 | |
JP2006275964A (ja) | 走査型蛍光顕微鏡のシェーディング補正方法 | |
JP2004354346A (ja) | 測定装置 | |
KR101188233B1 (ko) | 바이오칩을 위한 진단장치 | |
JP2011179912A (ja) | 試料評価方法および試料評価装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070809 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |