JP3998530B2 - 排水処理方法及び排水処理装置 - Google Patents
排水処理方法及び排水処理装置 Download PDFInfo
- Publication number
- JP3998530B2 JP3998530B2 JP2002219443A JP2002219443A JP3998530B2 JP 3998530 B2 JP3998530 B2 JP 3998530B2 JP 2002219443 A JP2002219443 A JP 2002219443A JP 2002219443 A JP2002219443 A JP 2002219443A JP 3998530 B2 JP3998530 B2 JP 3998530B2
- Authority
- JP
- Japan
- Prior art keywords
- treated
- water
- treatment
- iron
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Removal Of Specific Substances (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【発明の属する技術分野】
本発明は、リン酸やリン化合物及びリン酸イオンや有機態窒素、亜硝酸態窒素、硝酸態窒素、アンモニア態窒素等の窒素化合物を含む排水処理方法及び排水処理装置に関するものである。
【0002】
【従来の技術】
従来より、川や湖の富栄養化の原因の1つに窒素化合物及びリン化合物の存在があることは周知である。また、このリン化合物や窒素化合物は、一般家庭の生活排水中や工場排水中に多く存在するが、浄化処理が困難なものであり、有効な対策がとれないのが現状である。一般に、窒素化合物の処理には、生物的処理が行われており、先ずアンモニア態窒素を硝酸態窒素に変換する硝化工程と、硝酸態窒素を窒素ガスに変換する脱窒工程の2つの工程により行われている。
【0003】
他方、リン化合物の処理方法については、リンは窒素の如く気体として大気中に放散させることができないため、生物的処理又は物理化学的にリンを不溶性の固体として処理していた。リン化合物を不溶性の固定として処理する方法としては、凝集剤や吸着剤を添加することによりリン化合物を凝集沈殿させる方法が行われている。凝集剤としては塩化第二鉄や石灰などが用いられているが、これらの凝集剤を用いる場合には、常に凝集剤の補充が必要となり、煩雑なメンテナンス作業を回避することができないと云う問題があった。
【0004】
そこで、溶液中に鉄電極を浸漬し、当該鉄電極により電気分解を行い溶液中に鉄イオンを生成させ、かかる溶液中にリン化合物としてのリン酸イオンを含有する排水としての被処理水を添加し、鉄イオンとリン酸イオンを凝集沈殿させ、リン化合物の処理を行う方法がある。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の生物的処理の窒素化合物及びリン化合物の処理装置では、特にリン化合物を処理するために、別槽において鉄電極による電気分解を行い鉄イオンを発生させる必要があったため、装置が複雑化すると共に、鉄イオンの供給に際し電気エネルギーを加える必要があった。
【0006】
また、該生物的処理では、硝化菌及び脱窒素細菌を保有するために、大容量の好気槽及び嫌気槽が必要となり、設備建設コストの高騰、装置設置面積の増大を招く問題があった。更に、該脱窒素細菌は、周囲の温度環境、その他、被処理水中に含まれる成分などにより、著しく影響されるため、特に、温度が低くなる冬場になると、活動が低下し、脱窒素作用が低下し、処理効率が不安定となる問題があった。
【0007】
そこで、本発明は従来の技術的課題を解決するために成されたものであり、簡易な装置にて窒素化合物及びリン化合物の処理を行うと共に、効率的に窒素化合物及びリン化合物を含む被処理水の処理を行うことができる排水処理方法及び排水処理装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
即ち、請求項1の発明の排水処理方法は、被処理水中の窒素化合物及びリン化合物を処理するにあたり、処理槽に貯留した被処理水中に一対の電極を少なくとも一部浸漬し、アノードを構成する一方の電極の材料を、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として当該被処理水を電気化学的手法により処理する第1の処理ステップと、該第1の処理ステップの終了後、処理槽内の被処理水を、鉄を備えた沈殿槽に注入し、当該被処理水中に鉄を浸漬させることで被処理水中のリン化合物を処理する第2の処理ステップとを含むことを特徴とする。
【0009】
請求項2の発明の排水処理方法は、上記発明において、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料若しくはカーボンを用いると共に、カソードを構成する他方の電極の材料は、周期表の第Ib族または第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いることを特徴とする。
【0010】
請求項3の発明の排水処理方法は、上記各発明において、沈殿槽には、第2の処理ステップで処理された被処理水を貯留しておき、当該貯留された被処理水中に、第1の処理ステップで処理された処理槽内の被処理水を注入することを特徴とする。
【0011】
請求項4の発明の排水処理装置は、被処理水中の窒素化合物及びリン化合物を処理するものであって、被処理水を貯留する処理槽と、処理槽内の被処理水に少なくとも一部が浸漬され、電気化学的手法により当該被処理水を処理するための一対の電極と、鉄を備え、処理槽において電気化学的手法により処理された後の被処理水が注入される沈殿槽とを備え、アノードを構成する一方の電極の材料を、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体とすると共に、鉄は、沈殿槽に注入された被処理水中に浸漬されることを特徴とする。
【0012】
請求項5の発明の排水処理装置は、上記発明において、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料若しくはカーボンを用いると共に、カソードを構成する他方の電極の材料は、周期表の第Ib族または第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いることを特徴とする。
【0013】
請求項1又は請求項4の発明によれば、被処理水中の窒素化合物及びリン化合物を処理するにあたり、処理槽に貯留した被処理水中に一対の電極を少なくとも一部浸漬し、アノードを構成する一方の電極の材料を、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として当該被処理水を電気化学的手法により処理する第1の処理ステップと、該第1の処理ステップの終了後、処理槽内の被処理水を、鉄を備えた沈殿槽に注入し、被処理水中に鉄を浸漬させることで被処理水中のリン化合物を処理する第2の処理ステップとを含むので、第1の処理ステップとして、電気化学的手法により被処理水を処理することにより、カソードを構成する電極において被処理水中の硝酸態窒素の亜硝酸態窒素及びアンモニアへの還元反応が促進され、還元反応に要する時間を短縮し、且つ、低濃度の硝酸イオンも処理することができるようになる。
【0014】
また、アノードを構成する一方の電極は、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体により構成されていることから、第1の処理ステップにおいて、被処理水中に次亜ハロゲン酸を発生させることができる。これにより、カソードを構成する電極において生じるアンモニアが、アノードを構成する一方の電極で生じる次亜ハロゲン酸と脱窒反応をすることになるので、相乗効果によって、硝酸態窒素、アンモニア態窒素及び窒素化合物などの窒素成分を効率的に除去することができるようになる。これによって、一般家庭や工場等から排出される窒素化合物を含む被処理水から効率的に窒素化合物を除去することができるようになり、窒素化合物の処理能力が向上される。
【0015】
更に、第2の処理ステップとして第1の処理ステップにおいて処理された処理槽内の被処理水を、鉄を備えた沈殿槽に注入し、当該被処理水中に鉄を浸漬させることで、鉄から被処理水中に溶出された鉄(II)イオンが、第1の処理ステップにおいて生成された次亜ハロゲン酸と反応することにより、鉄(III)イオンを生成し、当該鉄(III)イオンが被処理水中のリン化合物としてのリン酸イオンと凝集沈殿し、リン化合物の処理を容易とすることができる。
【0016】
特に、被処理水中の次亜ハロゲン酸と反応することにより鉄(II)イオンから鉄(III)イオンに変換され、該鉄(III)イオンが水酸化鉄のフロックを生成し、これにより、生成された水酸化鉄のフロックが微細なリン酸鉄を吸着することができ、沈降分離性が向上される。そのため、処理効率もより一層向上される。
【0017】
また、請求項3の如く沈殿槽には、第2の処理ステップで処理された被処理水を貯留しておき、当該貯留された被処理水中に、第1の処理ステップで処理された処理槽内の被処理水を注入することにより、第1の処理ステップにおける脱窒処理と第2の処理ステップにおける脱リン処理を同時に行うことができるようになる。これにより、より一層、被処理水中の脱窒処理及び脱リン処理を効率的に行うことができるようになる。
【0018】
請求項2又は請求項5の発明の発明によれば、上記第1の処理ステップにおいて、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料若しくはカーボンを用いると共に、カソードを構成する他方の電極の材料は、周期表の第Ib族または第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いるので、被処理水中の硝酸態窒素と亜硝酸態窒素のアンモニアへの還元反応をより一層促進させることができ、還元反応に要する時間を更に短縮することができるようになる。
【0019】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を詳述する。図1は本発明の窒素及びリン処理方法を実現するための排水処理装置1の概要を示す説明図である。本実施例における排水処理装置1によって処理される被処理水は、例えば化学肥料や家畜の排泄物により水溶性の硝酸塩、即ち、硝酸態窒素が土壌中に浸透し、当該硝酸態窒素により汚染された地下水、若しくは、工業排水又は家庭用排水であるものとする。尚、本実施例における被処理水は、少なくともハロゲン化物イオンとして塩化物イオンが含有されているものとする。
【0020】
排水処理装置1は、上記被処理水を貯留するための貯留槽10と、前記被処理水中の窒素化合物を電気化学的手法により処理する窒素処理装置11と、前記被処理水中のリン化合物を処理する沈殿槽12とにより構成されている。
【0021】
貯留槽10には、被処理水を窒素処理装置11(詳細は後述する処理槽2)に搬送するための配管13が搬送手段としてのポンプ15と、供給手段としての供給電磁弁14を介して接続されている。これにより、当該貯留槽10内の被処理水が窒素処理装置11に搬送可能とされる。
【0022】
前記窒素処理装置11を構成する処理槽2には、窒素処理した後の被処理水を沈殿槽12に搬送するための配管23が搬送手段としてのポンプ20と、供給手段としての供給電磁弁19を介して接続されている。
【0023】
尚、配管13であって供給電磁弁14の上流側、及び配管23であって供給電磁弁19の上流側にはそれぞれポンプ15、20が設けられているが、場合によっては設けられていなくてもよいものとする。
【0024】
また、沈殿槽12には、窒素・リン処理した後の被処理水を外部に排出するための排出電磁弁16を介して配管17が接続されている。
【0025】
尚、各電磁弁14、19、16及び各ポンプ15、20は、図示しない制御装置としてのマイクロコンピュータに接続されており、被処理水の処理段階に応じて制御されるものとする。
【0026】
次に、図2を参照して窒素処理装置11について説明する。本実施例における窒素処理装置11は、電気化学的手法(電解)により被処理水の脱窒処理を行うものであり、内部に配管14を介して貯留槽10より供給された被処理水を流入させる図示しない流入口と、配管23を介して沈殿槽12に被処理水を流出される流出口29(図1のみ図示する。)を有する処理室4を構成する処理槽2と、該処理室4内の被処理水中に少なくとも一部が浸漬するように対向して配置される一対の電極、即ち、アノード5と、カソード6と、該電極5、6に通電するための電源7とから構成されている。尚、電源7は、上記マイクロコンピュータに接続されており、該マイクロコンピュータにより制御されている。また、図2において8は、処理槽2内を撹拌するための撹拌手段としての撹拌子である。
【0027】
前記カソード6は、周期表の第Ib族又は第IIb族を含む導電体、若しくは、同族を導電体に被覆したものとして、例えば、亜鉛、銅、銀、亜鉛と銅の合金である真鍮により構成されており、前記アノード5は、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料、例えば白金、イリジウム、パラジウム又はその酸化物などから構成される不溶性電極又はカーボンより構成されている。
【0028】
また、図2に示す如くアノード5とカソード6との間に位置して、アノード5を囲繞するように、円筒状に形成された遮蔽部材9が設けられている。該遮蔽部材9は、例えばガラス繊維やプラスチックのメッシュなどの非導電性部材にて構成されており、これにより、アノード5から発生する酸素気泡が、カソード6側に通過することを阻止することができる。このとき、アノード5側に存するイオンは、該遮蔽部材9を通過してカソード6側に移動することができる。また、遮蔽部材9は、汚泥の流水により生じる撹拌又は、前記撹拌子8による撹拌によりアノードに流水の影響を与えない構成とされている。
【0029】
次に、沈殿槽12について説明する。本実施例における沈殿槽12は、内部に仕切壁24が設けられており、前記配管17が接続される排水室25と、前記窒素処理装置11からの被処理水を供給する配管23が接続される沈殿室26とに区画されている。尚、この仕切壁24には、図示しない排水口が設けられているものとする。またこれ以外に、当該仕切壁24の高さが制御装置としてのマイクロコンピュータにより自在に変更可能としてもよいものとする。何れにしても、沈殿室26内に詳細は後述する如く沈殿物と上澄み液とに分離された際に、上澄み液のみを排水室26に溢水させることができる構成であればよいものとする。
【0030】
そして、沈殿室26内には、鉄材料としての例えば鉄板27が設けられており、沈殿室26内に被処理水が供給される以前には、少なくとも、水道水などの水などが貯留されており、係る水に鉄板27が浸漬されているものとする。尚、被処理水が貯留された際には、当該被処理水中に鉄板27が浸漬されるものとする。
【0031】
これにより、前記水若しくは被処理水中には、鉄板27より時間の経過と共に鉄(II)イオンが溶出されるものとする(反応A)。尚、本実施例では、鉄(II)イオンの溶出を行う手段として鉄板27を浸漬しているが、これ以外の形状の鉄材料を水若しくは被処理水中に浸漬し、鉄(II)イオンの溶出を行ってもよいものとする。以下に、反応Aを示す。
反応A Fe+2H2O→Fe2++H2↑+2OH-
【0032】
以上の構成により、本実施例の排水処理装置1の第1の処理ステップとしての窒素処理について説明する。まず、貯留槽10内に予め貯留された被処理水を配管13を介して窒素処理装置11の処理槽2内に注入する。このとき、供給電磁弁14、19はそれぞれ前記マイクロコンピュータにより開閉制御され、処理槽2内に所定量の被処理水が貯留されるものとする。
【0033】
そして、前記マイクロコンピュータにより電源7をONとし、カソード6及びアノード5に通電することにより、処理槽2内に供給された被処理水は、電解処理される。カソード6側では、被処理水中に含まれる硝酸イオンは、還元反応により亜硝酸イオンに変換される(反応B)。また、硝酸イオンの還元反応により生成された亜硝酸イオンは、更に、還元反応により、アンモニアに変換される(反応C)。以下に、反応B及び反応Cを示す。
反応B NO3 -+H2O+2e-→NO2 -+2OH-
反応C NO2 -+5H2O+6e-→NH3(aq)+7OH-
【0034】
一方、アノード5側では、上述の如く被処理水中に少なくともハロゲン化物イオンとして塩化物イオンが存在することから、当該塩化物イオンが電子を放出して塩素を生成する(反応E)。そして、この塩素は水に溶解して次亜ハロゲン酸としての次亜塩素酸を生成する(反応F)。そして、生成された次亜塩素酸は、上述の反応Bで被処理水中に生成されたアンモニア(アンモニウムイオン)と反応し、複数の化学変化を経た後、窒素ガスに変換される(反応G)。以下に反応E乃至反応Gを示す。このとき、同時にオゾン、若しくは活性酸素も生成される。
【0035】
尚、ここで、被処理水中に含有される塩化物イオンが所定の濃度、例えば100mg/lに満たない場合には、図示しない塩化物イオン調整手段により、格別に塩化物イオンとして例えば塩化カリウム又は塩化ナトリウムを被処理水中に添加する。これにより、被処理水は、電解により、より一層次亜塩素酸を発生し易い状態となり、効率的に被処理水中のアンモニアの脱窒処理を行うことができるようになる。
【0036】
また、本発明では、当該第1の処理ステップにおいて、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料若しくはカーボンを用いると共に、カソードを構成する他方の電極の材料は、周期表の第Ib族または第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いるので、被処理水中の硝酸態窒素と亜硝酸態窒素のアンモニアへの還元反応をより一層促進させることができ、還元反応に要する時間を更に短縮することができるようになる。
【0037】
また、本実施例によれば、従来の如く被処理水中にメタノールなどの格別な添加剤を用いることなく、被処理水中に含有される硝酸態窒素などの窒素化合物を効率的に除去することができるため、メンテナンス作業性を向上させることができる。
【0038】
更に、従来のように生物的処理により硝酸態窒素などの窒素化合物の処理を行わないため、細菌等の温度管理を不要とすることができると共に、排水処理装置自体を小型化することができ、コストの削減を図ることができるようになる。
【0039】
更にまた、電気化学的手法により被処理水中の窒素化合物が処理されることにより、被処理水中の硝酸態窒素の亜硝酸態窒素及びアンモニアへの還元反応が促進され、還元反応に要する時間を短縮し、且つ、低濃度の硝酸イオンも処理することができるようになる。
【0040】
これにより、一般家庭や工場等から排出される窒素化合物を含む被処理水から効率的に窒素化合物を除去することができるようになり、窒素化合物の処理能力が向上させる。
【0041】
上述の如き第1の処理ステップとしての被処理水の脱窒処理が終了した後、若しくは、脱窒処理を行っている間に、第2の処理ステップとしての被処理水の脱リン処理を行う。かかる場合には、前記マイクロコンピュータは、供給電磁弁19の開閉制御を行い、窒素処理装置11の処理槽2内の被処理水を沈殿槽12の沈殿室26内に搬送する。
【0042】
ここで、沈殿槽12の沈殿室26内には、上述の如く予め水若しくは、前回の脱リン処理により処理された後の被処理水が貯留されており、係る水若しくは被処理水中には、鉄板27が浸漬されていることにより、前記反応Aの如く鉄(II)イオンが溶出されている。これにより、沈殿槽12に供給された被処理水中のリン化合物としてのリン酸イオンは、鉄(II)イオンと反応しリン酸鉄を生成し、凝集沈殿する(反応H)。以下に、反応Hを示す。
反応H 3Fe2++2PO4 3-→Fe3(PO4)2↓
【0043】
しかしながら、この反応によって生成されるリン酸鉄は微細な粒子状であるため、このままでは沈降濃縮性が悪いという問題がある。そこで、本発明では、上述の如く鉄(II)イオンが溶出された水若しくは被処理水中に前記脱窒処理された後の被処理水が注入されることにより、脱窒処理の際に前記反応Fで次亜塩素酸が生成されているため、当該次亜塩素酸と沈殿室26内に貯留された水若しくは被処理水中の鉄(II)イオンが反応して鉄(II)イオンが鉄(III)イオンに変換される(反応I)。以下に、反応Iを示す。
反応I 2Fe2++ClO-+H2O→2Fe3++Cl-+2OH-
【0044】
これにより、被処理水中のリン化合物としてのリン酸イオンは、鉄(III)イオンと反応してリン酸鉄を生成する(反応I)。更にこの鉄(III)イオンは、被処理水中の水と反応して水酸化鉄(III)を生成する(反応J)。以下に、反応J及び反応Kを示す。
反応J Fe3++PO4 3-→FePO4↓
反応K Fe3++3H2O→Fe(OH)3↓+3H+
【0045】
ここで、水酸化鉄(III)は、フロックを生成するため、上記反応Jで生成された微細なリン酸鉄を吸着することができ、リン酸鉄と水酸化鉄(III) のフロックとして沈降させることができるようになる。そのため、リン酸鉄の沈降分離性が向上され、処理効率も一層向上される。
【0046】
また、被処理水中のリン化合物が上述の如く沈降分離された後、前記マイクロコンピュータは、前記仕切壁24に設けられた排水口を開放し、若しくは、仕切壁24の高さを降下させ、上澄み液部分の被処理水のみを排水室26側に溢水させる。これにより、脱リン処理を効率的に且つ、確実に行うことができるようになる。
【0047】
このとき、沈殿槽12の沈殿室26内には、前記上澄み液部分の被処理水の一部を残留させておくものとする。尚、この被処理水の残留量は、窒素処理装置11の処理槽2内の被処理水を加えても沈殿室26内から被処理水が溢水しない量とするものとする。
【0048】
これにより、残留された被処理水中に前記鉄板27が浸漬されることにより、窒素処理装置11での脱窒処理と同時に、沈殿室26内の被処理水中に鉄イオンを溶出させることができる。
【0049】
上述した如く脱窒処理を行う処理槽2と脱リン処理を行う沈殿槽12は別槽により構成されているため、脱窒処理及び脱リン処理を同時に行うことができ、より一層効率的に排水処理を行うことができるようになる。
【0050】
また、本発明によれば、鉄イオンの供給に際し電気エネルギーを加える必要がないため、電気エネルギーの節約を図ることができると共に、装置の複雑化を回避することができるようになる。
【0051】
尚、沈殿槽12の沈殿室26内に凝集沈殿されたリン酸鉄及び水酸化鉄のフロックが所定量以上堆積された場合には、当該フロックをまとめて廃棄処理するものとする。
【0052】
【発明の効果】
以上詳述した如く請求項1又は請求項4の発明によれば、被処理水中の窒素化合物及びリン化合物を処理するにあたり、処理槽に貯留した被処理水中に一対の電極を少なくとも一部浸漬し、アノードを構成する一方の電極の材料を、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として当該被処理水を電気化学的手法により処理する第1の処理ステップと、該第1の処理ステップの終了後、処理槽内の被処理水を、鉄を備えた沈殿槽に注入し、被処理水中に鉄を浸漬させることで被処理水中のリン化合物を処理する第2の処理ステップとを含むので、第1の処理ステップとして、電気化学的手法により被処理水を処理することにより、カソードを構成する電極において被処理水中の硝酸態窒素の亜硝酸態窒素及びアンモニアへの還元反応が促進され、還元反応に要する時間を短縮し、且つ、低濃度の硝酸イオンも処理することができるようになる。
【0053】
また、アノードを構成する一方の電極は、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体により構成されていることから、第1の処理ステップにおいて、被処理水中に次亜ハロゲン酸を発生させることができる。これにより、カソードを構成する電極において生じるアンモニアが、アノードを構成する一方の電極で生じる次亜ハロゲン酸と脱窒反応をすることになるので、相乗効果によって、硝酸態窒素、アンモニア態窒素及び窒素化合物などの窒素成分を効率的に除去することができるようになる。これによって、一般家庭や工場等から排出される窒素化合物を含む被処理水から効率的に窒素化合物を除去することができるようになり、窒素化合物の処理能力が向上される。
【0054】
更に、第2の処理ステップとして第1の処理ステップにおいて処理された処理槽内の被処理水を、鉄を備えた沈殿槽に注入し、当該被処理水中に鉄を浸漬させることで、鉄から被処理水中に溶出された鉄(II)イオンが、第1の処理ステップにおいて生成された次亜ハロゲン酸と反応することにより、鉄(III)イオンを生成し、当該鉄(III)イオンが被処理水中のリン化合物としてのリン酸イオンと凝集沈殿し、リン化合物の処理を容易とすることができる。
【0055】
特に、被処理水中の次亜ハロゲン酸と反応することにより鉄(II)イオンから鉄(III)イオンに変換され、該鉄(III)イオンが水酸化鉄のフロックを生成し、これにより、生成された水酸化鉄のフロックが微細なリン酸鉄を吸着することができ、沈降分離性が向上される。そのため、処理効率もより一層向上される。
【0056】
また、請求項3の如く沈殿槽には、第2の処理ステップで処理された被処理水を貯留しておき、当該貯留された被処理水中に、第1の処理ステップで処理された処理槽内の被処理水を注入することにより、第1の処理ステップにおける脱窒処理と第2の処理ステップにおける脱リン処理を同時に行うことができるようになる。これにより、より一層、被処理水中の脱窒処理及び脱リン処理を効率的に行うことができるようになる。
【0057】
請求項2又は請求項5の発明の発明によれば、上記第1の処理ステップにおいて、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料若しくはカーボンを用いると共に、カソードを構成する他方の電極の材料は、周期表の第Ib族または第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いるので、被処理水中の硝酸態窒素と亜硝酸態窒素のアンモニアへの還元反応をより一層促進させることができ、還元反応に要する時間を更に短縮することができるようになる。
【図面の簡単な説明】
【図1】本発明の排水処理装置の概要を示す説明図である。
【図2】処理槽内の構成を示す図である。
【符号の説明】
1 排水処理装置
2 処理槽
4 排水処理室
5 アノード
6 カソード
10 貯留槽
11 窒素処理装置
12 沈殿槽
24 仕切壁
25 排水室
26 沈殿室
27 鉄板
Claims (5)
- 被処理水中の窒素化合物及びリン化合物を処理する排水処理方法であって、
処理槽に貯留した前記被処理水中に一対の電極を少なくとも一部浸漬し、アノードを構成する一方の前記電極の材料を、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として当該被処理水を電気化学的手法により処理する第1の処理ステップと、
該第1の処理ステップの終了後、前記処理槽内の前記被処理水を、鉄を備えた沈殿槽に注入し、当該被処理水中に前記鉄を浸漬させることで被処理水中のリン化合物を処理する第2の処理ステップとを含むことを特徴とする排水処理方法。 - 前記電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料若しくはカーボンを用いると共に、
カソードを構成する他方の前記電極の材料は、周期表の第Ib族または第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いることを特徴とする請求項1の排水処理方法。 - 前記沈殿槽には、前記第2の処理ステップで処理された被処理水を貯留しておき、当該貯留された被処理水中に、前記第1の処理ステップで処理された前記処理槽内の被処理水を注入することを特徴とする請求項1又は請求項2の排水処理方法。
- 被処理水中の窒素化合物及びリン化合物を処理する排水処理装置であって、
前記被処理水を貯留する処理槽と、
前記処理槽内の前記被処理水に少なくとも一部が浸漬され、電気化学的手法により当該被処理水を処理するための一対の電極と、
鉄を備え、前記処理槽において電気化学的手法により処理された後の被処理水が注入される沈殿槽とを備え、
アノードを構成する一方の前記電極の材料を、電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体とすると共に、
前記鉄は、前記沈殿槽に注入された前記被処理水中に浸漬されることを特徴とする排水処理装置。 - 前記電気化学的手法により次亜ハロゲン酸を発生させることが可能な導電体として不溶性材料若しくはカーボンを用いると共に、
カソードを構成する他方の前記電極の材料は、周期表の第Ib族または第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いることを特徴とする請求項4の排水処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002219443A JP3998530B2 (ja) | 2002-07-29 | 2002-07-29 | 排水処理方法及び排水処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002219443A JP3998530B2 (ja) | 2002-07-29 | 2002-07-29 | 排水処理方法及び排水処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004057926A JP2004057926A (ja) | 2004-02-26 |
JP3998530B2 true JP3998530B2 (ja) | 2007-10-31 |
Family
ID=31940346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002219443A Expired - Fee Related JP3998530B2 (ja) | 2002-07-29 | 2002-07-29 | 排水処理方法及び排水処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3998530B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4518826B2 (ja) * | 2004-03-31 | 2010-08-04 | 中国電力株式会社 | 電解排水処理システム、電解制御装置、電解排水処理方法、プログラム、及び記憶媒体 |
CN116253425B (zh) * | 2023-02-21 | 2024-05-24 | 浙江大学 | 一种基于生物电化学原理的废水处理装置及运行方法 |
-
2002
- 2002-07-29 JP JP2002219443A patent/JP3998530B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004057926A (ja) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4040028B2 (ja) | 有機物と窒素化合物を含む被処理水の処理方法及び処理システム | |
JP3530511B2 (ja) | 窒素処理方法及び窒素処理システム | |
KR100472884B1 (ko) | 배수 처리 방법 및 배수 처리 장치 | |
WO2006112521A1 (ja) | アンモニア性窒素含有廃水の電解処理方法及び装置 | |
US6875362B2 (en) | Waste water treating method, waste water treating apparatus, and waste water treating system | |
KR100611688B1 (ko) | 배수 처리 방법 및 배수 처리 장치 | |
KR100918555B1 (ko) | 질소 처리 방법 및 질소 처리 장치 | |
CZ42494A3 (en) | Process for reducing content of phosphorus in waste water | |
JP3998530B2 (ja) | 排水処理方法及び排水処理装置 | |
JP3691461B2 (ja) | 水浄化システム及び水浄化方法 | |
JP2004097950A (ja) | 排水処理装置及び排水処理システム | |
JP3524894B2 (ja) | 排水処理方法及び排水処理用添加剤 | |
JP3723530B2 (ja) | 排水処理方法 | |
JP3738187B2 (ja) | 排水処理方法及び排水処理システム | |
JP4039910B2 (ja) | 窒素処理方法及び窒素処理システム | |
JP2002248474A (ja) | 窒素処理方法及び窒素処理システム | |
JP3117396B2 (ja) | 排水中の窒素及び燐の除去装置 | |
JP3863743B2 (ja) | 水浄化システム | |
JP3738188B2 (ja) | 排水処理装置及び排水処理システム | |
JP4188806B2 (ja) | 有機性廃棄物処理システム | |
JP2004097949A (ja) | 排水処理システム | |
JP4024087B2 (ja) | 有機性廃水の処理方法 | |
JPH11267683A (ja) | リン酸イオン含有排水の処理装置 | |
JP2003260464A (ja) | 電解式汚水処理装置及びこれを用いた汚水処理施設 | |
JP2004082080A (ja) | 排水処理方法及び排水処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070807 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |