[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3994335B2 - Manufacturing method of connecting member - Google Patents

Manufacturing method of connecting member Download PDF

Info

Publication number
JP3994335B2
JP3994335B2 JP2002292499A JP2002292499A JP3994335B2 JP 3994335 B2 JP3994335 B2 JP 3994335B2 JP 2002292499 A JP2002292499 A JP 2002292499A JP 2002292499 A JP2002292499 A JP 2002292499A JP 3994335 B2 JP3994335 B2 JP 3994335B2
Authority
JP
Japan
Prior art keywords
conductive particles
adhesive film
connecting member
conductive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002292499A
Other languages
Japanese (ja)
Other versions
JP2003217354A (en
Inventor
功 塚越
泰史 後藤
共久 太田
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2002292499A priority Critical patent/JP3994335B2/en
Publication of JP2003217354A publication Critical patent/JP2003217354A/en
Application granted granted Critical
Publication of JP3994335B2 publication Critical patent/JP3994335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属するの技術分野】
本発明は、電子部品と回路板や、回路板同士を接着固定すると共に、両者の電極同士を電気的に接続するために用いられる長尺状の接続部材の製造方法に関する。
【0002】
【従来の技術】
近年、電子部品の小型薄型化に伴い、これらに用いる回路は高密度、高精細化しており、このような電子部品と微細電極の接続は、従来のはんだやゴムコネクタ等では対応が困難であることから、最近では分解能に優れた異方導電性の接着剤や膜状物(以下接続部材という)が多用されている。この接続部材は、導電性粒子を所定量含有した接着剤からなるもので、この接続部材を電子部品の接続電極と回路基板の回路電極との間に設け、加圧または加熱加圧手段を構じることによって、両者の電極同士が電気的に接続されると共に、電極に隣接して形成されている電極同士には絶縁性を付与して電子部品と回路とが接着固定されるものである。上記接続部材を高分解能化するための基本的な考えは、導電性粒子の粒径を隣接する電極間の絶縁部分よりも小さくすることで隣接電極間における絶縁性が確保され、併せて導電性粒子の含有量をこの粒子同士が接触しない範囲とすることにより接続部分における導通性が確実に得られるということである。
【0003】
しかしながら、導電性粒子の粒径を小さくすると、粒子表面積の著しい増加により粒子が2次凝集を起こして隣接電極間の絶縁性が保持できなくなり、また導電性粒子の含有粒子を減少すると接続すべき回路上の導電性粒子の数も減少することから電極に対する接触点の数が不足し接続電極間での導通が得られなくなるため、長期接続信頼性を保ちながら接続部材を高分解能化することは極めて困難であった。
【0004】
【特許文献1】
特開平03−008213号公報
【特許文献2】
特開昭64−054608号公報
【特許文献3】
特開平01−258943号公報
【0005】
【発明が解決しようとする課題】
このような微細電極や回路の接続を可能とし、且つ接続信頼性に優れた接続部材として、我々は先に必要部に導電性粒子の密集域を有する接続部材を提案した。これによれば、例えばピッチ200μm以下といった半導体チップのようなドット状の電極や、TABやFPC等の絶縁された多数の平行電極を有するライン状の微細電極の接続が可能となる。上記の方法はいずれも、必要部に貫通孔を有するメタルマスクを粘着性のある接着剤と平面的に接触させ、メタルマスクの上から導電性粒子をふりかけ余分な導電性粒子を取り除き、メタルマスクを除去して接続部材を作製している。また他の手段として、液晶スペーサ散布装置によりメタルマスクの上から導電性粒子を散布したりシルクスクリーン印刷法により作製が可能である。これらの方法は、簡単に小面積の高精度な接続部材を得る方法として優れているが、例えば連続したテープ状巻重体のような長尺品が得られず、工業的な大量生産を行い難い欠点があった。接続部材が長尺品であると接続の連続作業が可能となる。本発明は上記欠点に鑑みなされたもので、導電性粒子の密集域を所定の配列で有する長尺状の接続部材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、円筒状回転体の表面要部に導電性粒子の密集域をメタルマスクまたはグラビア印刷で形成する工程、前記円筒状回転体と対面走行する硬化性接着フィルムの表面に導電性粒子が3個以上存在する密集域を加圧転写して配置する工程、導電性粒子配置面を、他の接着剤フィルムのラミネートもしくは熱ロールによる接着フィルムへの埋め込みにより導電性粒子を接着フィルムに固定する工程、上記手段を経た接続部材を長尺状巻重体とする工程、よりなる導電性粒子を接着剤層で被覆固定してなる長尺状の接続部材の製造方法である。また、本発明は、導電性粒子が絶縁被覆粒子であると好ましい長尺状の接続部材の製造方法である。
【0007】
以下本発明について、図面を参照しながら説明する。図1は、本発明の接続部材の製造方法の一実施例を説明する断面模式図である。円筒状回転体1としては、例えばロール状が代表的である。材質は密集域形成の精度向上の点から剛性の金属が好ましい。表面2に所定の配列で導電性粒子の密集域3を形成する方法としては、例えばロールの表面2を凹版あるいは図示していないが凸版状に形成し、その部分に導電性粒子の密集域をドクターナイフ4等で一定量形成するグラビア印刷の手法がある。この場合導電性粒子は高分子バインダと溶媒よりなる液状物とすると形成作業が容易である。
【0008】
また本発明の接続部材の製造方法の実施に好適な手段として、後述する表面に貫通孔を有する円筒状回転体と、円筒状回転体の内部に設けた導電性粒子の供給量制御装置と加圧手段からなる装置によっても形成可能である。対面走行する接着性フィルム5は、熱可塑性材料や熱や光により硬化性を示す材料が広く適用できる。接続後の耐熱性や耐湿性に優れることから、硬化性材料の適用が好ましい。なかでもエポキシ系接着剤は短時間硬化が可能で接続作業性が良く、分子構造上接着性に優れる等の特徴から好ましく適用できる。
【0009】
エポキシ系接着剤は、例えば高分子量エポキシ、固形エポキシと液状エポキシ、ウレタンやポリエステル、NBR等で変性したエポキシを主成分とし、硬化剤や触媒、カップリング剤、充填剤等を添加してなるものが一般的である。接着性フィルム5の厚みは、導電性粒子の密集域形成の精度向上の点から接着性の得られる範囲で薄い方が好ましく、50μm以下、より好ましくは35μm以下である。接着フィルム5は、必要に応じてプラスチックフィルム等の可撓性の基材6で補強されていてもよい。
【0010】
接着性フィルム5への転写手段は、導電性粒子の密集域を加圧転写すれば良く、接着性フィルム5が室温近辺で粘着性を示すと、導電性粒子の配置固定が容易なことから好ましい。導電性粒子を配置固定した接着フィルムは本発明でいう接続部材であり、連続した長尺品として巻重することできる。この時、導電性粒子の密集域を保持するため、必要に応じて更に別の接着性フィルム5をラミネートしてサンドイッチ状としたり、熱ロールにより接着性フィルム5中に埋め込むこともできる。また、接着特性の改良を目的に、液状物(接着剤、接着促進剤及び架橋剤等)を薄く形成することもできる。
【0011】
図2及び図3を用いて導電性粒子7の密集域3を説明する。導電性粒子7の密集域3は、図2のように半導体チップのようなドット状に配列された電極に合わせて密集域が必ず存在するように配置したり、あるいは図3のように隣接する平行電極同士を導通させることなく絶縁性を保ち、且つ接続する全ての平行電極間に少なくとも密集域の一部が必ず挟まれる程度に配置する。図3においてdは、X軸方向における密集域同士の最近接距離であり、接続時に多数の平行電極を有するライン状の微細電極と交差する方向をX軸、平行する方向をY軸とする。
【0012】
密集域3中の導電性粒子7の数は、図2及び図3の一部に例示したように、3個以上、より好ましくは5個以上とすることで接続信頼性が向上するので好ましい。導電性粒子7は、接着フィルム5の表面でも、図1のように接着剤に埋まっていても良い。導電性粒子7としては、Au、Ag、Ni、Cu、W、Sb、Sn、はんだ等の金属粒子やカーボン等があり、これら及び非導電性のガラス、セラミックス、プラスチック等の高分子核材等に、前記した導電層を被覆等により形成したものでも良い。さらに前記したような導電性粒子を絶縁層で被覆してなる絶縁被覆粒子や、導電性粒子と絶縁粒子の併用等も適用可能である。
【0013】
はんだ等の熱溶融金属や、プラスチック等の高分子核材に導電層を形成したものは、加熱加圧もしくは加圧により変形性を有し、積層時に回路との接触面積が増加し信頼性が向上するので好ましい。特に高分子類を核とした場合、はんだのように融点を示さないので軟化の状態を接続温度で広く制御でき、電極の厚みや平坦性のばらつきに対応し易い接続部材が得られるので好ましい。また例えばNiやW等の硬質金属粒子の場合、導電性粒子が電極や配線パターンに突き刺さるので、酸化膜や汚染層の存在する場合にも低い接続抵抗が得られ、加えて接続部の固定による膨張収縮の制御にも有効で信頼性が向上する。
【0014】
本発明の接続部材の製造方法の実施に好適な製造装置を、図4に用いて説明する。表面に貫通孔8を有する円筒状回転体1は、例えばメタルマスクを円筒状としたものであり、その内部に導電性粒子の供給制御装置9と、加圧手段10を設ける。供給制御装置9は、導電性粒子7の数や層数により量を制御するものであり、例えば円筒状回転体1とのギャップをコントロールできるドクターナイフやロール等がある。加圧手段10は、導電性粒子7を接着性フィルム5へ転写配置するものであり、円筒状回転体1に合わせて回転するロール等を例示できる。この場合、加圧手段10が貫通孔8と一致した突状部を有すれば加圧転写がさらに有利となる。加圧手段10により貫通孔より排出された導電性粒子7は、接着性フィルム5に貼着され、走行手段11により連続した長尺品として例えば巻重体12とすることができる。図4の場合、円筒状回転体の厚みを薄くし導電性粒子7の粒径に近づけると密集域の微細配置の精度が向上し好適である。この方法は分散媒を用いず乾式下で行うことが可能なため、要部の導電性粒子濃度を密に形成でき、また清掃作業が容易である。
【0015】
本発明の接続部材の製造方法は、円筒状回転体の表面要部に導電性粒子の密集域を形成し、対面走行する接着フィルムと接触させ、導電性粒子の密集域を接着フィルムに転写する接続部材の製造法とそれに好適な製造装置であると、連続したテープ状巻重体のような長尺品が容易に得られる。すなわち導電性粒子の密集域形成をエンドレスな円筒状として走行する接着フィルムに転写し、順次円筒状回転体に導電性粒子密集域を形成供給できるので、高精度な長尺状の接続部材の工業的な大量生産が容易となる。
【0016】
【実施例】
以下実施例でさらに詳細に説明するが、本発明はこれに限定されない。
【0017】
実施例1
図3に示したような正三角形の配列で、隙間無く並べその各頂点に中心を持つような円形の貫通孔を有するステンレス製メタルマスク(厚み10μm、孔の直径30μm、ピッチ80μm、d=10μm)を直径100mmの円筒状とし、側面の中心に回転軸とその上部に導電性粒子の供給口とを形成した。円筒状の表面は、接着フィルムと不必要な接触を避けるためテフロン(商標)系の剥離処理がされている。また円筒状の内部には図4の配置に従いドクターナイフと直径10mmの加圧ロールを設けてある。導電性粒子は、架橋ポリスチレンからなる核材の表面にNi/Auの複合導電層を有する粒径5μmのめっきプラスチック球を用いた。導電性粒子は、供給口より供給され円筒とのギャップを無くすようにコントロールしたドクターナイフを経て、供給口下部に形成された加圧手段である回転するゴムロールの自重により、導電性粒子を接着フィルムへ転写配置する。接着性フィルムとしては、ポリエステルフィルムを剥離剤処理したセパレータよりなる基材上に、高分子量エポキシを主成分とする厚み20μmの室温で粘着性を有する接着剤を用い、1m/分の速度で走行させ、周速度を同期した円筒状の表面と接触させ転写した。この後、前記セパレータをロールラミネータにより貼り合わせた。そのため導電性粒子は接着フィルム中に埋没した形で(導電性粒子層を接着剤層で被覆固定)精度良く配置された。以上により連続したテープ状巻重体の製造が可能であった。
【0018】
実施例2
実施例1と同様であるが、貫通孔を有するメタルマスクの代わりに密集域を同配置に凹状形成したグラビアロールを用い、導電性粒子は可溶性ナイロンの5%メタノール液に分散し液状物とした。導電性粒子はナイロンの20体積%とした。接着フィルムはメタノールに不溶なため転写配置が可能であり、巻重前に50℃で送風乾燥しメタノールを除去した。また導電性粒子の表面が融点130℃のナイロン絶縁層で被覆してなる絶縁被覆粒子であることから、密集域の配置形成が容易であった。本例によれば、グラビアロール法でも連続したテープ状巻重体の製造が可能であった。
【0019】
【発明の効果】
以上のように本発明の接続部材は、高精度な長尺状の接続部材の工業的な大量生産が可能となり、導電性粒子層を接着剤層で被覆固定させると密集域の配置形成が容易であり、隣接電極間の絶縁性に優れ、接続信頼性が向上する。
【図面の簡単な説明】
【図1】 本発明の接続部材の製造法の一実施例を示す断面図である。
【図2】 本発明の接続部材の導電性粒子の密集配置を示す平面模式図である。
【図3】 本発明の接続部材の導電性粒子の密集配置を示す平面模式図である。
【図4】 本発明の接続部材の実施に好適な製造装置を示す断面模式図である。
【符号の説明】
1 円筒状回転体 2 表面要部
3 密集域 4 ドクターナイフ
5 接着フィルム 6 基材
7 導電性粒子 8 貫通孔
9 供給制御装置 10 加圧手段
11 走行手段 12 巻重体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component and a circuit board, and a method for manufacturing a long connection member used for bonding and fixing circuit boards together and electrically connecting both electrodes.
[0002]
[Prior art]
In recent years, with the miniaturization and thinning of electronic components, the circuits used for these have become high density and high definition, and it is difficult to connect such electronic components and fine electrodes with conventional solder or rubber connectors. For this reason, recently, anisotropic conductive adhesives and film-like materials (hereinafter referred to as connection members) having excellent resolution have been frequently used. This connection member is made of an adhesive containing a predetermined amount of conductive particles. This connection member is provided between the connection electrode of the electronic component and the circuit electrode of the circuit board, and constitutes a pressurizing or heating and pressing means. The two electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with insulating properties so that the electronic component and the circuit are bonded and fixed. . The basic idea for increasing the resolution of the connecting member is to ensure the insulation between adjacent electrodes by making the particle size of the conductive particles smaller than the insulating portion between the adjacent electrodes. By setting the content of the particles within a range in which the particles do not contact each other, conductivity at the connection portion can be obtained with certainty.
[0003]
However, if the particle size of the conductive particles is reduced, the particles cause secondary agglomeration due to a significant increase in the particle surface area, so that insulation between adjacent electrodes cannot be maintained. Since the number of conductive particles on the circuit also decreases, the number of contact points with respect to the electrodes is insufficient, and continuity between the connection electrodes cannot be obtained. Therefore, it is possible to increase the resolution of the connection member while maintaining long-term connection reliability. It was extremely difficult.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 03-008213 [Patent Document 2]
Japanese Patent Laid-Open No. 64-054608 [Patent Document 3]
Japanese Patent Laid-Open No. 01-258943
[Problems to be solved by the invention]
As a connection member capable of connecting such fine electrodes and circuits and having excellent connection reliability, we previously proposed a connection member having a dense region of conductive particles in a necessary portion. According to this, it becomes possible to connect a dot-shaped electrode such as a semiconductor chip having a pitch of 200 μm or less, or a line-shaped fine electrode having a large number of insulated parallel electrodes such as TAB and FPC. In any of the above methods, a metal mask having a through-hole in a necessary part is brought into contact with a sticky adhesive in a plane, and the conductive particles are sprinkled on the metal mask to remove excess conductive particles. The connection member is produced by removing the. Further, as another means, it is possible to produce conductive particles by spraying conductive particles from a metal mask with a liquid crystal spacer spraying device or by silk screen printing. These methods are excellent as a method for easily obtaining a high-precision connecting member having a small area, but long products such as a continuous tape-shaped wound body cannot be obtained, and it is difficult to perform industrial mass production. There were drawbacks. If the connecting member is a long product, continuous connection work is possible. The present invention has been made in view of the above-described drawbacks, and an object thereof is to provide a long connection member having a dense area of conductive particles in a predetermined arrangement.
[0006]
[Means for Solving the Problems]
The present invention includes a step of forming a dense area of conductive particles on a main surface of a cylindrical rotating body by a metal mask or gravure printing, and conductive particles on the surface of a curable adhesive film that runs facing the cylindrical rotating body. The process of placing three or more dense areas by pressure transfer and arranging the conductive particles is fixed to the adhesive film by laminating another adhesive film or embedding in the adhesive film with a hot roll. A step, a step of making the connecting member that has undergone the above-mentioned means into a long wound body, and a method of producing a long connecting member formed by covering and fixing conductive particles formed with an adhesive layer. Moreover, this invention is a manufacturing method of a preferable elongate connection member in which electroconductive particle is insulation coating particle.
[0007]
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view for explaining one embodiment of a method for producing a connecting member of the present invention. As the cylindrical rotating body 1, for example, a roll shape is representative. The material is preferably a rigid metal from the viewpoint of improving the accuracy of forming dense areas. As a method of forming the conductive particle dense area 3 on the surface 2 in a predetermined arrangement, for example, the surface 2 of the roll is formed in an intaglio or a letterpress shape (not shown), and the conductive particle dense area is formed in that portion. There is a gravure printing technique in which a fixed amount is formed with a doctor knife 4 or the like. In this case, if the conductive particles are a liquid consisting of a polymer binder and a solvent, the forming operation is easy.
[0008]
Further, as means suitable for carrying out the manufacturing method of the connection member of the present invention, a cylindrical rotating body having a through-hole on the surface, which will be described later, a supply amount control device for conductive particles provided inside the cylindrical rotating body, and an addition It can also be formed by a device comprising a pressure means. As the adhesive film 5 that runs face to face, a thermoplastic material or a material that exhibits curability by heat or light can be widely applied. Application of a curable material is preferred because of excellent heat resistance and moisture resistance after connection. Among these, epoxy adhesives can be preferably applied from the viewpoints that they can be cured in a short time, have good connection workability, and have excellent adhesion due to their molecular structure.
[0009]
Epoxy adhesives are mainly composed of high molecular weight epoxy, solid epoxy and liquid epoxy, urethane, polyester, epoxy modified with NBR, etc., and added with curing agents, catalysts, coupling agents, fillers, etc. Is common. The thickness of the adhesive film 5 is preferably as thin as possible in the range in which adhesiveness can be obtained from the viewpoint of improving the accuracy of formation of dense areas of conductive particles, and is preferably 50 μm or less, more preferably 35 μm or less. The adhesive film 5 may be reinforced with a flexible substrate 6 such as a plastic film as necessary.
[0010]
The transfer means to the adhesive film 5 only needs to pressure-transfer the dense area of the conductive particles. If the adhesive film 5 exhibits tackiness near room temperature, it is preferable because the conductive particles can be placed and fixed easily. . The adhesive film on which conductive particles are arranged and fixed is a connecting member in the present invention, and can be wound as a continuous long product. At this time, in order to maintain a dense region of conductive particles, another adhesive film 5 may be laminated to form a sandwich as necessary, or may be embedded in the adhesive film 5 by a hot roll. Further, for the purpose of improving adhesive properties, a liquid material (adhesive, adhesion promoter, cross-linking agent, etc.) can be formed thinly.
[0011]
The dense region 3 of the conductive particles 7 will be described with reference to FIGS. 2 and 3. The dense areas 3 of the conductive particles 7 are arranged so that the dense areas always exist in accordance with the dots arranged like a semiconductor chip as shown in FIG. 2, or are adjacent as shown in FIG. The parallel electrodes are arranged so as to maintain insulation without conducting the electrodes, and at least a part of the dense area is always sandwiched between all the parallel electrodes to be connected. In FIG. 3, d is the closest distance between the dense areas in the X-axis direction, and the direction intersecting the line-shaped fine electrode having a large number of parallel electrodes at the time of connection is the X-axis, and the parallel direction is the Y-axis.
[0012]
The number of the conductive particles 7 in the dense region 3 is preferably 3 or more, more preferably 5 or more , as exemplified in a part of FIGS. 2 and 3, since the connection reliability is improved. The conductive particles 7 may be embedded in an adhesive as shown in FIG. 1 on the surface of the adhesive film 5. Examples of the conductive particles 7 include metal particles such as Au, Ag, Ni, Cu, W, Sb, Sn, and solder, carbon, and the like, and polymer core materials such as non-conductive glass, ceramics, and plastics. In addition, the conductive layer described above may be formed by coating or the like. Furthermore, insulating coating particles obtained by coating the above-described conductive particles with an insulating layer, or a combination of conductive particles and insulating particles can be applied.
[0013]
Heat-melting metal such as solder or polymer core material such as plastic formed with a conductive layer is deformable by heat or pressure, increasing the contact area with the circuit during lamination and increasing reliability. Since it improves, it is preferable. In particular, when a polymer is used as a nucleus, it does not show a melting point like solder, so that the softening state can be widely controlled by the connection temperature, and a connection member that can easily cope with variations in electrode thickness and flatness is obtained. Also, for example, in the case of hard metal particles such as Ni and W, the conductive particles pierce the electrodes and the wiring pattern, so that a low connection resistance can be obtained even in the presence of an oxide film or a contaminated layer, and in addition, by fixing the connection portion It is also effective in controlling expansion and contraction and improves reliability.
[0014]
A manufacturing apparatus suitable for carrying out the method for manufacturing a connection member of the present invention will be described with reference to FIG. The cylindrical rotating body 1 having a through-hole 8 on the surface is, for example, a metal mask formed in a cylindrical shape, and a conductive particle supply control device 9 and a pressurizing means 10 are provided therein. The supply control device 9 controls the amount by the number of conductive particles 7 and the number of layers, and includes, for example, a doctor knife or a roll that can control the gap with the cylindrical rotating body 1. The pressurizing means 10 transfers the conductive particles 7 to the adhesive film 5 and can be exemplified by a roll that rotates in accordance with the cylindrical rotating body 1. In this case, if the pressurizing means 10 has a projecting portion that coincides with the through hole 8, the pressure transfer is further advantageous. The conductive particles 7 discharged from the through-holes by the pressurizing means 10 can be attached to the adhesive film 5 and used as, for example, a wound body 12 as a continuous product by the running means 11. In the case of FIG. 4, it is preferable to reduce the thickness of the cylindrical rotating body to be close to the particle diameter of the conductive particles 7 because the accuracy of fine arrangement in the dense area is improved. Since this method can be performed under a dry method without using a dispersion medium, the concentration of the conductive particles in the main part can be formed densely, and the cleaning operation is easy.
[0015]
In the method for producing a connecting member according to the present invention, a dense region of conductive particles is formed on a main surface of a cylindrical rotating body, and is brought into contact with an adhesive film that travels oppositely, and the dense region of conductive particles is transferred to the adhesive film. With the manufacturing method of the connecting member and the manufacturing apparatus suitable for it, a long product such as a continuous tape-shaped wound body can be easily obtained. In other words, it is possible to transfer the formation of dense areas of conductive particles to an adhesive film that travels as an endless cylindrical shape, and sequentially form and supply the dense areas of conductive particles to a cylindrical rotating body. Mass production becomes easy.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0017]
Example 1
A stainless steel metal mask having a circular through-hole arranged in a regular triangle arrangement as shown in FIG. 3 and having a center at each apex thereof (thickness 10 μm, hole diameter 30 μm, pitch 80 μm, d = 10 μm) ) In the shape of a cylinder with a diameter of 100 mm, and a rotating shaft at the center of the side surface and a supply port for conductive particles at the top. The cylindrical surface is subjected to a Teflon (trademark) -based release treatment to avoid unnecessary contact with the adhesive film. A cylindrical knife is provided with a doctor knife and a pressure roll having a diameter of 10 mm in accordance with the arrangement shown in FIG. As the conductive particles, plated plastic spheres having a particle diameter of 5 μm having a Ni / Au composite conductive layer on the surface of a core material made of crosslinked polystyrene were used. The conductive particles are supplied from the supply port, passed through a doctor knife controlled so as to eliminate the gap with the cylinder, and the conductive particles are adhered to the adhesive film by the weight of the rotating rubber roll as a pressurizing means formed at the lower part of the supply port. Place the transfer to. As the adhesive film, a sticky adhesive having a thickness of 20 μm, which is mainly composed of a high molecular weight epoxy, is used on a substrate made of a separator obtained by treating a polyester film with a release agent, and travels at a speed of 1 m / min. Then, it was transferred in contact with a cylindrical surface whose peripheral speed was synchronized. Thereafter, the separator was bonded with a roll laminator. Therefore, the conductive particles were arranged with high precision in the form of being buried in the adhesive film (the conductive particle layer was fixed by covering with an adhesive layer). The continuous tape-shaped winding body was able to be manufactured by the above.
[0018]
Example 2
Although it is the same as that of Example 1, the gravure roll which formed the concavity in the same arrangement | positioning concavely was used instead of the metal mask which has a through-hole, and electroconductive particle was disperse | distributed to 5% methanol solution of soluble nylon, and it was set as the liquid substance. . The conductive particles were 20% by volume of nylon. Since the adhesive film was insoluble in methanol, transfer arrangement was possible, and the methanol was removed by blowing at 50 ° C. before winding. Further, since the surface of the conductive particles is an insulating coating particle formed by coating with a nylon insulating layer having a melting point of 130 ° C., it is easy to form and arrange a dense region. According to this example, it was possible to produce a continuous tape-shaped wound body even by the gravure roll method.
[0019]
【The invention's effect】
As described above, the connecting member of the present invention enables industrial mass production of a long and highly accurate connecting member, and when the conductive particle layer is covered and fixed with an adhesive layer, it is easy to form and form a dense area. Thus, the insulation between adjacent electrodes is excellent, and the connection reliability is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a method for producing a connecting member according to the present invention.
FIG. 2 is a schematic plan view showing a dense arrangement of conductive particles of the connection member of the present invention.
FIG. 3 is a schematic plan view showing a dense arrangement of conductive particles of the connection member of the present invention.
FIG. 4 is a schematic cross-sectional view showing a manufacturing apparatus suitable for implementing the connecting member of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical rotary body 2 Main part of surface 3 Dense area 4 Doctor knife 5 Adhesive film 6 Base material 7 Conductive particle 8 Through-hole 9 Supply control apparatus 10 Pressurizing means 11 Traveling means 12 Roll body

Claims (2)

円筒状回転体の表面要部に導電性粒子の密集域をメタルマスクまたはグラビア印刷で形成する工程、前記円筒状回転体と対面走行する硬化性接着フィルムの表面に導電性粒子が3個以上存在する密集域を加圧転写して配置する工程、導電性粒子配置面を、他の接着剤フィルムのラミネートもしくは熱ロールによる接着フィルムへの埋め込みにより導電性粒子を接着フィルムに固定する工程、上記手段を経た接続部材を長尺状巻重体とする工程、よりなる導電性粒子を接着剤層で被覆固定してなる長尺状の接続部材の製造方法。 A process of forming a dense area of conductive particles on the main surface of the cylindrical rotating body with a metal mask or gravure printing, and there are three or more conductive particles on the surface of the curable adhesive film that faces the cylindrical rotating body. A step of pressure-transferring and arranging the dense area to be formed, a step of fixing the conductive particle placement surface to the adhesive film by laminating another adhesive film or embedding in the adhesive film with a heat roll, the above means a step of the connecting member and the elongate the rolled passed through the manufacturing method of the elongated connecting member formed by coating fixed to become more conductive particles in the adhesive layer. 導電性粒子が絶縁被覆粒子である請求項1記載の長尺状の接続部材の製造方法。  The method for producing a long connection member according to claim 1, wherein the conductive particles are insulating coating particles.
JP2002292499A 2002-10-04 2002-10-04 Manufacturing method of connecting member Expired - Fee Related JP3994335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292499A JP3994335B2 (en) 2002-10-04 2002-10-04 Manufacturing method of connecting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292499A JP3994335B2 (en) 2002-10-04 2002-10-04 Manufacturing method of connecting member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01371493A Division JP3472987B2 (en) 1993-01-29 1993-01-29 Manufacturing method of connecting member and manufacturing apparatus therefor

Publications (2)

Publication Number Publication Date
JP2003217354A JP2003217354A (en) 2003-07-31
JP3994335B2 true JP3994335B2 (en) 2007-10-17

Family

ID=27655717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292499A Expired - Fee Related JP3994335B2 (en) 2002-10-04 2002-10-04 Manufacturing method of connecting member

Country Status (1)

Country Link
JP (1) JP3994335B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421263B (en) 2014-11-17 2022-10-25 迪睿合株式会社 Anisotropic conductive film, connection structure, and method for producing same
JP6759578B2 (en) * 2014-12-22 2020-09-23 デクセリアルズ株式会社 Heteroconductive film and connecting structures
JP2024146277A (en) * 2023-03-31 2024-10-15 デクセリアルズ株式会社 Filler-arranged film and its manufacturing method, and connection structure and its manufacturing method

Also Published As

Publication number Publication date
JP2003217354A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
TWI386140B (en) Flexible multilayer circuit board
CN105358642B (en) Manufacturing method, the manufacturing method of electric conductivity adhesive film, connector of electric conductivity adhesive film
US20020045394A1 (en) Wiring board and a process of producing a wiring board
JPH1154927A (en) Composite wiring board, flexible board, semiconductor device and manufacture of composite wiring board
JP3472987B2 (en) Manufacturing method of connecting member and manufacturing apparatus therefor
CN100411163C (en) Cof semiconductor device and a manufacturing method for the same
JP3582654B2 (en) Connection member
JP3994335B2 (en) Manufacturing method of connecting member
JP3562615B2 (en) Anisotropic conductive film-like connecting member and method of manufacturing the same
JP2000133916A (en) Formation material for wiring pattern transfer, manufacture of formation material for wiring pattern transfer, wiring board using formation material for wiring pattern transfer and manufacture thereof
JP4282097B2 (en) Circuit board connection method, connection structure, and adhesive film used therefor
TWI500513B (en) Bonding sheet,flexible substrate,flexible printed circuit board and method for manufacturing same
JPH1174640A (en) Manufacture of printed wiring board
JP2008124029A (en) Connecting member
JP4579360B2 (en) Wiring board and manufacturing method thereof
JPH11121073A (en) Connecting member and its manufacture
JP2000277922A (en) Multilayer printed interconnection board and manufacture thereof
JP2003249765A (en) Multilayer interconnection board
KR101345084B1 (en) ACF and conductive particle and its manufacturing
JPH07220539A (en) Manufacture of anisotropic conductive sheet
JP4570225B2 (en) Film with metal foil and method for producing multilayer wiring board using the same
KR102002002B1 (en) Manufacturing Method of Transfer Printed Circuit Board Using Temporary Bonding and De-bonding Adhesives
JP2004241424A (en) Wiring board
JPH06152138A (en) Multilayer wiring board
JP2004259961A (en) Method of manufacturing wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees