JP3983956B2 - Multistage multipole lens system and electron energy analyzer using the same - Google Patents
Multistage multipole lens system and electron energy analyzer using the same Download PDFInfo
- Publication number
- JP3983956B2 JP3983956B2 JP2000131745A JP2000131745A JP3983956B2 JP 3983956 B2 JP3983956 B2 JP 3983956B2 JP 2000131745 A JP2000131745 A JP 2000131745A JP 2000131745 A JP2000131745 A JP 2000131745A JP 3983956 B2 JP3983956 B2 JP 3983956B2
- Authority
- JP
- Japan
- Prior art keywords
- pole
- lens
- multistage
- magnetic
- lens system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electron Tubes For Measurement (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電子顕微鏡用のエネルギーアナライザーに用いる多段多重磁極子レンズ系及びそれを用いた電子エネルギー分析器に係り、特に、試料の微小部の観察と元素分析を行う分析電子顕微鏡に使われる電子エネルギー分析器の収束特性を改善するのに適した多段多重磁極子レンズ系及びそれを用いた電子エネルギー分析器に関する。
【0002】
【従来の技術】
従来の電子顕微鏡に扇形磁場のエネルギーアナライザーを取り付けて、試料を透過した電子のエネルギー分析をすることにより、試料の微小部の拡大像をより鮮明にしたり、元素分析や特定元素のマッピング像を得ることができる。この場合、従来は、エネルギー分散を大きくして分解能を向上するために、扇形磁場の前後に複数の4重磁極子レンズを設置している。その具体例は、例えば、米国特許4,743,756号, PARALLEL DETECTION ELECTRON ENERGY-LOSS SPECTROMETER, (May, 10, 1988)に開示されている。
【0003】
また、2次収差を除去するためにさらに6重磁極子レンズを連結する場合がある。その具体例として、例えば、特開平11−96955号公報(97,9,19出願)に、平行検出形エネルギー損失分析器が開示されている。その構成を図6の(A)、(B)に示す。扇形磁場の前後に、4重磁極子レンズと6重磁極子レンズを組み合わせて分散を拡大し収束するとともに、2次収差を除去する電子光学系である。10は電子ビーム、11は電子顕微鏡により作られたクロスオーバ、12は扇形磁場、13は4重磁極子レンズ、14は6重磁極子レンズ、15は6重磁極子レンズ、16は4重磁極子レンズ、17は2重磁極子レンズ、18はダイオードアレイ検知器である。
【0004】
この構成の機能は、扇形磁場12だけのエネルギー分散では不十分なので、磁場出射後に設置された4重磁極子レンズ(Q2)16を働かせることにより、分散能を大きく変え、扇形磁場入り口の4重磁極子レンズ(Q1)13でダイオードアレイ検知器に収束させる。しかしQ2で分散を拡大すると、ビームの広がり角に関わる2次収差が増大し分解能も低下するので、2段の6重磁極子レンズ(H1)14と、(H2)15を適正に作動することによりにより、これらの2次収差を除去して、エネルギー分解能を向上することができるが、4重磁極子レンズと6重磁極子レンズは中心軸が一致することが必要である。
【0005】
【発明が解決しようとする課題】
しかし、構成が複雑になるに従い、実用面で種々の課題が発生する。すなわち、従来は、個々のレンズを組み立てて、中心に備えられた真空容器のパイプに沿って配置していた。また個々の多重磁極子は別々のヨークに組み込まれる構造であった。そのため、次のような課題があった。
【0006】
▲1▼ 個々の多重磁極子レンズ間の組み立て誤差により、それぞれの中心軸間にずれが生じ、そのために軸ずれ収差が発生する。
▲2▼ ヨークに組み込まれた個々の磁極子間の非対称性による組み立て誤差が生じ、収束性を低下させる可能性がある。
▲3▼ 機械的な軸調整機構を付加する場合、個々の多重磁極子レンズを微動させる機構が必要になり、調整個所が多くなる。
▲4▼ 部品点数が多く、組み立て誤差ばかりでなく、生産コストも高くなり、調整時間が多くなる。
【0007】
本発明の目的は、以上の各課題を解決した多段多重磁極子レンズ系及びそれを用いた電子エネルギー分析器を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、多段の多重磁極子レンズを直線状に組み合わせて荷電粒子ビームの収束特性を向上するレンズ系において、上記の多段のレンズの磁路(ヨーク)が1体で共用する構造を有することを特徴とする。
本発明の他の特徴は、上記多段のレンズの磁路(ヨーク)が1体に構成された多段の多重極子レンズ系において、各多重磁極子レンズの間に磁気シールド部がレンズ磁路と一体構造を有することにある。
本発明の他の特徴は、上記多段のレンズの磁路(ヨーク)が1体に構成された多段多重極子レンズ系において、多重磁極子レンズが2重磁極子、4重磁極子、6重磁極子の内のどれかの組み合わせであることにある。
【0009】
本発明の他の特徴は、上記多段多重磁極子レンズが、電子顕微鏡の下部のエネルギー分析器の扇形磁極の入射側と出射側に設置された多段多重磁極子レンズ付き電子エネルギー分析器にある。
本発明の他の特徴は、上記多段多重磁極子レンズが、電子顕微鏡の下部のエネルギー分析器の扇形磁極の入射側と出射側に設置された4重磁極子レンズと6重磁極子レンズの組み合わせである電子エネルギー分析器にある。
【0010】
本発明によれば、複数の多重磁極子レンズ系を1つの磁路に組み込み、磁極子間の位置固定治具を絶縁材にしたことにより、前記各課題を解決した多段多重磁極子レンズ系及びそれを用いた電子エネルギー分析器を提供することができる。
【0011】
【発明の実施の形態】
以下、本発明の多段多重磁極子レンズ系の実施の形態を説明する。
比較的近接して直列に並べる多重磁極子レンズ系を製作する場合は、ヨークを共通にすることができる。まず、複数の多重磁極子レンズが異なる磁場を形成する場合はそれぞれの場に他の場が重畳しないように磁気シールドが必要である。
【0012】
共通のヨークに異なる多重磁極子、たとえば4重磁極子と6重磁極子と磁気シールドを一体に組み合わせた本発明の多段多重磁極子レンズ系の斜視図を図1に示す。また、その縦断面を図2に示す。図において、1は共通のヨーク、2は1段目の多重(4重)磁極子、3はその励磁コイル、4は磁気シールド部、5は2段目の多重(6重)磁極子、6はその励磁コイル、7、7’は磁極子の取り付けネジ、8は真空容器用パイプである。
【0013】
共通ヨーク1は円筒形状を有しており、磁気シールド4が中心に穴の空いた竹の節状の一体構造である。それぞれの多重磁極子2,5と、それぞれの励磁用コイル3,6は、ヨークの側面に精度よく等間隔に空けられた穴に組み込まれ、磁極子の取り付けネジ7、7’によってヨークと固定される。レンズの中央には真空容器としてのパイプ8が設置され、真空排気系(省略)に接続され、その中を荷電粒子ビームが通過する構造になっている。
【0014】
図2の断面図によれば、2段のレンズ系のヨーク1と磁気シールド4は1体構造になっている様子と、各磁極子がヨーク1の周りに空けた穴にネジ7、7’で取り付けられている構造が明示されている。
しかし、図1、図2の構成だけでは、各磁極子の組み立て精度は必ずしも十分には得られない。機械精度はビームが通過する再近傍で必要になるのでそれぞれの磁極子を等間隔にするための治具が有効である。
【0015】
本発明の多重磁極子レンズにおいては、ヨークにコイルと磁極子を組み込んだ後、各磁極子の形状に形状を高精度で削り取った非磁性体(たとえばアルミや燐青銅など)の位置固定治具を組み込む。
【0016】
真空容器のパイプ8には荷電粒子に対して加速電圧を印可して、扇形磁場によるエネルギー選択やスペクトルを取る機能を持たせる場合がある。一般に多重磁極子は接地電位で使用するので、真空パイプと磁極の間を電気絶縁する必要がある。この場合は放電を防止するために治具の材料を絶縁物(たとえば硬質樹脂)にする。
【0017】
【実施例】
本発明の多重磁極子レンズの実施例として、4重磁極子レンズの横断面を図3に示す。9は磁極子間の位置固定治具、10は荷電粒子ビームの位置である。従来のレンズは磁路1に磁極子2を取り付けるのみであったので、磁極子の先端の組み立て精度は十分ではなかったが、精密加工された位置固定治具9を加えることにより各磁極子間の取り付け精度は改善される。
【0018】
図4に、本発明を平行検出形エネルギー分析器において実施した例を示す。12は扇形磁石、19は扇形磁場用分析管、20は入り口側に設置された本発明の多段多重磁極子レンズ系、21は出口側の多段多重極子レンズ系、、22はビームの絞り機構、23は真空容器パイプへの加速電圧の印加端子、24、25はそれぞれのレンズ系の位置微動調整用のネジ、26,27はレンズ収納ケース、28はレンズ用電流端子である。多段多重磁極子レンズ系とレンズ収納ケースの間に微動範囲の空間を空けて、ケースに取り付けられた微動位置調性用ネジでレンズ系の位置を最適化することができる。
【0019】
この微動位置調部分(出口側)の拡大図を、図5に示す。上部が真空容器で下部がレンズ収納容器と磁気シールドの機能を兼ねた鉄鋼製のレンズ収納ケース26と、多段多重磁極子レンズ系21はその収納ケースに取り付けられた8本の調整ネジ25によってビーム10に対する位置と角度が調整される。レンズ系は大気中にあるが、真空容器パイプ内8は上下のフランジ29、30によってOリングを介して真空封じされる。
【0020】
本発明の実施例の平行検出形エネルギー分析器によれば、直線状に並ぶ多重磁極子の磁路を共通にして、機械加工精度と組み立て精度を高め、ビームの軸にレンズ系の直線中心軸を合わせる機構を設けたため、個々のレンズの組み込み誤差を、共通の磁路に組み込むことにより、レンズ間の組み立て精度を高めることができる。
【0021】
【発明の効果】
本発明によれば、下記のような効果を有する、多段多重磁極子レンズ系及びそれを用いた電子エネルギー分析器が得られる。
1) 磁気シールド部と一体加工された共通ヨークに多段の多重磁極子レンズを組み込んだ場合は、ヨークの加工精度は10ミクロンオーダなので、相互の取り付け精度は個々のレンズを組み立てるより改善される。
2) ヨークの部品点数が1/3になる。
3) 多重磁極子に巻いているコイルの電流を変えることにより各レンズ場は独立に設定できるので、従来と変わらないレンズ機能が選られる。
4) 多重磁極子間の取り付け精度は、精密加工された位置固定治具9を追加することで改善される。
5) 特に、多重磁極子レンズ内の真空容器パイプ8に電圧を印可してビームを加速する場合は位置固定治具の材質を絶縁物(硬質樹脂など)にすることによりパイプと磁極子間の放電を防止することができる。
6) 一体構造のレンズ系全体を真空パイプに対して微動させる場合、従来個々に微動調整ていたが、一つの機構でレンズ系が微動調整ができる。
【図面の簡単な説明】
【図1】 本発明を適用した多段多重磁極子レンズ系の外観斜視図である。
【図2】 本発明を適用した多段多重磁極子レンズ系の縦断面図である。
【図3】 本発明の一実施例になる4重磁極子レンズの実施例の横断面図である。
【図4】 本発明の一実施例になるエネルギーアナライザーの縦断面図である。
【図5】 図4の実施例の微動調整機構の拡大図である。
【図6】 従来の2段4重磁極子レンズと6重磁極子レンズを組み合わせたエネルギーアナライザーの実施例を示す図である。
【符号の説明】
1…共通のヨーク、2…1段目の多重磁極子レンズ、3…その励磁コイル、4…磁気シールド部、5…2段目の多重磁極子レンズ、6…その励磁コイル、7…磁極子の取り付けネジ、8…真空容器のパイプ、9…磁極間の位置固定治具、10…ビームの位置、11…ビームのクロスオーバ、12…扇形磁場、13…扇形磁場の入口側の4重磁極子レンズ、14…入口側の6重磁極子レンズ、15…出口側の6重磁極子レンズ、16…出口側の4重磁極子レンズ、17…入口側の2重磁極子レンズ、18…ダイオードアレイ検出器、19…扇形磁場用分析管、20…入口側の多段多重磁極子レンズ系、21…出口側の多段多重磁極子レンズ系、22…ビーム絞り、23…加速電圧印加端子、24…入り口側のレンズ系軸微調用ネジ、25…出口側のレンズ系軸微調用ネジ、26…入り口側レンズ収納ケース、27…出口側レンズ収納ケース、28…レンズ系電流端子、29,30…真空シールフランジ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multistage multipole lens system used for an energy analyzer for an electron microscope and an electron energy analyzer using the same, and more particularly to an electron used in an analytical electron microscope for observing a micro part of a sample and performing elemental analysis. The present invention relates to a multistage multipole lens system suitable for improving the convergence characteristics of an energy analyzer and an electron energy analyzer using the same.
[0002]
[Prior art]
By attaching a sector magnetic field energy analyzer to a conventional electron microscope and analyzing the energy of electrons transmitted through the sample, the magnified image of the minute part of the sample becomes clearer, and elemental analysis and mapping images of specific elements are obtained. be able to. In this case, conventionally, in order to increase energy dispersion and improve resolution, a plurality of quadrupole lenses are installed before and after the sector magnetic field. Specific examples thereof are disclosed in, for example, US Pat. No. 4,743,756, PARALLEL DETECTION ELECTRON ENERGY-LOSS SPECTROMETER, (May, 10, 1988).
[0003]
In some cases, a hexapole lens is further connected to remove secondary aberration. As a specific example, a parallel detection type energy loss analyzer is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-96955 (applications 97, 9, 19). The configuration is shown in FIGS. 6A and 6B. This is an electron optical system that combines a quadrupole magnetic lens and a hexapole magnetic lens before and after the sector magnetic field to expand and converge the dispersion and remove secondary aberrations. 10 is an electron beam, 11 is a crossover created by an electron microscope, 12 is a fan-shaped magnetic field, 13 is a quadrupole magnetic lens, 14 is a 6-pole magnetic lens, 15 is a 6-pole magnetic lens, 16 is a quadrupole magnetic pole A child lens, 17 is a double pole lens, and 18 is a diode array detector.
[0004]
The function of this configuration is not sufficient with the energy distribution of the sector
[0005]
[Problems to be solved by the invention]
However, as the configuration becomes complicated, various problems occur in practical use. That is, conventionally, individual lenses are assembled and arranged along a vacuum container pipe provided at the center. In addition, each multiple magnetic pole element is structured to be incorporated in a separate yoke. Therefore, there were the following problems.
[0006]
{Circle around (1)} Due to an assembly error between the individual multiple magnetic pole lenses, a deviation occurs between the respective central axes, which causes an axial deviation aberration.
{Circle around (2)} Assembling errors due to asymmetry between individual magnetic poles incorporated in the yoke may occur, which may reduce convergence.
{Circle around (3)} When a mechanical axis adjustment mechanism is added, a mechanism for finely moving individual multipole lenses is required, and the number of adjustment points increases.
(4) The number of parts is large, not only assembly errors but also production costs are increased, and adjustment time is increased.
[0007]
An object of the present invention is to provide a multistage multipole lens system and an electron energy analyzer using the multistage multipole lens system that solve the above problems.
[0008]
[Means for Solving the Problems]
The present invention has a structure in which the magnetic path (yoke) of the multi-stage lens is shared by a single body in a lens system that improves the convergence characteristics of the charged particle beam by combining multi-stage multi-pole lenses in a straight line. It is characterized by.
Another feature of the present invention is that in the multistage multipole lens system in which the magnetic path (yoke) of the multistage lens is formed as a single body, a magnetic shield portion is integrated with the lens magnetic path between each multipole lens. It has a structure.
Another feature of the present invention is that in the multistage multipole lens system in which the magnetic path (yoke) of the multistage lens is formed as a single body, the multipole lens is a double pole element, a quadrupole pole element, a hexapole pole. It is a combination of any of the children.
[0009]
Another feature of the present invention resides in an electron energy analyzer with a multistage multipole lens in which the multistage multipole lens is installed on the incident side and the exit side of the fan-shaped magnetic pole of the energy analyzer below the electron microscope.
Another feature of the present invention is that the multistage multipole lens is a combination of a quadrupole magnetic lens and a hexapole magnetic pole lens installed on the incident side and the outgoing side of the fan-shaped magnetic pole of the energy analyzer below the electron microscope. Is in the electron energy analyzer.
[0010]
According to the present invention, a multi-stage multi-pole lens system and a multi-stage multi-pole lens system that solves each of the above problems by incorporating a plurality of multi-pole magnetic lens systems into one magnetic path and using a position fixing jig between the magnetic poles as an insulating material, and An electron energy analyzer using the same can be provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the multistage multipole lens system of the present invention will be described below.
When manufacturing a multi-pole lens system arranged in series relatively close to each other, a common yoke can be used. First, when a plurality of multiple magnetic pole lenses form different magnetic fields, a magnetic shield is required so that other fields do not overlap each other.
[0012]
FIG. 1 is a perspective view of a multi-stage multi-pole lens system of the present invention in which different multi-pole elements such as a quadrupole pole pole, a six-pole pole pole, and a magnetic shield are integrally combined with a common yoke. A longitudinal section thereof is shown in FIG. In the figure, 1 is a common yoke, 2 is a first stage multiple (quadrupole) pole, 3 is its exciting coil, 4 is a magnetic shield, 5 is a second stage multiple (sixfold) pole, 6 Is an exciting coil, 7 and 7 'are magnetic pole mounting screws, and 8 is a vacuum vessel pipe.
[0013]
The common yoke 1 has a cylindrical shape, and is a bamboo knot-like integral structure with a hole in the center of the
[0014]
According to the cross-sectional view of FIG. 2, the two-stage lens system yoke 1 and
However, the assembly accuracy of each magnetic pole cannot always be obtained with the configuration of FIGS. 1 and 2 alone. Since mechanical accuracy is required in the vicinity where the beam passes, a jig for equalizing the magnetic poles is effective.
[0015]
In the multiple magnetic pole lens of the present invention, a position fixing jig for a non-magnetic material (for example, aluminum or phosphor bronze) obtained by incorporating a coil and a magnetic pole into a yoke and then scraping the shape of each magnetic pole with high accuracy Incorporate
[0016]
In some cases, the
[0017]
【Example】
FIG. 3 shows a cross section of a quadrupole lens as an example of the multipole lens of the present invention. 9 is a position fixing jig between the magnetic poles, and 10 is the position of the charged particle beam. Since the conventional lens only attaches the
[0018]
FIG. 4 shows an example in which the present invention is implemented in a parallel detection type energy analyzer. 12 is a sector magnet, 19 is a sector magnetic field analysis tube, 20 is a multistage multipole lens system of the present invention installed on the entrance side, 21 is a multistage multipole lens system on the exit side, 22 is a beam stop mechanism, 23 is a terminal for applying an acceleration voltage to the vacuum vessel pipe, 24 and 25 are screws for adjusting the fine position of each lens system, 26 and 27 are lens storage cases, and 28 is a lens current terminal. It is possible to optimize the position of the lens system with a fine adjustment position adjusting screw attached to the case by leaving a space in the fine adjustment range between the multistage multi-pole lens system and the lens housing case.
[0019]
FIG. 5 shows an enlarged view of the fine adjustment position adjustment portion (exit side). A steel
[0020]
According to the parallel detection type energy analyzer of the embodiment of the present invention, the magnetic paths of the multiple magnetic poles arranged in a straight line are made common to improve machining accuracy and assembly accuracy, and the linear axis of the lens system is used as the beam axis. Since the mechanism for matching the lens is provided, the assembly accuracy between the lenses can be improved by incorporating the incorporation error of each lens into a common magnetic path.
[0021]
【The invention's effect】
According to the present invention, it is possible to obtain a multistage multipole lens system and an electron energy analyzer using the same having the following effects.
1) When a multi-stage multi-pole lens is incorporated in a common yoke integrally processed with the magnetic shield portion, the processing accuracy of the yoke is on the order of 10 microns, so that the mutual mounting accuracy is improved as compared with assembling individual lenses.
2) The number of yoke parts is reduced to 1/3.
3) Since each lens field can be set independently by changing the current of the coil wound around the multi-pole, a lens function that is not different from the conventional lens function is selected.
4) The mounting accuracy between the multiple magnetic poles can be improved by adding a precision-processed position fixing jig 9.
5) In particular, when applying a voltage to the
6) When the entire lens system of the integral structure is finely moved with respect to the vacuum pipe, fine adjustment is conventionally performed individually, but the lens system can be finely adjusted with one mechanism.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a multistage multipole lens system to which the present invention is applied.
FIG. 2 is a longitudinal sectional view of a multistage multi-pole lens system to which the present invention is applied.
FIG. 3 is a cross-sectional view of an embodiment of a quadrupole lens according to an embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of an energy analyzer according to one embodiment of the present invention.
5 is an enlarged view of the fine adjustment mechanism of the embodiment of FIG.
FIG. 6 is a diagram showing an example of an energy analyzer in which a conventional two-stage quadrupole lens and a six-pole magnetic lens are combined.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Common yoke, 2 ... First stage multiple pole lens, 3 ... Excitation coil, 4 ... Magnetic shield part, 5 ... Second stage multiple pole lens, 6 ... Excitation coil, 7 ...
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000131745A JP3983956B2 (en) | 2000-04-28 | 2000-04-28 | Multistage multipole lens system and electron energy analyzer using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000131745A JP3983956B2 (en) | 2000-04-28 | 2000-04-28 | Multistage multipole lens system and electron energy analyzer using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001312988A JP2001312988A (en) | 2001-11-09 |
JP3983956B2 true JP3983956B2 (en) | 2007-09-26 |
Family
ID=18640584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000131745A Expired - Fee Related JP3983956B2 (en) | 2000-04-28 | 2000-04-28 | Multistage multipole lens system and electron energy analyzer using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3983956B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006127879A (en) * | 2004-10-28 | 2006-05-18 | Jeol Ltd | Multi-pole |
JP5028181B2 (en) | 2007-08-08 | 2012-09-19 | 株式会社日立ハイテクノロジーズ | Aberration corrector and charged particle beam apparatus using the same |
JP6276101B2 (en) * | 2014-04-17 | 2018-02-07 | 日本電子株式会社 | Multipole lens, aberration correction device, and electron microscope |
-
2000
- 2000-04-28 JP JP2000131745A patent/JP3983956B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001312988A (en) | 2001-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6191423B1 (en) | Correction device for correcting the spherical aberration in particle-optical apparatus | |
US6580073B2 (en) | Monochromator for charged particles | |
US7834326B2 (en) | Aberration corrector and charged particle beam apparatus using the same | |
EP1381073B1 (en) | Aberration-corrected charged-particle optical apparatus | |
US5448063A (en) | Energy filter with correction of a second-order chromatic aberration | |
US9425022B2 (en) | Monochromator and charged particle apparatus including the same | |
CZ301532B6 (en) | Corpuscular radiation system | |
KR19990028770A (en) | Correction apparatus for correcting lens aberrations in particle-optical devices | |
US4536652A (en) | Hybrid mass spectrometer | |
US6930312B2 (en) | Charged-particle beam instrument and method of correcting aberration therein | |
US6844548B2 (en) | Wien filter and electron microscope using same | |
US7372019B2 (en) | ICP mass spectrometer | |
US4823003A (en) | Charged particle optical systems having therein means for correcting aberrations | |
JPH02230647A (en) | Multi-position device and its manufacture | |
JP3983956B2 (en) | Multistage multipole lens system and electron energy analyzer using the same | |
US8373137B2 (en) | High resolution energy-selecting electron beam apparatus | |
US6593578B1 (en) | Wien filter for use in a scanning electron microscope or the like | |
JP5521255B2 (en) | Magnetic achromatic mass spectrometer with double focusing | |
WO2020153074A1 (en) | Multistage-connected multipole, multistage multipole unit, and charged particle beam device | |
Tsuno et al. | Third‐order aberration theory of Wien filters for monochromators and aberration correctors | |
US9396904B2 (en) | Multipole lens, method of fabricating same, and charged particle beam system | |
JP7133089B2 (en) | Charged particle beam device | |
Ogawa et al. | A novel monochromator with double cylindrical lenses | |
JPH1196955A (en) | Parallel detection energy loss analyzer | |
JPH0575280B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031201 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040924 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070619 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070705 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |