JP3979582B2 - 燃料電池用の冷却水循環供給システム - Google Patents
燃料電池用の冷却水循環供給システム Download PDFInfo
- Publication number
- JP3979582B2 JP3979582B2 JP2002170757A JP2002170757A JP3979582B2 JP 3979582 B2 JP3979582 B2 JP 3979582B2 JP 2002170757 A JP2002170757 A JP 2002170757A JP 2002170757 A JP2002170757 A JP 2002170757A JP 3979582 B2 JP3979582 B2 JP 3979582B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- fuel cell
- amount
- valve
- supply system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は、燃料電池を冷却する燃料電池用の冷却水循環供給システムに関し、更に詳しくは、冷却水の電気伝導度を低く維持するためにイオン交換器を設けた燃料電池用の冷却水循環供給システムに関する。
【0002】
【従来の技術】
一般に、燃料電池を直接冷却水を用いて冷却する燃料電池用の冷却水循環供給システムにおいては、冷却水を介した液絡現象を防止するため、冷却水には高度な電気絶縁性が要求される。
そのためイオン交換器を冷却水循環経路のバイパス経路に設け、全循環流量のうちの一定割合の冷却水を前記イオン交換器のイオン交換樹脂層に通水・循環させて冷却水中の電離イオンを分離することによって冷却水の電気絶縁性を維持しており、その通水量をシステムの状況に応じて増減することも知られている。
【0003】
冷却水の電気絶縁性を維持するために、イオン交換器に通水させることが必要な流量は、その時点の冷却水の電気伝導度、及びシステム全体から発生するイオン量により決まる。
一般に、冷却水循環供給システム全体から発生するイオン量は、極力少なくなる様に材料仕様等が選定されているため、冷却水の温度が安定し電気伝導度が低い場合には、イオン交換器への通水量は少なくて済む。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の燃料電池用の冷却水循環供給システムは、以下のような問題があった。
(1)冷却水の電気伝導度が液絡現象により問題が発生する領域内、又はそれに近い場合には速やかに電気伝導度を低下させる必要があるので、イオン交換器への通水量を早急に増やす必要が生じ、そのため循環経路には大量の循環流量が必要となる。
(2)また、冷却水(純水等)には温度上昇に伴い電気伝導度が上昇する特性があるため、システムを起動・暖機する過程での水温上昇に伴い電気伝導度が高くなるときには、問題が発生する領域に達しないように、循環経路の循環流量を増加させることが必要となる。
【0005】
(3)さらに、イオン交換器に使用されるイオン交換樹脂は、一般に高温時に熱分解を起こし、イオン交換容量を減じてしまう性質があるため、電気伝導度に加えて通水温度も考慮した上でイオン交換器への通水量を制御するのがイオン交換樹脂の寿命の点からは望ましい。
(4)また、従来技術として、循環経路のバイパス経路に、イオン交換器と前記イオン交換器への通水量を制御可能な弁とを設け、前記循環経路に設けた電気伝導度検知手段からの信号に基づき前記弁の開閉制御を行うものがあるが、イオン交換器への通水量の増量時に、燃料電池の入口−出口間の冷却水の温度差を適性値以内に保つための必要流量を確実に確保するには冷却水循環供給システム全体の循環流量を余裕を持って設定する必要があり、このために、
▲1▼冷却水循環ポンプの大型化
▲2▼冷却水循環供給システム全体の消費電力の増大
の原因となっていた。
【0006】
本発明は、前記課題を解決するためになされたものであって、循環経路に冷却水を循環させる冷却水循環ポンプを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる燃料電池用の冷却水循環供給システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するためになされた請求項1に記載された燃料電池用の冷却水循環供給システムは、燃料電池に対して冷却水を循環させる循環経路と、前記循環経路に、冷却水を循環させる冷却水循環ポンプと、冷却水を冷却する冷却器と、この冷却器への冷却水の配分量を増減することによって前記燃料電池へ供給する冷却水の水温を調整する温度調整装置とを有し、さらに前記循環経路に前記燃料電池を迂回するバイパス経路を設けて、このバイパス経路に冷却水の電気伝導度を低く維持するためのイオン交換器を設けると共に、前記イオン交換器への通水量を制御する弁を設け、前記冷却水循環ポンプで冷却水を循環させながら前記燃料電池に供給して前記燃料電池を冷却する燃料電池用の冷却水循環供給システムにおいて、前記温度調整装置の作動状態に応じて前記弁の開閉を制御して、前記燃料電池と前記イオン交換器への冷却水の配分量を制御することを特徴とするものである。
【0008】
請求項1に記載された発明によると、温度調整装置の作動状態、すなわち冷却器への冷却水の配分量(燃料電池の放熱要求量)に応じて、バイパス経路に設けた弁の開閉(イオン交換器への通水量)を制御することにより、燃料電池の冷却を維持するのに必要な冷却水量を確保することができ、しかもイオン交換器へ通水することもできる。
また、冷却器への冷却水の配分量を知った上でイオン交換器への通水量を制御するようにしたことで、従来のように循環経路の循環流量に余裕を持って循環させる必要がないので、冷却水循環供給システム全体の循環流量を減らすことができる。
従って、冷却水循環ポンプを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる。
【0009】
請求項2に記載された燃料電池用の冷却水循環供給システムは、前記温度調整装置が前記冷却器へ冷却水を通水しているときは、前記弁が前記イオン交換器への冷却水の配分量を所定値以下に制限することを特徴とする請求項1に記載の燃料電池用の冷却水循環供給システムである。
【0010】
請求項2に記載の発明によると、前記温度調整装置が前記冷却器へ冷却水を通水しているとき、すなわち燃料電池を冷却しているときは、前記弁により前記イオン交換器への冷却水の配分量を所定値以下に制限して、イオン交換器側から燃料電池側へ冷却水を戻してやることで、燃料電池の冷却を維持するのに必要な冷却水量を確保することができる。
【0011】
請求項3に記載された燃料電池用の冷却水循環供給システムは、前記弁による冷却水の制限量は、前記燃料電池の運転状態に応じて調節されることを特徴とする請求項2に記載の燃料電池用の冷却水循環供給システムである。
【0012】
請求項3に記載の発明によると、前記弁の制限量を、前記燃料電池の運転状態(発電量、水温、冷却水循環ポンプの作動量等)に応じて調節することにより、燃料電池の冷却を維持するために必要な冷却水量とイオン交換器へ通水する冷却水量との配分を最適化することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図1〜図6を参照して説明する。
尚、図1は、本発明に係る燃料電池用の冷却水循環供給システムの一実施形態を示す全体の構成図、図2は、一実施形態の燃料電池用の冷却水循環供給システムにおいてイオン交換器への通水量を制御する場合の制御フローチャート、図3は、本発明に係るサーモスタットバルブの開弁特性を示す図、図4は、本発明に係る冷却水循環ポンプの出力に対する冷却水の全循環流量を示す図、図5は、冷却水の全循環流量に対するイオン交換器への通水量を示す図、図6は、一実施形態の燃料電池用の冷却水循環供給システムを車両に搭載した場合の冷却水の温度、サーモスタットバルブのリフト量、アクセル開度(負荷)の時間に対するそれぞれの経時変化を示す図である。
【0014】
最初に図1を参照して一実施形態の燃料電池用の冷却水循環供給システムについて説明する。
本発明に係る一実施形態の燃料電池用の冷却水循環供給システム1は、図1に示すように、
アノード極に供給される燃料ガスとカソード極に供給される酸化剤ガスとの電気化学反応により発電する燃料電池2には、前記燃料電池2内へ冷却水を通流させて燃料電池2を冷却するために冷却水の入口2aと出口2bとが設けられている。この冷却水の入口2aと出口2bには、冷却水を循環させるための循環経路3が接続されている。
循環経路3には、冷却水を循環するための冷却水循環ポンプ3aと、冷却水を冷却する冷却器としてのラジエータ3bと、前記ラジエータ3bへの冷却水の配分量を増減することで燃料電池2へ供給する冷却水の温度を調整する温度調整装置としてのサーモスタットバルブ3cとが順番に設けられている。
また、燃料電池2の入口2a近傍の循環経路3には、冷却水の電気伝導度を検知するための電気伝導度検知手段として電気伝導度センサ3e及び冷却水の温度を検知するための温度検知手段として温度センサ3dが設けられている。
【0015】
循環経路3にはラジエータ3bの上流で分岐しサーモスタットバルブ3cに接続される第一バイパス経路4が設けられている。この第一バイパス経路4は燃料電池2ヘ供給する冷却水をラジエータ3bで冷却する必要がない場合(燃料電池の放熱要求量が0の場合)には、サーモスタットバルブ3cの切り替えによって直接燃料電池2へ冷却水を供給する。
また、冷却水の電気伝導度を低く保持するため、前記サーモスタットバルブ3cの下流側に設けられた前記燃料電池2への流れを迂回するバイパス経路である第二バイパス経路5には、2種類のイオン交換樹脂、すなわちカチオン交換樹脂及びアニオン交換樹脂を充填したイオン交換器5aと前記イオン交換器5aへの通水量を制御する弁5bとが設けられている。
【0016】
さらにサーモスタットバルブ3cの作動状態、冷却水の温度、燃料電池の発電量、冷却水循環ポンプの出力、電気伝導度等の電気入力信号に基づいて前記弁5bの開閉を制御する制御装置6が設けられている。ここで使用される制御装置6は、電気的制御回路、又は、RAM、ROM、CPU(又はMPU)及びI/O等を中心として構成されたマイクロコンピュータからなる電子制御装置である。
この制御装置6の入力部には燃料電池2の出力に関する電気信号が入力されこれらの入力信号により燃料電池用の冷却水循環供給システム1が制御される。
【0017】
次に、このような構成からなる一実施形態の燃料電池用の冷却水循環供給システムにおいて発明の要部で使用されるサーモスタットバルブ3cについて説明する。
本実施形態で使用されるサーモスタットバルブ3cは、別名ワックス弁とも言われ、冷却水の温度が高いと弁体に封じこまれたワックスの粘度が低下し、弁のリフト量が変化することで流量を制御するボトムバイパス式の三方弁である。
【0018】
このようなサーモスタットバルブ3cの開弁特性について図3を参照して説明する。尚、図3の横軸は冷却水の温度、縦軸はサーモスタットバルブのリフト量である。図3からも判るように、サーモスタットバルブ3cの冷却水の温度に対するリフト量との関係は、微小なヒステリシス特性を示す。
本実施の形態では、サーモスタットバルブ3cの作動状態、すなわちラジエータ3bへの冷却水の配分量は、図3の開弁特性と冷却水の温度とから推測したリフト量から求めているが、図示しないリフトセンサで計測したサーモスタットバルブ3cの開弁量から求めるようにしても良い。
【0019】
このように構成される一実施形態の燃料電池用の冷却水循環供給システムにおいて、第二バイパス経路に設けたイオン交換器への通水量を弁で制御する場合の制御方法について図1から図5を参照して説明する。尚、説明は図2のイオン交換器への通水量を制御する場合の流量制御フローチャートに沿って行う。
(1)サーモスタットバルブ3cの作動状態、冷却水の温度、燃料電池2の発電量、冷却水循環ポンプ3aの出力、冷却水の電気伝導度を電気入力信号として制御装置6に読み込む(S1)。
(2)ラジエータ3bへの流量分配率が0%かどうかを判断する(S2)。
ステップ2で流量分配率が0%のとき(燃料電池2の起動時)は以下のように制御する。一方、ステップ2で流量分配率が0%でないとき(燃料電池2の通常運転時)は、後記する3−1)以後のように制御する。
尚、ここでいう「流量分配率」とはラジエータ3b側への冷却水の配分量を冷却水の全循環流量で割った百分率の値である。
【0020】
<ラジエータへの流量分配率が0%の場合>
2−1)電気伝導度センサ3eにより検知した電気伝導度の値が、第1所定値(液絡が起きない許容上限値)EC1以上かどうかを判断する(S3)。
2−2)電気伝導度が第1所定値EC1以上の場合は、第二バイパス経路5に設けた弁5bの開度を増やす(S7)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
2−3)電気伝導度が第1所定値EC1未満の場合は、さらに温度検知センサ3dにより検知した冷却水の温度が、所定値(イオン交換樹脂の熱劣化開始温度)T1以下かどうかを判断する(S4)。
【0021】
2−4)ステップ4において冷却水の温度が所定値T1を超える場合は、弁5bの開度を減らす(S6)。すなわちイオン交換樹脂の熱劣化を避けるためイオン交換器5aヘの通水量を減らし、ステップ1に戻る。
2−5)一方、ステップ4において冷却水の温度が所定値T1以下の場合は、さらに冷却水の電気伝導度が第2所定値(液絡が起きない許容下限値)EC2以上かどうかを判断する(S5)。
2−6)ステップ5において電気伝導度が第2所定値EC2以上の場合は、弁5bの開度を増やす(S7)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
2−7)ステップ5において電気伝導度が第2所定値EC2未満の場合は、弁5bの開度を減らす(S6)。すなわち冷却水の電気伝導度及び冷却水の温度が液絡を起こさない安全領域にあるので、ラジエータ3bへの冷却水の配分量を増やすためイオン交換器5aヘの通水量を減らし、ステップ1に戻る。
【0022】
<ラジエータへの流量分配率が0%でない場合>
3−1)ステップ2において、ラジエータ3bの流量分配率が0%でない場合は、燃料電池2の発電量、冷却水の温度、冷却水循環ポンプ3aの出力から第二バイパス経路5に設けた弁5bの開度に上限値を設ける(S8)。
ここで、弁5bの開度に上限値を設ける方法について図4及び図5を参照して説明する。最初、図4に示す冷却水の温度と冷却水循環ポンプ3aの出力との関係から冷却系を循環する冷却水の全循環流量を求める。次に、図5に示す燃料電池2の発電量(発熱量)と最初に求めた冷却水の全循環流量とから、イオン交換器5aへの通水量の上限値を求める。
このように弁5bの開度に上限値を設けることで、燃料電池2の発電量が大きいとき、又は冷却水の全循環流量が小さいときは、イオン交換器5aへの通水量を低減して、燃料電池2に戻す冷却水量を大きくし、燃料電池2の冷却性能を確保することができる。
【0023】
3−2)次に、電気伝導度センサ3eから求めた冷却水の電気伝導度が第1所定値(液絡が起きない許容上限値)EC1以上かどうかを判断する(S9)。
3−3)電気伝導度が第1所定値EC1以上の場合は、さらに弁5bの開度が上限値未満かどうかを判断する(S13)。
3−4)ステップ13において弁5bの開度が上限値未満の場合は、弁5bの開度を増やす(S14)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
3−5)ステップ13において弁5bの開度が上限値以上の場合は、弁5bの開度をそのまま保持し(S15)、ステップ1に戻る。
【0024】
3−6)ステップ9において電気伝導度が第1所定値EC1未満の場合は、冷却水の温度が所定値(イオン交換樹脂の熱劣化開始温度)T1以下かどうかを判断する(S10)。
3−7)冷却水の温度が所定値T1を超える場合は、弁5bの開度を減らす(S12)。すなわちイオン交換樹脂の熱劣化を避けるためイオン交換器5aヘの通水量を減らし、ステップ1に戻る。
3−8)冷却水の温度が所定値T1以下の場合は、さらに電気伝導度が第2所定値(液絡が起きない許容下限値)EC2以上かどうかを判断する(S11)。
3−9)ステップ11で電気伝導度が第2所定値EC2以上の場合は、さらに弁5bの開度が上限値未満かどうかを判断する(S13)。
【0025】
3−10)ステップ13において弁5bの開度が上限値未満の場合は、弁5bの開度を増やす(S14)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
3−11)ステップ13において弁5bの開度が上限値以上の場合は、弁5bの現在の開度をそのまま保持し(S15)、ステップ1に戻る。
3−12)ステップ11において電気伝導度が第2所定値EC2未満の場合は、弁5bの開度を減らす(S12)。すなわち冷却水の電気伝導度及び冷却水の温度が液絡を起こさない安全領域にあるので、イオン交換器5aヘの通水量を減らし、ステップ1に戻る。
【0026】
このような構成と作用を有する一実施形態の燃料電池用の冷却水循環供給システムによれば、
(1)サーモスタットバルブ3cの作動状態、すなわちラジエータ3bへの冷却水の配分量(燃料電池の放熱要求量)に応じて、第二バイパス経路5に設けた弁5bの開閉(イオン交換器への通水量)を制御することにより、燃料電池2の冷却を維持するのに必要な冷却水量を確保することができ、しかもイオン交換器5aへ通水することもできる。
また、ラジエータ3bへの冷却水の配分量を知った上でイオン交換器5aへの通水量を制御するようにしたことで、従来のように循環経路の循環流量に余裕を持って循環させる必要がないので、冷却水循環供給システム全体の循環流量を減らすことができる。従って、冷却水循環ポンプ3aを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる。
(2)サーモスタットバルブ3cが前記ラジエータ3bへ冷却水を通水しているとき、すなわち燃料電池2を冷却しているときは、前記弁5bにより前記イオン交換器5aへの冷却水の配分量を所定値以下に制限して、イオン交換器5a側から燃料電池2側へ冷却水を戻してやることで、燃料電池2の冷却を維持するのに必要な冷却水量を確保することができる。
(3)前記弁5bの制限量を、前記燃料電池2の運転状態(発電量、水温、冷却水循環ポンプ3aの作動量等)に応じて調節することにより、燃料電池2の冷却を維持するために必要な冷却水量とイオン交換器5aへ通水する冷却水量との配分を最適化することができる。
【0027】
次に、このような一実施形態の燃料電池用の冷却水循環供給システムを車両に搭載した場合の冷却水の温度と、サーモスタットバルブのリフト量と、アクセル開度の時間に対するそれぞれの経時変化について図1及び図6を参照して説明する。
(1)車両のイグニッションキーのスイッチON。
(2)燃料電池2が起動すると冷却水循環ポンプ3aも起動し、燃料電池2の冷却が開始される。
(3)冷却水の温度は、燃料電池2内での反応熱により室温、例えば20℃から徐々に上昇する。冷却水の温度が例えば70℃になるとサーモスタットバルブ3cの弁体のリフト量が中間開度となり、ラジエータ3b側に冷却水が通水されて冷却水の冷却が開始される。サーモスタットバルブ3cの作動状態(ラジエータ3bへの冷却水の配分量)に応じて弁5bを制御することで、冷却水の温度が燃料電池2の通常の作動温度(約80℃)で安定する。
【0028】
(4)車両のアイドリングが終了し、アクセルペダルの開度が全閉状態から中開度まで開放する。
(5)車両が走行を開始し、アクセル開度を全開にして加速すると、サーモスタットバルブ3cのリフト量が全開となる。燃料電池用の冷却水循環供給システムが安定した後は、車両に要求される速度に応じてアクセルの開度は変化する。
(6)以後、燃料電池2の放熱要求量に応じてサーモスタットバルブ3cの弁体のリフト量が変化し、このサーモスタットバルブ3cの作動状態に応じて第二バイパス経路5に設けられたイオン交換器5aへの通水量を制御する弁5bを制御することにより、燃料電池2の冷却を維持するのに必要な冷却水量を確保し、かつ、イオン交換器5aへも通水することができる。
【0029】
このようにして、一実施形態の燃料電池用の冷却水循環供給システム1を車両に搭載すれば、従来のように循環経路3の循環流量に余裕をもって循環させる必要がないため冷却水循環ポンプ3aの小型化、かつ、冷却水循環供給システム全体の省電力化が図れるので、車両に搭載したときの空いたスペースを有効に活用でき、かつ、車両の省電力化を図ることができる。
【0030】
本発明は、上述した実施形態に限定されるものではなく、発明の技術的範囲を逸脱しない範囲内で適宜変更して実施可能である。
例えば、循環経路の循環流量の検知方法は、冷却水循環ポンプの出力の替わりに、循環経路に流量計を設けてこの流量計からの電気信号により検知するようにしても良い。
また、イオン交換器5aの替わりに電気透析装置を使用することもできる。
さらに、冷却器としてラジエータ3b以外に多管式の水冷式熱交換器を使用することもできる。
【0031】
【発明の効果】
前記実施形態に詳述したように、本発明によれば、以下の効果を奏する。
1.請求項1に記載の発明によれば、温度調整装置の作動状態、すなわち冷却器への冷却水の配分量(燃料電池の放熱要求量)に応じて、バイパス経路に設けた弁の開閉(イオン交換器への通水量)を制御することにより、燃料電池の冷却を維持するのに必要な冷却水量を供給することができ、しかもイオン交換器への通水量も確保することができる。また、冷却器への冷却水の配分量を知った上でイオン交換器への通水量を制御するようにしたことで、従来のように循環経路の循環流量に余裕を持って循環させる必要がないので、冷却水循環供給システム全体の循環流量を減らすことができる。従って、冷却水循環ポンプを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる。
2.請求項2に記載の発明によれば、前記温度調整装置が前記冷却器へ冷却水を通水しているとき、すなわち燃料電池を冷却しているときは、前記弁により前記イオン交換器への冷却水の配分量を所定値以下に制限して、イオン交換器側から燃料電池側へ冷却水を戻してやることで、燃料電池の冷却を維持するのに必要な冷却水量を確保することができる。
3.請求項3に記載の発明によれば、前記弁の制限量を、前記燃料電池の運転状態に応じて調節することにより、燃料電池の冷却を維持するために必要な冷却水量とイオン交換器へ通水する冷却水量との配分を最適化することができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池用の冷却水循環供給システムの一実施形態を示す全体の構成図である。
【図2】一実施形態の燃料電池用の冷却水循環供給システムにおいてイオン交換器への通水量を制御する場合の流量制御フローチャートである。
【図3】本発明に係るサーモスタットバルブの開弁特性を示す図である。
【図4】本発明に係る冷却水循環ポンプの出力に対する冷却水の全循環流量を示す図である。
【図5】冷却水の全循環流量に対するイオン交換器への通水量を示す図である。
【図6】燃料電池用の冷却水循環供給システムを車両に搭載した場合の冷却水の温度、サーモスタットバルブのリフト量、アクセル開度の時間に対するそれぞれの経時変化を示す図である。
【符号の説明】
1 燃料電池用の冷却水循環供給システム
2 燃料電池
3 循環経路
3a 冷却水循環ポンプ
3b ラジエータ(冷却器)
3c サーモスタットバルブ(温度調整装置)
3d 温度センサ(温度検知手段)
3e 電気伝導度センサ(電気伝導度検知手段)
4 第一バイパス経路
5 第二バイパス経路(バイパス経路)
5a イオン交換器
5b 弁
6 制御装置
Claims (3)
- 燃料電池に対して冷却水を循環させる循環経路と、
前記循環経路に、冷却水を循環させる冷却水循環ポンプと、冷却水を冷却する冷却器と、この冷却器への冷却水の配分量を増減することによって前記燃料電池へ供給する冷却水の水温を調整する温度調整装置とを有し、
さらに前記循環経路に前記燃料電池を迂回するバイパス経路を設けて、このバイパス経路に冷却水の電気伝導度を低く維持するためのイオン交換器を設けると共に、前記イオン交換器への通水量を制御する弁を設け、
前記冷却水循環ポンプで冷却水を循環させながら前記燃料電池に供給して前記燃料電池を冷却する燃料電池用の冷却水循環供給システムにおいて、
前記温度調整装置の作動状態に応じて前記弁の開閉を制御して、前記燃料電池と前記イオン交換器への冷却水の配分量を制御することを特徴とする燃料電池用の冷却水循環供給システム。 - 前記温度調整装置が前記冷却器へ冷却水を通水しているときは、前記弁が前記イオン交換器への冷却水の配分量を所定値以下に制限することを特徴とする請求項1に記載の燃料電池用の冷却水循環供給システム。
- 前記弁による冷却水の制限量は、前記燃料電池の運転状態に応じて調節されることを特徴とする請求項2に記載の燃料電池用の冷却水循環供給システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170757A JP3979582B2 (ja) | 2002-06-12 | 2002-06-12 | 燃料電池用の冷却水循環供給システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170757A JP3979582B2 (ja) | 2002-06-12 | 2002-06-12 | 燃料電池用の冷却水循環供給システム |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004014484A JP2004014484A (ja) | 2004-01-15 |
JP2004014484A5 JP2004014484A5 (ja) | 2005-08-04 |
JP3979582B2 true JP3979582B2 (ja) | 2007-09-19 |
Family
ID=30436895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002170757A Expired - Fee Related JP3979582B2 (ja) | 2002-06-12 | 2002-06-12 | 燃料電池用の冷却水循環供給システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3979582B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010027527A (ja) * | 2008-07-24 | 2010-02-04 | Toyota Motor Corp | 燃料電池システム |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005259470A (ja) * | 2004-03-10 | 2005-09-22 | Toyota Motor Corp | 燃料電池の冷却装置 |
JP4736347B2 (ja) * | 2004-04-27 | 2011-07-27 | トヨタ自動車株式会社 | 燃料電池の制御装置 |
JP2006057088A (ja) * | 2004-07-23 | 2006-03-02 | Toyota Motor Corp | 冷却液組成物、冷却系、及び冷却液組成物の製造方法 |
DE102006045919A1 (de) * | 2006-09-28 | 2008-04-03 | Robert Bosch Gmbh | Brennstoffzellen-Kühlvorrichtung |
JP2008115058A (ja) * | 2006-11-07 | 2008-05-22 | Fuji Electric Holdings Co Ltd | 燃料改質装置 |
JP5509548B2 (ja) * | 2008-07-01 | 2014-06-04 | トヨタ自動車株式会社 | 燃料電池用冷却液の導電率低減装置、及び燃料電池システム |
JP5342223B2 (ja) * | 2008-12-09 | 2013-11-13 | 本田技研工業株式会社 | 燃料電池システムの冷却装置 |
JP5245881B2 (ja) * | 2009-02-04 | 2013-07-24 | トヨタ紡織株式会社 | 燃料電池の冷却システム |
KR101163464B1 (ko) | 2010-09-28 | 2012-07-18 | 현대자동차주식회사 | 전기 전도도 관리 및 난방 성능이 개선된 연료전지 차량용 열 및 물 관리 시스템 |
DE102013020787A1 (de) * | 2013-12-11 | 2015-06-11 | Daimler Ag | Brennstoffzellen-Kühlkreislauf, ein Kraftfahrzeug und Verfahren zum Betreiben des Brennstoffzellen-Kühlkreislaufs |
KR101601438B1 (ko) | 2013-12-31 | 2016-03-21 | 현대자동차주식회사 | 연료전지 차량용 열관리 시스템 |
US9522609B2 (en) | 2013-12-31 | 2016-12-20 | Hyundai Motor Company | Thermal management system for fuel cell vehicles |
CN109319972A (zh) * | 2018-08-30 | 2019-02-12 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 一种阀冷系统外冷水电导率自动控制系统 |
CN112310439B (zh) * | 2020-09-24 | 2022-08-12 | 深圳国氢新能源科技有限公司 | 燃料电池冷却系统的水路切换控制方法、装置及存储介质 |
-
2002
- 2002-06-12 JP JP2002170757A patent/JP3979582B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010027527A (ja) * | 2008-07-24 | 2010-02-04 | Toyota Motor Corp | 燃料電池システム |
Also Published As
Publication number | Publication date |
---|---|
JP2004014484A (ja) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3979582B2 (ja) | 燃料電池用の冷却水循環供給システム | |
KR102674659B1 (ko) | 연료전지의 냉각 제어시스템 및 제어방법 | |
US7294422B2 (en) | Cooling method for fuel cell | |
KR101592652B1 (ko) | 연료전지 차량의 열 관리 시스템 및 방법 | |
CN106941183B (zh) | 燃料电池系统和燃料电池车辆 | |
JP2007280827A (ja) | 燃料電池用の温度制御システム | |
KR102692334B1 (ko) | 연료전지 차량의 열 관리 시스템 | |
KR20110118796A (ko) | 전기 배터리 내의 열을 관리하기 위한 방법 | |
KR20160057997A (ko) | 연료 전지 시스템 및 연료 전지 시스템의 제어 방법 | |
JP5742946B2 (ja) | 燃料電池システム | |
KR101592651B1 (ko) | 연료전지 차량의 열 관리 시스템 및 방법 | |
JP3979581B2 (ja) | 燃料電池用の冷却水循環供給システム | |
JP4114459B2 (ja) | 燃料電池システム | |
JP2004014213A (ja) | 燃料電池システム | |
CN115036531A (zh) | 一种燃料电池散热控制方法、系统、设备及计算机 | |
JP2002175823A (ja) | 燃料電池用冷却装置 | |
CN217955910U (zh) | 一种燃料电池散热控制装置及燃料电池 | |
CN116505018B (zh) | 一种提高电池温度均匀性的燃料电池冷却系统装置和方法 | |
JP2005190881A (ja) | 燃料電池の冷却装置 | |
KR101551034B1 (ko) | 제어 밸브 개도 가변 제어 장치 및 방법 | |
JP2003123804A (ja) | 燃料電池の冷却方法 | |
CN216872035U (zh) | 一种新能源车辆整车热量分配系统 | |
CN118099469A (zh) | 燃料电池热管理系统及方法 | |
US20240039019A1 (en) | Fuel cell system and method for start control therein | |
JP2004178826A (ja) | 燃料電池の冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041224 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070622 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130706 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140706 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |