[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3977093B2 - Near-field light exposure method by mask multiple exposure - Google Patents

Near-field light exposure method by mask multiple exposure Download PDF

Info

Publication number
JP3977093B2
JP3977093B2 JP2002031099A JP2002031099A JP3977093B2 JP 3977093 B2 JP3977093 B2 JP 3977093B2 JP 2002031099 A JP2002031099 A JP 2002031099A JP 2002031099 A JP2002031099 A JP 2002031099A JP 3977093 B2 JP3977093 B2 JP 3977093B2
Authority
JP
Japan
Prior art keywords
light
pattern
exposure
mask
resist layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002031099A
Other languages
Japanese (ja)
Other versions
JP2003234274A (en
Inventor
昌之 納谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002031099A priority Critical patent/JP3977093B2/en
Publication of JP2003234274A publication Critical patent/JP2003234274A/en
Application granted granted Critical
Publication of JP3977093B2 publication Critical patent/JP3977093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マスクとフォトレジストを密着して近接場光によりマスクパターンをレジストに転写する近接場リソグラフィに関し、特に、複雑なマスクパターンを有する近接場露光方法に関するものである。
【0002】
【従来の技術】
従来の、光リソグラフィ技術は、特に縮小投影露光技術とレジスト技術の進歩により支えられてきた。縮小投影露光技術の性能は主に、解像度と焦点深度の2つの基本量で決まる。リソグラフィの解像度を上げるためには露光波長を小さくして、投影レンズの開口数を大きくすることが重要であるが、開口数を大きくすると解像度は上がるが焦点深度が開口数の2乗に反比例して小さくなるので、微細化の流れとしては波長を小さくすることが求められるようになった。
そこで、露光波長は、g線(436nm)からi線(365nm)へと短波長化され、更に、エキシマレーザ(248nm.193nm)に移っている。
【0003】
しかし、光リソグラフィでは光の回析限界が解像度の限界となるため、波長が248nmのF2エキシマレーザを用いても線幅100nmの微細化がレンズ列光学系を用いたリソグラフィの限界と言われている。更に、その先のナノメータオーダーの解像度を求めようとすると、電子線やX線(特にSOR光:シンクロトロン放射光)リソグラフィ技術を用いる必要がある。電子線リソグラフィは、ナノメータオーダーのパターン形成を高精度で制御することが可能で、光学系に比べてかなり深い焦点深度が得られる。それにウェハ上にマスク無しで直接描画が可能であるという利点があるが、スループットが低く、コストも高いことから量産レベルには程遠いという欠点がある。また、X線リソグラフィはエキシマレーザ露光に比べて1桁程度の解像度および精度の向上が可能であるが、マスクの作成が難しく実現が困難で、装置上コストが高いという欠点がある。
【0004】
これらの問題を解決する方法として、例えば、特開平13−15427号「微細パターン形成方法」に開示されているような、照射する光の波長よりも十分小さな径の開口からしみ出す近接場光を光源としてレジストを感光させ、現像することによって微細なパターンを形成する、DBRレーザやDFBレーザの回析格子(グレーティング)の作成技術等にも最適な、近接場光リソグラフィがが開発されている。
図6は従来の微細パターン形成方法のプロセスを示す図であり、図6(a)に示すように、基板101上に有機高分子からなる第1レジスト膜102と、感光材料からなる第2レジスト層103を、スピンコート法あるいはスプレイ法により順次塗布し、2層レジスト層103´を形成する。次に図6(b)に示すように、ガラス等の誘電体からなるマスク基板105上に金属の微小な開口パターン106を形成した露光マスク104を2層レジスト103に密着させ、マスク基板105の裏面からi線(365nm)等の光照射により、露光マスク104の金属が形成されていない開口部からしみ出す近接場光107により露光を行うと図6(c)に示すように、露光された部分のレジストが感光する。
次に、図6(d)に示すように、第2レジスト層103を現像液で現像することにより、露光された部分が現像溶媒に可溶となりポジ型パターンを形成する。その後、図6(e)に示すように、第2レジスト層103のパターンをマスクにして、第1レジスト層102をO2プラズマによりドライエッチングして、図6(f)に示すようなアスペクト比の高い微細パターンを形成する。
最後に、2層レジスト層103´のパターンにより基板をエッチング又は、蒸着等により加工した後、2層レジストを剥離して完成する。
【0005】
この場合、露光マスク104と2層レジスト103´を密着させる工程は、図7に示すように、露光前、基板101上に2層レジスト層103´を塗布したウェハを露光装置の台に装着し、その上に近接させてマスク104を装着して、図7(a)のように、装置内のマスク104とレジスト103の間にN2ガスを常時流して置き、露光時には、図7(b)に示すように、マスク104とレジスト103の間を真空引きすることにより、マスク104をレジスト103に密着させる。
このように近接場光と2層レジストを用いた近接場光リソグラフィでは、照射する光の波長よりも十分小さな線幅のパターンからしみ出す近接場光によりレジストを感光し現像することによって、従来の光リソグラフィでは限界とされていた100nm以下の微細なパターンを高アスペクト比、低コストで形成できるようになった。
また、従来のリソグラフィの解像度は主に光源の波長によって決定されていたが、近接場光を発生させる光源の波長は何でもよいため、新規な光源の開発の必要が無くなり、パターン微細化の制約を緩和できるので、大幅なコストダウンが見込める。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来例では、光の波長よりも小さなサイズの形状を作成する方法として開発された近接場光リソグラフィにより、近接場光を発生させる露光マスク104を感光性レジスト材103´に密着させて、波長以下の微細な分布を有する近接場光を転写する場合に、図8に示すように、照射光(g、i等)Lの偏光方向(例えば、P偏光)が、図8(a)の実線で示す矢印のように、露光マスク104のスリット110の方向(図8では紙面に垂直な方向)に平行な場合は、近接場光107のしみ出しが局在的で正常であるが、図8(b)のように、照射光Lの実線矢印で示す偏向方向がスリット110の方向に対して垂直な場合は、「線幅の太り」等によりスリット・パターンとは異なる転写パターンになってしまうという問題があった。
【0007】
そこで、本発明は、露光マスク上に形成されるスリット・パターンが1方向だけではなく、複雑な形状のパターンの場合もパターンをいくつかの要素に分解して多重露光を行うことによって微細なパターンを正確に転写できるマスク多重露光による近接場光露光方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の近接場光露光方法の発明は、基板上にドライエッチングにより除去可能な第1レジスト層と光照射による照射部分または非照射部分のみが現像溶媒に可溶となる感光性の耐ドライエッチング性を有する第2レジスト層をこの順に積層した記録材料に、照射光を受けて近接場光を発生させる露光マスクの発生手段により記録材料の第2レジスト層に近接場光を所望のパターン状に照射してレジスト層を現像することにより回析格子パターンを形成して、このレジスト層のパターンをエッチング・マスクとして第1レジスト層をドライエッチングすることによって記録材料の基板上にパターンを形成する近接場光露光方法であって、前記近接場光を発生させる複雑なパターンを有する1枚の露光マスクを備え、前記露光マスクの複雑なパターンを1方向に並んだスリットパターン毎に分類し、分類したスリットパターン毎に最適露光条件により多重露光を行なう近接場光露光方法において、前記露光マスクに対向配置させたマトリクス状の空間光変調素子と、該空間光変調素子に光を照射する光源とを備え、前記光源からの光を前記空間光変調素子に照射し、前記パターン毎に前記空間光変調素子を選択的に制御することにより選択された空間光変調素子からの出射光で前記露光マスクの当該パターンに対応する部位を近接場光露光することを特徴としている。
【0013】
その他、本発明は、前記最適露光条件において前記露光マスクのパターンが一方向へ伸びる直線の集合から成る場合は、露光光の直線偏光方向と前記露光マスクのパターンの直線の向きとを一致させることを特徴としている。
さらに、本発明は、前記最適露光条件において、前記所望の直線偏光成分に対する、それと垂直方向に直線偏光している成分の比率が25%以下、好ましくは15%以下であることを特徴としている。
このようにすることにより、マスクパターンの線幅を超える分のマスクパターン線幅に対する比で表す露光された「線幅の太り」が、ラインアンドスペース比が1:1の時に隣接パターンが重なるのを防止できる数値である50%以下に抑えられ、更に、直線偏光成分(P偏光とすれば)に対する垂直成分(S偏光)の比率を25%から15%以下に下げれば、パターンの重なりを防止できる数値を30%以下程度まで抑えることが可能になり、露光された線幅の太りを抑えて、極めて微細なパターンが得られるという効果がある。
【0014】
【発明の実施の形態】
以下、本発明の第1の実施の形態について図を参照して説明する。
図1は本発明の第1の実施の形態に係るマスク多重露光による近接場光露光方法のマスク・パターンを示す図である。
図2は図1に示すマスク・パターンを用いた多重露光の概念図である。
図1において、1は、例えば、ウェハーと同じ円形形状の露光マスクであり、4は露光マスク1上に形成された元のマスク・パターンで、電子ビーム等により書かれた光波長より微細サイズ(100nm以下も可能)の開口パターン(スリット・パターン)を、X・Y2方向に有する複雑パターンである。
露光時同一の偏光波は1方向のスリットにしか平行にセットできないので、Y(縦)方向のスリット5だけを形成した露光マスク2と、X(横)方向のスリット6だけを形成した露光マスク3と、露光マスクを2つに分割して作成する。
【0015】
つぎに図2を参照して動作について説明する。
先ず、露光マスク2の露光の場合、ウェハ搬送系等(図示していない)を利用してマスクキャリアに保持する露光マスク2を、従来技術の図7と同様な露光装置に搬送してセットし、露光マスク2と基板の第2レジスト層7を真空引きにより密着させる。
次に、水銀ランプ光源からgかi線等の光Lを露光マスク2に照射して近接場光を発生させ、パターン5を第2レジスト層に転写する。
【0016】
露光マスク2の露光が終了したら、露光装置内の露光マスク2と第2レジスト層7間にN2ガス等を吹込んで、露光マスク2と第2レジスト層7を剥離させ、再び、ウェハ搬送系により露光マスク2をマスクキャリアに戻す。
次に、露光マスク3を露光装置内に搬送してセットし、真空引きにより第2レジスト層7に密着させる。
続いて、g線等の光Lを露光マスク3に照射して近接場光を発生させ、パターン6を第2レジスト層7へ転写する。
露光マスク3のパターン6の露光が完了したら、露光装置内にN2ガス等を吹込み、露光マスク3と第2レジスト層7を剥離して露光マスク3をマスクキャリア内に戻し、第2レジスト層7に露光マスク1の複雑パターン4が多重露光により転写される。
【0017】
ここで、水銀ランプのg又はi線等の光Lを照射して近接場光を発生させる際に、照射する光Lの直線偏光の向きと露光マスク2又は3のスリットパターンの直線の向きと一致させる必要があるが、水銀ランプの光Lを直線偏光させるには偏光板(図示していない)等を光源と露光マスク間に挿入して、例えば、P偏光をスリット・パターンの直線方向へ一致させるように制御する。
このスリット・パターンの直線の向きに一致させる露光光の直線偏光成分(例えば、P偏光)に対する、垂直な方向の直線偏光成分(例えば、S偏光)の比率は25%以下を目安として、15%以下が望ましい。これによって、露光された線幅の太り等が防止できる。
また、光源として偏光されているレーザ波を使用する場合は光源自体を回転制御する等の方法で、スリットパターンに一致させればよい。
【0018】
次に、本発明の第2の実施の形態について図を参照して説明する。
図3は本発明の第2の実施の形態に係るマスク多重露光による近接場光露光方法の空間光変調素子の概念図である。
図4は図1に示す空間光変調素子を液晶により構成した図である。
図5は図1に示す空間光変調素子をMEMSにより構成した図である。
図3において、8は強誘電性液晶、又はMEMS(Micro Electro−Mechanical System)等を用いた空間光変調素子を概念的に表したものである。9は露光マスク1のX(横)方向のパターン領域であり、10は露光マスク1のY(縦)方向のパターン領域である。
【0019】
つぎに動作について説明する。
図3に示す第2の実施の形態は、選択性の光透過特性を示す空間光変調素子8を用いて露光領域を限定し、所望の(例えば、X方向:図3(a)、又は、Y方向:図3(b)の一方のスリットパターンのみ)方向のスリットパターン領域のみに光Lを照射して、合成する多重露光により近接場光リソグラフィを構成するものである。
先ず、空間光変調素子8のX方向のスリットパターン領域9に相当する位置の液晶スイッチング素子をON制御して、スリットパターンと方向を一致させた直線偏光光Lをスリットパターン9に照射して近接場光露光を行う。
次に、X方向のスリットパターンに相当する液晶スイッチング素子をOFFさせ、Y方向のスリットパターン領域10に相当する液晶スイツチング素子をONにして、スリットパターンと方向を一致させた直線偏光光を照射してY方向のスリットパターンの近接場光露光を行い、X・Y2方向の露光分割制御により多重露光を行う。
【0020】
実際の具体的な空間光変調素子の構成については、図4に示すように、強誘電性の液晶をスイッチング素子としてON/OFF駆動するMOS−FETを一体に構成した、液晶型の空間光変調素子21の対向透明基板側に偏光ビームスプリッタ(PBS)22を配置し、光源23からの光LはPBS22によりS偏光波が反射されて、空間光変調素子21に入射し、液晶層で反射されて再度PBS22に入射し、反射光のP偏光成分のみがPBS22を透過して出力光となる。この空間光変調素子をアレイ型マトリクス状に配置して、液晶をON/OFF制御することで出力光を変調制御するように構成されている。
【0021】
次に、実際のMEMSの例では、DMD(Digital Micromirror Device)等のように、アレイ状に構成した極小ミラーの入射角の変化に応じて光変調を行う素子や、図5に示すような、例えば、ダイヤフラムを電気機械動作させて光変調を行うようにした空間光変調素子等がある。
図5に示す、空間光変調素子MEMS30は、平面光源ユニット33aの側方に設けたUVランプ33bからの光を平面光源ユニット33aの上面から出射させ、ダイヤフラム(機械動作部)32の下に、誘電体多層膜ミラー35を基板31上の誘電体多層膜ミラー36と、所定の間隔をあけて対向配置している。
ここで基板上電極に制御電圧を印加すると、ダイヤフラム32の変形により誘電体多層膜ミラー間の空隙37が小さくなり、光の入射角が変化して入射光を透過・出射する。このMEMSをアレイ型マトリクス状に配置して光変調を行うものである。これは、ファプリペロー干渉を応用したMEMSであるが、導光拡散作用を応用するものやそれ以外のMEMSでも構わない。
【0022】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、基板上にドライエッチングにより除去可能な第1レジスト層と光照射による照射部分または非照射部分のみが現像溶媒に可溶となる感光性の耐ドライエッチング性を有する第2レジスト層をこの順に積層した記録材料に、照射光を受けて近接場光を発生させる露光マスク等の発生手段により記録材料の第2レジスト層に近接場光を所望のパターン状に照射してレジスト層を現像することにより回析格子パターンを形成して、このレジスト層のパターンをエッチング・マスクとして第1のレジスト層をドライエッチングすることによって記録材料の基板上にパターンを形成する近接場光露光方法において、近接場光を発生させる複雑なパターンを、1方向に並んだスリットパターン毎に分割し、分割したスリットパターン毎に最適露光条件により多重露光を行う手段を備えたので、分割したスリットパターン毎に最適な条件により偏光を制御して近接場光を発生させ、分割スリットパターン毎に露光する多重露光によって、所望の複雑な微細パターンを忠実に形成するための露光が可能になるという効果がある。
【0023】
また、請求項2記載の発明によれば、多重露光を行う手段は、分割したスリットパターン毎にパターンを形成した露光マスクを複数用意し、各露光マスクを順次前記レジスト層に密着させ、それぞれの最適露光条件により露光して複雑なパターンを形成する多重露光を行うので、分割したスリットパターン毎に露光マスクを作成して偏光方向とスリットの方向を一致させる最適な条件により露光を行うことで、所望の微細パターンを形成する多重露光が可能になるという効果がある。
【0024】
また、請求項3記載の発明によれば、多重露光を行う手段は、近接場光を発生させる複雑なパターンの所望の部分のみに空間光変調素子を介して光が照射されるようにして、所望の部分毎に最適露光条件で露光して多重露光を行うので、 1枚の露光マスク上において偏光光の照射領域を変えることで最適な条件の多重露光が可能になり、所望の微細パターンを形成できるという効果がある。
【0025】
また、請求項4記載の発明によれば、空間光変調素子は、液晶で構成したので、精細なアレイ構造の空間光変調素子を構成して、分割スリットパターン領域毎に局在的で忠実に微細パターンを露光できるな近接場光を発生させる光照射が可能になるという効果がある
【0026】
また、請求項5記載の発明によれば、空間光変調素子は、MEMS(Micro Electro−Mechanical System)により構成したので、UV光を使用できて偏光系によるロスが無いので利用効率の高い空間光変調素子を構成して、分割スリットパターン領域毎に微細パターンを露光できる近接場光を発生させる光照射が可能になるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るマスク多重露光による近接場光露光方法のマスクパターンを示す図である。
【図2】図1に示したマスクパターンを用いた多重露光の概念図である。
【図3】本発明の第2の実施の形態に係るマスク多重露光による近接場光露光方法の空間光変調素子の概念図である。
【図4】図3に示す空間光変調素子を液晶で構成した図である。
【図5】図3に示す空間光変調素子をMEMSで構成した図である。
【図6】従来の微細パターン形成方法を示す図である。
【図7】図1に示すパターンの露光装置を示す図である。
【図8】図7に示す露光装置の偏光光の説明図である。
【符号の説明】
1 露光マスク
2、3 分割露光マスク
4 複雑パターン
5、6 分割パターン
7 2層レジスト層
8 空間光変調素子
9、10 パターン領域
21 液晶を用いた空間光変調素子
22 PBS
23 光源
30 MEMS
31 基板
32 ダイヤフラム
33 UVランプ
35、36 誘電体多層膜ミラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to near-field lithography in which a mask and a photoresist are in close contact and a mask pattern is transferred to the resist by near-field light, and more particularly to a near-field exposure method having a complicated mask pattern.
[0002]
[Prior art]
Conventional photolithography technology has been supported by advances in reduction projection exposure technology and resist technology. The performance of the reduction projection exposure technique is mainly determined by two basic quantities of resolution and depth of focus. In order to increase the resolution of lithography, it is important to reduce the exposure wavelength and increase the numerical aperture of the projection lens. However, increasing the numerical aperture increases the resolution, but the depth of focus is inversely proportional to the square of the numerical aperture. Therefore, as the trend of miniaturization, it is required to reduce the wavelength.
Therefore, the exposure wavelength is shortened from the g-line (436 nm) to the i-line (365 nm), and further shifted to an excimer laser (248 nm.193 nm).
[0003]
However, in optical lithography, the diffraction limit of light becomes the limit of resolution, so even if an F2 excimer laser with a wavelength of 248 nm is used, miniaturization with a line width of 100 nm is said to be the limit of lithography using a lens array optical system. Yes. Furthermore, if it is going to obtain | require the resolution | decomposability of the nanometer order ahead of that, it is necessary to use the electron beam and X-ray (especially SOR light: synchrotron radiation light) lithography technique. Electron beam lithography can control pattern formation on the order of nanometers with high accuracy, and can provide a considerably deeper depth of focus than an optical system. In addition, there is an advantage that direct writing can be performed on a wafer without a mask, but there is a disadvantage that it is far from mass production because of low throughput and high cost. In addition, X-ray lithography can improve the resolution and accuracy by an order of magnitude compared to excimer laser exposure, but has the disadvantages that it is difficult to create a mask and difficult to implement, and the cost of the apparatus is high.
[0004]
As a method for solving these problems, for example, near-field light that oozes out from an opening having a diameter sufficiently smaller than the wavelength of light to be irradiated as disclosed in Japanese Patent Application Laid-Open No. 13-15427 “Method for forming a fine pattern”. Near-field lithography has been developed which is optimal for a technique for producing a diffraction grating (grating) of a DBR laser or a DFB laser, in which a resist is exposed as a light source and developed to form a fine pattern.
FIG. 6 is a diagram showing a process of a conventional fine pattern forming method. As shown in FIG. 6A, a first resist film 102 made of an organic polymer and a second resist made of a photosensitive material are formed on a substrate 101. The layer 103 is sequentially applied by spin coating or spraying to form a two-layer resist layer 103 ′. Next, as shown in FIG. 6B, an exposure mask 104 in which a minute opening pattern 106 of metal is formed on a mask substrate 105 made of a dielectric material such as glass is brought into close contact with the two-layer resist 103. When exposure is performed with near-field light 107 that exudes from an opening in which the metal of the exposure mask 104 is not formed by light irradiation such as i-line (365 nm) from the back surface, exposure is performed as shown in FIG. A portion of the resist is exposed.
Next, as shown in FIG. 6D, by developing the second resist layer 103 with a developer, the exposed portion becomes soluble in a developing solvent and forms a positive pattern. Thereafter, as shown in FIG. 6E, the first resist layer 102 is dry-etched by O 2 plasma using the pattern of the second resist layer 103 as a mask to obtain an aspect ratio as shown in FIG. A high fine pattern is formed.
Finally, the substrate is processed by etching or vapor deposition according to the pattern of the two-layer resist layer 103 ′, and then the two-layer resist is removed to complete.
[0005]
In this case, as shown in FIG. 7, the step of bringing the exposure mask 104 and the two-layer resist 103 ′ into close contact is performed by mounting a wafer coated with the two-layer resist layer 103 ′ on the substrate 101 on the stage of the exposure apparatus before exposure. Then, a mask 104 is mounted in close proximity thereto, and as shown in FIG. 7 (a), N 2 gas is always allowed to flow between the mask 104 and the resist 103 in the apparatus. ), The mask 104 is brought into close contact with the resist 103 by evacuating the mask 104 and the resist 103.
As described above, in the near-field light lithography using the near-field light and the two-layer resist, the resist is exposed and developed by the near-field light that exudes from the pattern having a line width sufficiently smaller than the wavelength of the irradiation light. It has become possible to form a fine pattern of 100 nm or less, which is a limit in optical lithography, at a high aspect ratio and at a low cost.
In addition, the resolution of conventional lithography was mainly determined by the wavelength of the light source. However, any wavelength of the light source that generates near-field light can be used, eliminating the need to develop a new light source and restricting pattern miniaturization. Since it can be mitigated, significant cost reductions can be expected.
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional example, the exposure mask 104 that generates near-field light is brought into close contact with the photosensitive resist material 103 ′ by near-field photolithography developed as a method for creating a shape having a size smaller than the wavelength of light. In the case of transferring near-field light having a fine distribution below the wavelength, as shown in FIG. 8, the polarization direction (for example, P-polarized light) of the irradiation light (g, i, etc.) L is as shown in FIG. As shown by the solid line arrows in FIG. 8, when the exposure mask 104 is parallel to the direction of the slit 110 (the direction perpendicular to the paper surface in FIG. 8), the oozing of the near-field light 107 is localized and normal. As shown in FIG. 8B, when the deflection direction indicated by the solid arrow of the irradiation light L is perpendicular to the direction of the slit 110, the transfer pattern is different from the slit pattern due to “thickening of the line width” or the like. Question There was.
[0007]
Therefore, the present invention is not limited to the slit pattern formed on the exposure mask in one direction, and even in the case of a complicated shape pattern, a fine pattern is obtained by decomposing the pattern into several elements and performing multiple exposure. It is an object of the present invention to provide a near-field light exposure method by mask multiple exposure that can accurately transfer the image.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the near field light exposure method of the present invention is characterized in that only the first resist layer that can be removed by dry etching on the substrate and the irradiated or non-irradiated portion by light irradiation can be used as a developing solvent. A recording material in which a second resist layer having a photosensitive dry etching resistance to be dissolved is laminated in this order is applied to the second resist layer of the recording material by means of generating an exposure mask that receives irradiation light and generates near-field light. A diffraction grating pattern is formed by irradiating near-field light in a desired pattern and developing the resist layer, and the first resist layer is dry-etched using the resist layer pattern as an etching mask, thereby recording material a near-field light exposure method for forming a pattern on a substrate, a single exposure mask having a complicated pattern for generating the near field light For example, to classify complex patterns of the exposure mask for each slit pattern arranged in one direction, the near-field light exposure method for performing multiple exposure by the optimal exposure condition for each slit pattern classification, is disposed opposite to the exposure mask a matrix of spatial light modulator element, and a light source for irradiating light to the spatial light modulator is irradiated with light from the light source to the spatial light modulator, said spatial light modulator for each of the pattern A portion corresponding to the pattern of the exposure mask is exposed to near-field light with the light emitted from the spatial light modulation element selected by selective control.
[0013]
In addition, according to the present invention, when the pattern of the exposure mask is composed of a set of straight lines extending in one direction under the optimum exposure conditions, the linear polarization direction of the exposure light and the direction of the straight line of the pattern of the exposure mask are matched. It is characterized by.
Furthermore, the present invention is characterized in that, under the optimum exposure conditions, the ratio of the component linearly polarized in the direction perpendicular to the desired linearly polarized component is 25% or less, preferably 15% or less.
In this way, the exposed "line width thickening" expressed by the ratio to the mask pattern line width exceeding the line width of the mask pattern overlaps the adjacent pattern when the line and space ratio is 1: 1. If the ratio of the vertical component (S-polarized light) to the linearly polarized light component (P-polarized light) is reduced from 25% to 15% or less, pattern overlap can be prevented. It is possible to suppress the numerical value that can be reduced to about 30% or less, and there is an effect that an extremely fine pattern can be obtained by suppressing the thickness of the exposed line width.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing a mask pattern of a near-field light exposure method by mask multiple exposure according to the first embodiment of the present invention.
FIG. 2 is a conceptual diagram of multiple exposure using the mask pattern shown in FIG.
In FIG. 1, 1 is, for example, an exposure mask having the same circular shape as a wafer, and 4 is an original mask pattern formed on the exposure mask 1, which is smaller in size than the light wavelength written by an electron beam or the like ( It is a complicated pattern having an opening pattern (slit pattern) of 100 nm or less in the X and Y2 directions.
Since the same polarized wave can be set parallel to only one direction slit at the time of exposure, the exposure mask 2 in which only the Y (vertical) direction slit 5 is formed and the exposure mask in which only the X (lateral) direction slit 6 is formed. 3 and the exposure mask is divided into two.
[0015]
Next, the operation will be described with reference to FIG.
First, in the case of exposure of the exposure mask 2, the exposure mask 2 held on the mask carrier using a wafer transfer system or the like (not shown) is transferred and set to an exposure apparatus similar to that of FIG. Then, the exposure mask 2 and the second resist layer 7 of the substrate are brought into close contact with each other by evacuation.
Next, the exposure mask 2 is irradiated with light L such as g or i line from a mercury lamp light source to generate near-field light, and the pattern 5 is transferred to the second resist layer.
[0016]
When the exposure of the exposure mask 2 is completed, N 2 gas or the like is blown between the exposure mask 2 and the second resist layer 7 in the exposure apparatus to separate the exposure mask 2 and the second resist layer 7, and again the wafer transport system To return the exposure mask 2 to the mask carrier.
Next, the exposure mask 3 is conveyed and set in the exposure apparatus, and is brought into close contact with the second resist layer 7 by evacuation.
Subsequently, the exposure mask 3 is irradiated with light L such as g-line to generate near-field light, and the pattern 6 is transferred to the second resist layer 7.
When the exposure of the pattern 6 of the exposure mask 3 is completed, N 2 gas or the like is blown into the exposure apparatus, the exposure mask 3 and the second resist layer 7 are peeled off, the exposure mask 3 is returned into the mask carrier, and the second resist The complex pattern 4 of the exposure mask 1 is transferred to the layer 7 by multiple exposure.
[0017]
Here, when generating near-field light by irradiating light L such as g or i line of a mercury lamp, the direction of linearly polarized light of the irradiated light L and the direction of the straight line of the slit pattern of the exposure mask 2 or 3 In order to linearly polarize the light L of the mercury lamp, a polarizing plate (not shown) or the like is inserted between the light source and the exposure mask, for example, so that the P-polarized light is directed in the linear direction of the slit pattern. Control to match.
The ratio of the linearly polarized light component (for example, S-polarized light) in the vertical direction to the linearly polarized light component (for example, P-polarized light) of the exposure light that matches the direction of the straight line of the slit pattern is 15%, with 25% or less as a guide. The following is desirable. As a result, the exposed line width can be prevented from being increased.
When a polarized laser wave is used as the light source, it may be matched with the slit pattern by a method such as rotationally controlling the light source itself.
[0018]
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 3 is a conceptual diagram of a spatial light modulator of a near-field light exposure method using mask multiple exposure according to the second embodiment of the present invention.
FIG. 4 is a diagram in which the spatial light modulator shown in FIG.
FIG. 5 is a diagram in which the spatial light modulation element shown in FIG. 1 is configured by MEMS.
In FIG. 3, reference numeral 8 conceptually represents a spatial light modulation element using a ferroelectric liquid crystal, MEMS (Micro Electro-Mechanical System) or the like. Reference numeral 9 denotes a pattern region in the X (horizontal) direction of the exposure mask 1, and reference numeral 10 denotes a pattern region in the Y (vertical) direction of the exposure mask 1.
[0019]
Next, the operation will be described.
In the second embodiment shown in FIG. 3, the exposure area is limited by using the spatial light modulation element 8 exhibiting selective light transmission characteristics, and a desired (for example, X direction: FIG. 3A), or In the Y-direction (only one slit pattern in FIG. 3B), light L is irradiated only in the slit pattern region in the direction, and near-field optical lithography is configured by multiple exposure that is combined.
First, the liquid crystal switching element at a position corresponding to the slit pattern region 9 in the X direction of the spatial light modulator 8 is controlled to be ON, and the linearly polarized light L whose direction coincides with the slit pattern is irradiated to the slit pattern 9 to approach the liquid crystal switching element. Perform field light exposure.
Next, the liquid crystal switching element corresponding to the slit pattern in the X direction is turned off, the liquid crystal switching element corresponding to the slit pattern area 10 in the Y direction is turned on, and the linearly polarized light whose direction coincides with the slit pattern is irradiated. Then, near-field light exposure of the slit pattern in the Y direction is performed, and multiple exposure is performed by exposure division control in the X and Y2 directions.
[0020]
As for the actual configuration of the spatial light modulation element, as shown in FIG. 4, a liquid crystal type spatial light modulation in which a MOS-FET that is ON / OFF driven using a ferroelectric liquid crystal as a switching element is integrated. A polarization beam splitter (PBS) 22 is disposed on the opposite transparent substrate side of the element 21, and the light L from the light source 23 reflects the S-polarized wave by the PBS 22, enters the spatial light modulation element 21, and is reflected by the liquid crystal layer. Then, it enters the PBS 22 again, and only the P-polarized component of the reflected light passes through the PBS 22 and becomes output light. The spatial light modulators are arranged in an array matrix, and the output light is modulated and controlled by ON / OFF control of the liquid crystal.
[0021]
Next, in an actual MEMS example, elements such as DMD (Digital Micromirror Device) that perform light modulation according to the change in the incident angle of the minimal mirror configured in an array, or as shown in FIG. For example, there is a spatial light modulation element or the like in which the diaphragm is electromechanically operated to perform light modulation.
A spatial light modulation element MEMS 30 shown in FIG. 5 emits light from a UV lamp 33b provided on the side of the planar light source unit 33a from the upper surface of the planar light source unit 33a, and below the diaphragm (machine operating unit) 32, The dielectric multilayer mirror 35 is disposed opposite to the dielectric multilayer mirror 36 on the substrate 31 with a predetermined interval.
Here, when a control voltage is applied to the electrode on the substrate, the gap 37 between the dielectric multilayer mirrors is reduced due to the deformation of the diaphragm 32, and the incident angle of the light changes to transmit and emit the incident light. Optical modulation is performed by arranging the MEMS in an array matrix. This is a MEMS that applies the Fabry-Perot interference, but a MEMS that applies a light guide diffusion action or other MEMS may be used.
[0022]
【The invention's effect】
As described above, according to the first aspect of the present invention, the first resist layer that can be removed by dry etching on the substrate and the photosensitivity in which only the irradiated or non-irradiated portion by light irradiation is soluble in the developing solvent. The near-field light is applied to the second resist layer of the recording material by a generating means such as an exposure mask that receives the irradiation light and generates near-field light on the recording material in which the second resist layer having dry etching resistance is laminated in this order. A diffraction grating pattern is formed by developing the resist layer by irradiating it in a desired pattern, and the first resist layer is dry-etched using the resist layer pattern as an etching mask to form a substrate on the recording material. In the near-field light exposure method for forming a pattern on the surface, a complex pattern that generates near-field light is divided into slit patterns arranged in one direction. Since each divided slit pattern is provided with means for performing multiple exposure under optimum exposure conditions, near-field light is generated by controlling polarization under optimum conditions for each divided slit pattern, and exposure is performed for each divided slit pattern. The multiple exposure has an effect that exposure for faithfully forming a desired complicated fine pattern becomes possible.
[0023]
According to the second aspect of the present invention, the means for performing multiple exposure prepares a plurality of exposure masks each having a pattern formed for each divided slit pattern, and sequentially adheres each exposure mask to the resist layer. Since multiple exposure is performed to form a complex pattern by exposing under optimal exposure conditions, by creating an exposure mask for each divided slit pattern and performing exposure under optimal conditions to match the polarization direction and slit direction, There is an effect that multiple exposure for forming a desired fine pattern becomes possible.
[0024]
According to the invention of claim 3, the means for performing multiple exposure is such that only a desired portion of a complex pattern that generates near-field light is irradiated with light through the spatial light modulator, Multiple exposure is performed by exposing each desired portion under optimum exposure conditions, so that multiple exposure under optimum conditions can be performed by changing the irradiation area of polarized light on one exposure mask, and a desired fine pattern can be obtained. There is an effect that it can be formed.
[0025]
According to the invention described in claim 4, since the spatial light modulator is made of liquid crystal, a spatial light modulator having a fine array structure is formed, and the divided slit pattern regions are localized and faithful. There is an effect that light irradiation that generates near-field light that can expose a fine pattern becomes possible.
According to the invention described in claim 5, since the spatial light modulation element is configured by MEMS (Micro Electro-Mechanical System), it can use UV light and there is no loss due to the polarization system, so that the spatial light with high utilization efficiency. There is an effect that it is possible to irradiate light that generates a near-field light capable of exposing a fine pattern for each divided slit pattern region by configuring a modulation element.
[Brief description of the drawings]
FIG. 1 is a diagram showing a mask pattern of a near-field light exposure method by mask multiple exposure according to a first embodiment of the present invention.
FIG. 2 is a conceptual diagram of multiple exposure using the mask pattern shown in FIG.
FIG. 3 is a conceptual diagram of a spatial light modulator of a near-field light exposure method using mask multiple exposure according to a second embodiment of the present invention.
4 is a diagram in which the spatial light modulation element shown in FIG. 3 is composed of liquid crystals.
FIG. 5 is a diagram in which the spatial light modulation element shown in FIG. 3 is configured by MEMS.
FIG. 6 is a diagram showing a conventional fine pattern forming method.
7 is a view showing an exposure apparatus for the pattern shown in FIG. 1. FIG.
8 is an explanatory view of polarized light of the exposure apparatus shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exposure mask 2, 3 Division | segmentation exposure mask 4 Complex pattern 5, 6 Division | segmentation pattern 7 Two-layer resist layer 8 Spatial light modulation element 9, 10 Pattern area | region 21 Spatial light modulation element 22 using liquid crystal PBS
23 Light source 30 MEMS
31 Substrate 32 Diaphragm 33 UV lamp 35, 36 Dielectric multilayer mirror

Claims (1)

基板上にドライエッチングにより除去可能な第1レジスト層と光照射による照射部分または非照射部分のみが現像溶媒に可溶となる感光性の耐ドライエッチング性を有する第2レジスト層をこの順に積層した記録材料に、照射光を受けて近接場光を発生させる露光マスクの発生手段により記録材料の第2レジスト層に近接場光を所望のパターン状に照射してレジスト層を現像することにより回析格子パターンを形成して、このレジスト層のパターンをエッチング・マスクとして第1レジスト層をドライエッチングすることによって記録材料の基板上にパターンを形成する近接場光露光方法であって、
前記近接場光を発生させる複雑なパターンを有する1枚の露光マスクを備え、前記露光マスクの複雑なパターンを1方向に並んだスリットパターン毎に分類し、分類したスリットパターン毎に最適露光条件により多重露光を行なう近接場光露光方法において、
前記露光マスクに対向配置させたマトリクス状の空間光変調素子と、該空間光変調素子に光を照射する光源とを備え、前記光源からの光を前記空間光変調素子に照射し、前記パターン毎に前記空間光変調素子を選択的に制御することにより選択された空間光変調素子からの出射光で前記露光マスクの当該パターンに対応する部位を近接場光露光することを特徴とする近接場光露光方法。
A first resist layer which can be removed by dry etching and a second resist layer having a photosensitive dry etching resistance in which only an irradiated portion or non-irradiated portion by light irradiation is soluble in a developing solvent are laminated in this order on the substrate. By diffracting the resist layer by irradiating the second resist layer of the recording material with a desired pattern by an exposure mask generating means for generating the near-field light upon receiving the irradiation light on the recording material. A near-field light exposure method for forming a pattern on a substrate of a recording material by forming a lattice pattern and dry-etching the first resist layer using the pattern of the resist layer as an etching mask ,
A single exposure mask having a complex pattern that generates the near-field light is provided, the complex pattern of the exposure mask is classified into slit patterns arranged in one direction, and an optimum exposure condition is determined for each classified slit pattern. In the near-field light exposure method for performing multiple exposure ,
Comprising a matrix of spatial light modulator that is disposed to face the exposure mask, and a light source for irradiating light to the spatial light modulator is irradiated with light from the light source to the spatial light modulator, the pattern for each The near-field light is characterized in that a portion corresponding to the pattern of the exposure mask is exposed to near-field light with light emitted from the selected spatial light-modulating element by selectively controlling the spatial light-modulating element. Exposure method.
JP2002031099A 2002-02-07 2002-02-07 Near-field light exposure method by mask multiple exposure Expired - Fee Related JP3977093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031099A JP3977093B2 (en) 2002-02-07 2002-02-07 Near-field light exposure method by mask multiple exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031099A JP3977093B2 (en) 2002-02-07 2002-02-07 Near-field light exposure method by mask multiple exposure

Publications (2)

Publication Number Publication Date
JP2003234274A JP2003234274A (en) 2003-08-22
JP3977093B2 true JP3977093B2 (en) 2007-09-19

Family

ID=27774598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031099A Expired - Fee Related JP3977093B2 (en) 2002-02-07 2002-02-07 Near-field light exposure method by mask multiple exposure

Country Status (1)

Country Link
JP (1) JP3977093B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006018228A (en) * 2004-05-31 2006-01-19 Fuji Photo Film Co Ltd Pattern forming method
KR100866725B1 (en) * 2008-03-21 2008-11-05 주식회사 하이닉스반도체 Method for manufacturing fine pattern of a semiconductor device
KR101113719B1 (en) * 2011-05-03 2012-02-27 이현순 Light irradiation device
JP2022163478A (en) * 2021-04-14 2022-10-26 株式会社Screenホールディングス Drawing apparatus and drawing method

Also Published As

Publication number Publication date
JP2003234274A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
KR100799527B1 (en) Composite optical lithography method for patterning lines of significantly different widths
US7922960B2 (en) Fine resist pattern forming method and nanoimprint mold structure
US20050088633A1 (en) Composite optical lithography method for patterning lines of unequal width
US20050073671A1 (en) Composite optical lithography method for patterning lines of substantially equal width
US9977339B2 (en) System and method for shifting critical dimensions of patterned films
US20070200276A1 (en) Method for rapid printing of near-field and imprint lithographic features
US5245470A (en) Polarizing exposure apparatus using a polarizer and method for fabrication of a polarizing mask by using a polarizing exposure apparatus
TW200401956A (en) Lithographic apparatus and device manufacturing method
JP4261849B2 (en) Exposure method using near-field light and exposure apparatus using near-field light
KR20060120672A (en) Polarized reticle, photolithography system, and method of forming a pattern using a polarized reticle in conjunction with polarized light
US7312021B2 (en) Holographic reticle and patterning method
TWI246111B (en) Composite patterning with trenches
US7189498B2 (en) Process and apparatus for generating a strong phase shift optical pattern for use in an optical direct write lithography process
JP2010177687A (en) Methods and apparatus for integrating optical and interferometric lithography to produce complex patterns
JP3977093B2 (en) Near-field light exposure method by mask multiple exposure
JP3903149B2 (en) Resist pattern forming method, device manufacturing method
WO2022100751A1 (en) Laser interference lithography device and method
JP4674105B2 (en) Circuit pattern transfer apparatus and method
JP3791673B2 (en) Near-field light exposure system
JP2009278091A (en) Lithography method
JP4296024B2 (en) Exposure method
KR0146399B1 (en) Semiconductor pattern forming method
CN211628003U (en) Phase plate for generating special focusing light spot
JP2007095859A (en) Lithography method
JP2006119601A (en) Light modulator and optical apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees