[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3976036B2 - Method for producing polymer film - Google Patents

Method for producing polymer film Download PDF

Info

Publication number
JP3976036B2
JP3976036B2 JP2004210547A JP2004210547A JP3976036B2 JP 3976036 B2 JP3976036 B2 JP 3976036B2 JP 2004210547 A JP2004210547 A JP 2004210547A JP 2004210547 A JP2004210547 A JP 2004210547A JP 3976036 B2 JP3976036 B2 JP 3976036B2
Authority
JP
Japan
Prior art keywords
film
bis
support
aminophenoxy
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004210547A
Other languages
Japanese (ja)
Other versions
JP2006027128A (en
Inventor
彰一 上村
和丈 岡本
哲庸 永良
盛雄 森野
正幸 西上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2004210547A priority Critical patent/JP3976036B2/en
Publication of JP2006027128A publication Critical patent/JP2006027128A/en
Application granted granted Critical
Publication of JP3976036B2 publication Critical patent/JP3976036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、所謂、流延製膜法による高分子フィルムの製造方法に関する。   The present invention relates to a method for producing a polymer film by a so-called casting film forming method.

高分子フィルムの製造方法として、流延製膜法が公知である。流延製膜法は、溶剤に高分子化合物を溶解してなる溶液を支持体上に塗布することで支持体上に前記高分子化合物を含む塗膜を形成する工程と、前記支持体上の塗膜を乾燥する工程とを有する方法である。流延製膜法は、実験室規模から工業的規模にいたる様々な規模にて広く実施されている(特許文献1〜4)。   A casting film forming method is known as a method for producing a polymer film. The casting film forming method includes a step of forming a coating film containing the polymer compound on the support by applying a solution obtained by dissolving the polymer compound in a solvent onto the support, And a step of drying the coating film. The casting film forming method is widely implemented on various scales from a laboratory scale to an industrial scale (Patent Documents 1 to 4).

流延製膜法が工業的規模で行われる場合には、支持体として鏡面研磨した金属ロールや所謂エンドレスベルトが用いられる(特許文献5〜7)。支持体として金属のベルトを用いる方法は、塗布後の乾燥工程長を長くすることが容易であるため、流延製膜法にて広く用いられている。流延製膜法の生産性を上げるためには乾燥速度を上げることが効果的であり、そのためには、乾燥温度を高くする、乾燥風量を大きくする、という手段を講じることが考えられる。しかし、乾燥温度を高くしすぎると、乾燥の際の溶媒の揮発速度が上がりすぎ、気泡を発生することがある。また、乾燥風量を大きくしすぎると、塗膜表面に風紋状のシワが発生する場合があったり、支持体ベルト自体の風による振動に起因する塗膜全体のウネリが発生する場合がある。このように、得られるフィルムの品質という観点からは、上述の手段は必ずしも効果的ではない。   When the cast film forming method is performed on an industrial scale, a mirror-polished metal roll or a so-called endless belt is used as a support (Patent Documents 5 to 7). The method using a metal belt as a support is widely used in the casting film forming method because it is easy to lengthen the drying process length after coating. In order to increase the productivity of the casting film forming method, it is effective to increase the drying speed. To that end, it is conceivable to take measures such as increasing the drying temperature and increasing the amount of drying air. However, if the drying temperature is too high, the volatilization rate of the solvent at the time of drying may increase so that bubbles may be generated. Further, if the amount of drying air is excessively increased, wind-like wrinkles may be generated on the surface of the coating film, or undulation of the entire coating film may be generated due to vibration caused by the wind of the support belt itself. Thus, the above-mentioned means are not necessarily effective from the viewpoint of the quality of the obtained film.

このように、流延製膜法において生産性とフィルムの品質とを共に向上させるのは困難であったが故に、従来は、高品質のフィルムを生産する場合には乾燥速度を落とす、換言すると、長時間かけて緩やかに乾燥せざるをえなかった。
特開2003−260715号公報 特開平5−237928号公報 特開平6−56992号公報 特表平11−504369号公報 特開平9−207151号公報 特開平9−29852号公報 特開平9−57772号公報
Thus, since it was difficult to improve both productivity and film quality in the casting film forming method, conventionally, when producing a high-quality film, the drying speed is reduced, in other words, I had to dry it slowly over a long period of time.
JP 2003-260715 A Japanese Patent Laid-Open No. 5-237928 JP-A-6-56992 Japanese National Patent Publication No. 11-504369 JP-A-9-207151 JP-A-9-29852 Japanese Patent Laid-Open No. 9-57772

しかし、長時間を要する乾燥工程は、単に生産性の低下のみならず、乾燥中の不所望な副反応を引き起こすという別の問題を表面化させることになる。とりわけ、ポリイミドフィルムの製造の場合ように、流延製膜法により得られる前駆体フィルム(ポリアミド酸を含むフィルム)を、さらに熱処理してフィルム化する必要がある場合において上記別の問題が深刻になる。なぜならば、前駆体フィルムの前駆体(化合物)は化学的安定性が必ずしも高くないからである。例えば、ポリイミドフィルムの前駆体であるポリアミド酸フィルムのポリアミド酸は加水分解を生じやすいので、乾燥工程において、溶媒の揮発と、ポリアミド酸の加水分解による分子量低下とが同時に生じる。よってポリアミド酸フィルムを得る際に長時間乾燥させると、最終的に得られるポリイミドの分子量が低下してしまい、機械的強度が低下する原因となる。   However, a drying process that takes a long time not only reduces productivity, but also causes another problem of causing unwanted side reactions during drying. In particular, as in the case of the production of a polyimide film, when the precursor film (film containing polyamic acid) obtained by the casting film forming method needs to be further heat-treated to form a film, the above-mentioned another problem becomes serious. Become. This is because the precursor (compound) of the precursor film does not necessarily have high chemical stability. For example, since the polyamic acid of the polyamic acid film that is a precursor of the polyimide film is likely to be hydrolyzed, the volatilization of the solvent and the molecular weight reduction due to the hydrolysis of the polyamic acid occur simultaneously in the drying step. Therefore, when a polyamic acid film is obtained and dried for a long time, the molecular weight of the finally obtained polyimide is lowered, which causes the mechanical strength to be lowered.

本発明では、高品質のフィルムを高い生産性で製造し得る流延製膜法の提供、とりわけ、ポリイミドフィルムの前駆体の製膜に適用した場合に分子量の低下に伴う機械特性、電気特性の悪化を防止できる流延製膜法の提供を目的とする。   The present invention provides a casting film-forming method capable of producing a high-quality film with high productivity, in particular, mechanical characteristics and electrical characteristics associated with a decrease in molecular weight when applied to the formation of a polyimide film precursor. It aims at providing the casting film forming method which can prevent deterioration.

本発明者らは鋭意検討した結果、以下の発明を完成した。
(1)主鎖にイミド結合またはアミド結合を有する高分子化合物を含む溶液を支持体上に塗布することで支持体上に前記高分子化合物を含む塗膜を形成する工程と、前記支持体上の塗膜の上側の雰囲気温度よりも前記塗膜の下側の雰囲気温度が10〜50℃高い条件下で上記塗膜を乾燥する工程とを有する、高分子フィルムの製造方法。
)上記高分子化合物がポリイミド前駆体である、上記(1)記載の高分子フィルムの製造方法。
)上記溶液に含まれる高分子化合物が主鎖にベンザゾール環を有する、上記(1)または(2)記載の高分子フィルムの製造方法。
)上記支持体が長手方向および幅方向のいずれの方向についても3GPa以上の引張弾性率を有する有機高分子フィルムからなる、上記(1)〜()のいずれかに記載の高分子フィルムの製造方法。
As a result of intensive studies, the present inventors have completed the following invention.
(1) forming a coating film containing the polymer compound on the support by applying a solution containing the polymer compound having an imide bond or an amide bond in the main chain on the support; and on the support And a step of drying the coating film under a condition that the atmospheric temperature on the lower side of the coating film is higher by 10 to 50 ° C. than the atmospheric temperature on the upper side of the coating film.
(2) the polymer compound is a polyimide precursor, the (1) Symbol placement method for producing a polymer film.
( 3 ) The method for producing a polymer film according to (1) or (2) , wherein the polymer compound contained in the solution has a benzazole ring in the main chain.
( 4 ) The polymer film according to any one of (1) to ( 3 ), wherein the support is composed of an organic polymer film having a tensile elastic modulus of 3 GPa or more in both the longitudinal direction and the width direction. Manufacturing method.

本発明の高分子フィルムの製造方法は、流延製膜における乾燥過程で気泡発生などといったフィルム品質上の弊害を抑制し、かつ、短時間で乾燥を終えることができる。このため、長時間乾燥にて危惧される乾燥時の副反応を最低限に抑えることができる。   The method for producing a polymer film of the present invention can suppress film quality problems such as generation of bubbles during the drying process in casting and can finish drying in a short time. For this reason, the side reaction at the time of drying feared by long-time drying can be suppressed to the minimum.

本発明の製法は、乾燥過程での温度制御に特徴をもつ流延製膜法による高分子フィルムの製造方法である。流延製膜法とは、高分子化合物を含む溶液を支持体上に塗布することで支持体上に前記高分子化合物を含む塗膜を形成する工程と、前記支持体上の塗膜を乾燥する工程とを有する高分子フィルムの製造方法である。   The production method of the present invention is a method for producing a polymer film by a casting film formation method characterized by temperature control during the drying process. The casting film forming method includes a step of forming a coating film containing the polymer compound on the support by applying a solution containing the polymer compound on the support, and drying the coating film on the support. A process for producing a polymer film.

本発明において支持体上に高分子化合物を含む塗膜を形成する工程は、高分子化合物を含む溶液を支持体上に塗布すればよく、支持体の種類や塗布方法などは従来公知の技術を適宜取り入れることができる。   In the present invention, the step of forming a coating film containing a polymer compound on the support may be performed by applying a solution containing the polymer compound on the support. It can be taken in as appropriate.

塗布方法としては、スキージコーティング、バーコーティング、コンマコーティング、リバースコーティング、連続スクリーン印刷、グラビアコーティングなどを、溶液の粘度、得ようとするフィルムの厚み、厚み精度に応じて適宜選択して使用すればよい。   As the application method, squeegee coating, bar coating, comma coating, reverse coating, continuous screen printing, gravure coating, etc., can be used as appropriate depending on the viscosity of the solution, the thickness of the film to be obtained, and the thickness accuracy. Good.

高分子化合物を含む溶液を塗布する支持体は、ベルト、ドラムなど特に限定はなく、好ましくは、厚さが5mm以下、好ましくは3mm以下、より好ましくは1mm以下の湾曲可能な素材からなるエンドレスベルトである。支持体の厚さが厚すぎると湾曲性に難点がある場合がある。支持体の幅と長さは特に限定されず、幅が好ましくは30cm以上、より好ましくは50〜200cmであり、長さが好ましくは100cm以上、より好ましくは300〜5000cmである。支持体がエンドレスベルトである場合、「支持体の長さ」とは、エンドレスベルトの1周の長さである。   The support on which the solution containing the polymer compound is applied is not particularly limited, such as a belt or a drum, and is preferably an endless belt made of a bendable material having a thickness of 5 mm or less, preferably 3 mm or less, more preferably 1 mm or less. It is. If the thickness of the support is too thick, there may be a difficulty in curving. The width and length of the support are not particularly limited, and the width is preferably 30 cm or more, more preferably 50 to 200 cm, and the length is preferably 100 cm or more, more preferably 300 to 5000 cm. When the support is an endless belt, the “length of the support” is the length of one end of the endless belt.

本発明で用いる支持体の材質は、金属、非金属を問わず、フィルムにしようとする高分子の乾燥温度において、顕著な変形や寸法変化を生じない材質であれば、特に限定されない。金属素材としては、鉄、ステンレス(SUS)、ニッケル、チタン、タンタル、銅、ハステロイ等がある。さらにベルトの表面には、耐食性、硬度の向上や粘着性低下等のために、必要に応じてクロム、金、銀、ニッケルなどのメッキや表面処理を施してもよい。表面処理の例としてはクロムの薄膜酸化水和物皮膜形成、シリコーンあるいはフッ素皮膜形成などがある。   The material of the support used in the present invention is not particularly limited as long as it is a material that does not cause significant deformation or dimensional change at the drying temperature of the polymer to be formed into a film, regardless of whether it is metal or nonmetal. Examples of the metal material include iron, stainless steel (SUS), nickel, titanium, tantalum, copper, and hastelloy. Further, the surface of the belt may be subjected to plating or surface treatment with chrome, gold, silver, nickel, or the like, if necessary, in order to improve corrosion resistance, hardness, decrease adhesiveness, or the like. Examples of surface treatments include chromium thin film hydrated oxide film formation, silicone or fluorine film formation.

以下、支持体が有機高分子フィルムである場合の態様を詳しく記載する。有機高分子フィルムとは、有機高分子を主体成分とするフィルムである。前記有機高分子は特に制限はなく、具体的には、ポリエステル系樹脂、ポリイミド系樹脂、ポリフェニレンオキサイド系樹脂、ポリフェニレンサルファイド系樹脂、ポリサルフォン系樹脂等が挙げられる。ポリエステル系樹脂のポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンナフタレートなどが挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。これらのポリエステル系樹脂は、他のジカルボン酸成分やジオール成分が共重合していてもよい。本発明で用いる支持体は、異なる有機樹脂フィルムの積層体であってもよい。耐熱性に優れ、安価であり、加工がし易く、耐薬品性に優れる点から、支持体は、ポリエステルフィルムからなることが好ましく、ポリエチレンテレフタレートフィルムからなることがより好ましい。   Hereinafter, the aspect in case a support body is an organic polymer film is described in detail. An organic polymer film is a film containing an organic polymer as a main component. The organic polymer is not particularly limited, and specific examples include polyester resins, polyimide resins, polyphenylene oxide resins, polyphenylene sulfide resins, polysulfone resins, and the like. Examples of the polyester resin include polyethylene terephthalate, polyethylene naphthalate, polypropylene terephthalate, polybutylene terephthalate, and polypropylene naphthalate. These may be used alone or in combination of two or more. These polyester resins may be copolymerized with other dicarboxylic acid components or diol components. The support used in the present invention may be a laminate of different organic resin films. The support is preferably made of a polyester film, more preferably a polyethylene terephthalate film, because it is excellent in heat resistance, inexpensive, easy to process, and excellent in chemical resistance.

本発明で支持体として用いる有機高分子フィルムの厚さは好ましくは3〜300μmである。有機高分子フィルムが300μmより厚いと取り扱い難く、3μmより薄いと流延製膜法の実施中にシワが生じ易くなる。寸法安定性、強度を考慮すると、有機高分子フィルムの厚さは、より好ましくは10μm以上であり、さらに好ましくは20μm以上である。   The thickness of the organic polymer film used as a support in the present invention is preferably 3 to 300 μm. When the organic polymer film is thicker than 300 μm, it is difficult to handle, and when it is thinner than 3 μm, wrinkles are likely to occur during the casting film forming method. Considering dimensional stability and strength, the thickness of the organic polymer film is more preferably 10 μm or more, and further preferably 20 μm or more.

本発明で支持体として用いる有機高分子フィルムの中心線平均粗さ(Ra)は、好ましくは0.1〜1.0nmである。Raが上記範囲内であれば、本発明の製造方法で得られる高分子フィルムは不所望な凹凸が少ない高品質なものとなる。Raの測定方法は実施例の欄に記載する。   The center line average roughness (Ra) of the organic polymer film used as a support in the present invention is preferably 0.1 to 1.0 nm. When Ra is within the above range, the polymer film obtained by the production method of the present invention has a high quality with few undesirable irregularities. The method for measuring Ra is described in the column of Examples.

本発明で支持体として用いる有機高分子フィルムの引張弾性率は、長手方向および幅方向のいずれの方向についても、3GPa以上であり、好ましくは4GPa以上である。引張弾性率が3GPa未満であると、寸法安定性に劣るが故に搬送時に当該有機高分子フィルムが変形したり、得られる高分子フィルムのカール、たるみ、シワの原因となる。引張弾性率の上限は特に定められるものではないが、支持体としての取り扱い易さや入手のし易さを考慮すると20GPaなどが挙げられる。引張弾性率の測定方法は実施例の欄に記載する。   The tensile modulus of the organic polymer film used as the support in the present invention is 3 GPa or more, preferably 4 GPa or more, in both the longitudinal direction and the width direction. When the tensile elastic modulus is less than 3 GPa, the organic polymer film is deformed at the time of transportation because of inferior dimensional stability, and the resulting polymer film may be curled, sagging, or wrinkled. The upper limit of the tensile elastic modulus is not particularly defined, but 20 GPa and the like can be mentioned in consideration of ease of handling as a support and availability. The method for measuring the tensile modulus is described in the column of Examples.

本発明で支持体として用いる有機高分子フィルムの線膨張係数は、長手方向および幅方向のいずれの方向についても、好ましくは2〜30ppm/℃である。前記範囲内の線膨張係数を呈する有機樹脂フィルムであれば、乾燥のための加熱による寸法変化が小さいので、本発明の製造方法で得られる高分子フィルムにカール、たるみ、シワなどが生じにくくなる。上記線膨張係数はより好ましくは2〜25ppm/℃である。線膨張係数の測定方法は実施例の欄に記載する。   The linear expansion coefficient of the organic polymer film used as a support in the present invention is preferably 2 to 30 ppm / ° C in both the longitudinal direction and the width direction. If the organic resin film exhibits a linear expansion coefficient within the above range, the dimensional change due to heating for drying is small, so that the polymer film obtained by the production method of the present invention is less likely to curl, sag, wrinkle, etc. . The linear expansion coefficient is more preferably 2 to 25 ppm / ° C. The method for measuring the linear expansion coefficient is described in the column of Examples.

上述した各物性を呈する有機樹脂フィルムは公知である。そのような有機樹脂フィルムは、流延製膜法とは全く異なる技術分野に属する光学用のフィルムなどとして使用されている。本発明で支持体として用い得る市販のフィルムとして、光学用ポリエチレンテレフタレートフィルムである、コスモシャイン A4100(東洋紡績株式会社製)などを挙げることができる。   Organic resin films exhibiting the above-described physical properties are known. Such an organic resin film is used as an optical film belonging to a technical field completely different from the casting film forming method. Examples of the commercially available film that can be used as a support in the present invention include Cosmo Shine A4100 (manufactured by Toyobo Co., Ltd.), which is an optical polyethylene terephthalate film.

支持体上に塗布する溶液に含まれる高分子化合物は乾燥工程を経ることでフィルムを形成するような高分子化合物であれば特に制限はない。支持体上に塗布する溶液に含まれる高分子化合物の具体例としては、ポリアミドイミド、ポリイミド前駆体、溶剤に可溶なポリイミドなどといった主鎖にイミド結合またはアミド結合を有する高分子化合物、酢酸セルロース、ポリカーボネート、ポリ塩化ビニル、アラミド類などが挙げられる。ポリイミド前駆体とは、加熱などの処理によりポリイミドに変換し得る化合物であり、典型的にはポリアミド酸である。好ましくは、上記高分子化合物は主鎖にベンザゾール環を有する。ベンザゾール環はアゾール環とベンゼン環との縮合環であり、前記アゾール環は好ましくはオキサゾール環、チアゾール環、イミダゾール環である。特に好ましくは上記高分子化合物はポリイミドベンゾオキサゾールの前駆体、換言すると、主鎖にベンゾオキサゾール環を有するポリアミド酸である。   The polymer compound contained in the solution to be coated on the support is not particularly limited as long as it is a polymer compound that forms a film through a drying process. Specific examples of the polymer compound contained in the solution coated on the support include a polymer compound having an imide bond or an amide bond in the main chain, such as polyamide imide, polyimide precursor, polyimide soluble in a solvent, and cellulose acetate. , Polycarbonate, polyvinyl chloride, and aramids. The polyimide precursor is a compound that can be converted into polyimide by a treatment such as heating, and is typically polyamic acid. Preferably, the polymer compound has a benzazole ring in the main chain. The benzazole ring is a condensed ring of an azole ring and a benzene ring, and the azole ring is preferably an oxazole ring, a thiazole ring, or an imidazole ring. Particularly preferably, the polymer compound is a polyimide benzoxazole precursor, in other words, a polyamic acid having a benzoxazole ring in the main chain.

本発明で用いる高分子化合物の溶液を調製するための溶剤は特に制限はなく、従来の流延製膜法において用いられる溶剤などを適宜用いてよい。溶剤の具体例として、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、塩化メチレン、テトラヒドロフラン、メタノール、メタクレゾールなどが挙げられる。   The solvent for preparing the polymer compound solution used in the present invention is not particularly limited, and a solvent used in the conventional casting film forming method may be appropriately used. Specific examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, methylene chloride, tetrahydrofuran, methanol, metacresol and the like.

具体的な溶剤の選定指針としては、高分子化合物を溶解し、かつ、支持体を溶解しないような溶剤を選択する指針が一般的である。高分子化合物を含む溶液の好適例として、ポリアミドイミドのN−メチル−2−ピロリドン溶液およびN,N−ジメチルアセトアミド溶液、ポリアミド酸(ポリイミドの前駆体)のN−メチル−2−ピロリドン溶液、N,N−ジメチルホルムアミドおよびN,N−ジメチルアセトアミド溶液、溶剤に可溶なポリイミドのN−メチル−2−ピロリドン溶液およびN,N−ジメチルアセトアミド溶液、酢酸セルロースの塩化メチレン溶液およびメタノール溶液、ポリカーボネートの塩化メチレン溶液およびメタクレゾール溶液、ポリ塩化ビニルのテトラヒドロフラン溶液ならびにアラミド類のN−メチル−2−ピロリドン溶液などが挙げられる。   As a specific guideline for selecting a solvent, a guideline for selecting a solvent that dissolves the polymer compound and does not dissolve the support is general. Preferable examples of the solution containing the polymer compound include N-methyl-2-pyrrolidone solution and N, N-dimethylacetamide solution of polyamideimide, N-methyl-2-pyrrolidone solution of polyamic acid (polyimide precursor), N , N-dimethylformamide and N, N-dimethylacetamide solution, N-methyl-2-pyrrolidone solution and N, N-dimethylacetamide solution of polyimide soluble in solvent, methylene chloride solution and methanol solution of cellulose acetate, polycarbonate Examples include a methylene chloride solution and a metacresol solution, a tetrahydrofuran solution of polyvinyl chloride, and an N-methyl-2-pyrrolidone solution of aramids.

中でも、本発明の製造方法は、ポリイミドベンゾオキサゾールの前駆体であるポリアミド酸のN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の溶液に適用することが好ましい。以下、ポリイミドベンゾオキサゾールの前駆体であるポリアミド酸を含む溶液を得る手段を詳しく説明する。しかし、本発明の製造方法は以下の高分子を含むフィルムの製造以外にも適用できる。   Among them, the production method of the present invention is preferably applied to a solution of polyamic acid N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide or the like, which is a precursor of polyimide benzoxazole. . Hereinafter, means for obtaining a solution containing polyamic acid which is a precursor of polyimide benzoxazole will be described in detail. However, the production method of the present invention can be applied to the production of films containing the following polymers.

この態様では、支持体上に塗布する高分子溶液の調製のために、溶剤中でベンゾオキサゾール構造を有する芳香族ジアミン類と、芳香族テトラカルボン酸無水物類とを開環重付加反応に供する。そのようにして得られた高分子溶液(ポリアミド酸溶液)を支持体上に塗布して乾燥せしめ、その後、さらに、脱水縮合(イミド化)させることでポリイミドフィルムを得ることができる。   In this embodiment, an aromatic diamine having a benzoxazole structure and an aromatic tetracarboxylic acid anhydride are subjected to a ring-opening polyaddition reaction in a solvent in order to prepare a polymer solution to be coated on a support. . The polymer solution (polyamic acid solution) thus obtained is applied onto a support and dried, and then further subjected to dehydration condensation (imidization) to obtain a polyimide film.

<芳香族ジアミン類>
本発明で用いるベンゾオキサゾール構造を有する芳香族ジアミン類としては、具体的には以下のものが挙げられる。
<Aromatic diamines>
Specific examples of the aromatic diamine having a benzoxazole structure used in the present invention include the following.

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

これらの中でも、合成のし易さの観点から、アミノ(アミノフェニル)ベンゾオキサゾールの各異性体が好ましく、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールがより好ましい。ここで、「各異性体」とは、アミノ(アミノフェニル)ベンゾオキサゾールが有する2つアミノ基が配位位置に応じて定められる各異性体である(例;上記「化1」〜「化4」に記載の各化合物)。これらのジアミンは、単独で用いてもよいし、二種以上を併用してもよい。   Among these, from the viewpoint of easy synthesis, each isomer of amino (aminophenyl) benzoxazole is preferable, and 5-amino-2- (p-aminophenyl) benzoxazole is more preferable. Here, “each isomer” refers to each isomer in which two amino groups of amino (aminophenyl) benzoxazole are determined according to the coordination position (eg, the above “formula 1” to “formula 4”). Each compound described in the above. These diamines may be used alone or in combination of two or more.

本発明においては、全ジアミンの30モル%以下であれば下記に例示されるベンゾオキサゾール構造を有しないジアミン類を一種または二種以上を併用しても構わない。そのようなジアミン類としては、例えば、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノシ)フェニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4’−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、4,4’−ジアミノ−5−フェノキシベンゾフェノン、3,4’−ジアミノ−4−フェノキシベンゾフェノン、3,4’−ジアミノ−5’−フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジビフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、4,4’−ジアミノ−5−ビフェノキシベンゾフェノン、3,4’−ジアミノ−4−ビフェノキシベンゾフェノン、3,4’−ジアミノ−5’−ビフェノキシベンゾフェノン、1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリルおよび上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てがハロゲン原子、炭素数1〜3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。   In the present invention, one or two or more diamines having no benzoxazole structure exemplified below may be used as long as they are 30 mol% or less of the total diamine. Examples of such diamines include 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, and bis [4- (3-aminophenoxy) phenyl]. Sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 3,3′-diamino Diphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-dia Nodiphenyl sulfide, 3,3′-diaminodiphenyl sulfoxide, 3,4′-diaminodiphenyl sulfoxide, 4,4′-diaminodiphenyl sulfoxide, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4 , 4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4, 4′-diaminodiphenylmethane, bis [4- (4-aminophenoxy) phenyl] methane, 1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-amino) Phenoxy) phenyl] ethane, 1,1-bis [4- 4-aminophenoxy) phenyl] propane, 1,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1,3-bis [4- (4-aminophenoxy) phenyl] butane, , 4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane, 2,3-bis [4- (4-aminophenoxy) phenyl] Butane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3-methylphenyl] propane, 2,2-bis [4- (4-amino) Nophenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2- Bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexa Fluoropropane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4 -Aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenyl) Noxy) phenyl] sulfoxide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 1, 3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] Benzene, 4,4′-bis [(3-aminophenoxy) benzoyl] benzene, 1,1-bis [4- (3-aminophenoxy) phenyl] propane, 1,3-bis [4- (3-aminophenoxy) ) Phenyl] propane, 3,4'-diaminodiphenyl sulfide, 2,2-bis [3- (3-aminophenoxy) phenyl] 1,1,1,3,3,3-hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] methane, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1, 2-bis [4- (3-aminophenoxy) phenyl] ethane, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4′-bis [3- (4-aminophenoxy) benzoyl] diphenyl ether, 4 , 4′-bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [ 4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, bis [4- {4- (4-aminophenoxy) phenoxy} pheny ] Sulfone, 1,4-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl Benzene, 1,3-bis [4- (4-amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-fluorophenoxy) ) -Α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4- Amino-6-cyanophenoxy) -α, α-dimethylbenzyl] benzene, 3,3′-diamino-4,4′-diphenoxybenzophenone, 4,4′-diamino-5,5′-diphenoxy Benzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone, 3,3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4 -Phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3, 4,4′-diamino-4,5′-dibiphenoxybenzophenone, 3,3′-diamino-4-biphenoxybenzophenone, 4,4′-diamino-5-biphenoxybenzophenone, 3,4′-diamino-4- Biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1,3-bis (3-amino-4-phenoxybenzoyl) benzene, 1,4-bis (3-amino-4-phenoxybenzoyl) benzene, 1,3-bis (4-amino-5-phenoxybenzoyl) benzene 1,4-bis (4-amino-5-phenoxybenzoyl) benzene, 1,3-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,4-bis (3-amino-4-biphenoxy) Benzoyl) benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4-amino-5-biphenoxybenzoyl) benzene, 2,6-bis [4- (4 -Amino-α, α-dimethylbenzyl) phenoxy] benzonitrile and some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine are halogen atoms, carbon Substitution with a C1-C3 halogenated alkyl group or alkoxyl group in which some or all of the hydrogen atoms of the prime alkyl group, alkoxyl group, cyano group, alkyl group or alkoxyl group are substituted with halogen atoms Aromatic diamines made and the like.

<芳香族テトラカルボン酸無水物類>
本発明で用いられるテトラカルボン酸無水物は芳香族テトラカルボン酸無水物類である。芳香族テトラカルボン酸無水物類としては、具体的には、以下のものが挙げられる。
<Aromatic tetracarboxylic acid anhydrides>
The tetracarboxylic acid anhydrides used in the present invention are aromatic tetracarboxylic acid anhydrides. Specific examples of the aromatic tetracarboxylic acid anhydrides include the following.

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

これらのテトラカルボン酸二無水物は単独で用いてもよいし、二種以上を併用してもよい。   These tetracarboxylic dianhydrides may be used alone or in combination of two or more.

本発明においては、全テトラカルボン酸二無水物の30モル%以下であれば下記に例示される非芳香族のテトラカルボン酸二無水物類を一種または二種以上を併用しても構わない。そのようなテトラカルボン酸無水物としては、例えば、ブタン−1,2,3,4−テトラカルボン酸二無水物、ペンタン−1,2,4,5−テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、シクロヘキサン−1,2,4,5−テトラカルボン酸二無水物、シクロヘキサ−1−エン−2,3,5,6−テトラカルボン酸二無水物、3−エチルシクロヘキサ−1−エン−3−(1,2),5,6−テトラカルボン酸二無水物、1−メチル−3−エチルシクロヘキサン−3−(1,2),5,6−テトラカルボン酸二無水物、1−メチル−3−エチルシクロヘキサ−1−エン−3−(1,2),5,6−テトラカルボン酸二無水物、1−エチルシクロヘキサン−1−(1,2),3,4−テトラカルボン酸二無水物、1−プロピルシクロヘキサン−1−(2,3),3,4−テトラカルボン酸二無水物、1,3−ジプロピルシクロヘキサン−1−(2,3),3−(2,3)−テトラカルボン酸二無水物、ジシクロヘキシル−3,4,3’,4’−テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸二無水物、1−プロピルシクロヘキサン−1−(2,3),3,4−テトラカルボン酸二無水物、1,3−ジプロピルシクロヘキサン−1−(2,3),3−(2,3)−テトラカルボン酸二無水物、ジシクロヘキシル−3,4,3’,4’−テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等が挙げられる。これらのテトラカルボン酸二無水物は単独で用いてもよいし、二種以上を併用してもよい。   In the present invention, one or two or more non-aromatic tetracarboxylic dianhydrides exemplified below may be used in combination as long as they are 30 mol% or less of the total tetracarboxylic dianhydrides. Examples of such tetracarboxylic acid anhydrides include butane-1,2,3,4-tetracarboxylic dianhydride, pentane-1,2,4,5-tetracarboxylic dianhydride, and cyclobutanetetracarboxylic acid. Acid dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, cyclohex-1-ene-2,3 5,6-tetracarboxylic dianhydride, 3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohexane-3 -(1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride 1-ethylcyclohexane -(1,2), 3,4-tetracarboxylic dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane- 1- (2,3), 3- (2,3) -tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, bicyclo [2.2.1] Heptane-2,3,5,6-tetracarboxylic dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1 -(2,3), 3- (2,3) -tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ', 4'-tetracarboxylic dianhydride, bicyclo [2.2.1] heptane -2,3,5,6-tetracarboxylic dianhydride, Cyclo [2.2.2] octane-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid A dianhydride etc. are mentioned. These tetracarboxylic dianhydrides may be used alone or in combination of two or more.

ジアミン類と、テトラカルボン酸無水物類とを重合してポリアミド酸を得るときに用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであり、かつ、後述する支持体を溶解しないものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等があげられる。これらの溶媒は、単独あるいは混合して使用することができる。溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、モノマーを溶解した溶液に占めるモノマーの重量が、通常5〜40重量%、好ましくは10〜30重量%となるような量が挙げられる。   The solvent used when polymerizing diamines and tetracarboxylic acid anhydrides to obtain a polyamic acid dissolves both the raw material monomer and the polyamic acid to be produced, and a support described later. Is not particularly limited, but is preferably a polar organic solvent, such as N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, Examples thereof include N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols. These solvents can be used alone or in combination. The amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material. As a specific amount used, the weight of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by weight, The amount is preferably 10 to 30% by weight.

ポリアミド酸を得るための重合反応(以下、単に「重合反応」ともいう)の条件は従来公知の条件を適用すればよく、具体例として、有機溶媒中、0〜80℃の温度範囲で、10分〜30時間連続して撹拌および/または混合することが挙げられる。必要により重合反応を分割したり、温度を上下させてもかまわない。この場合に、両モノマーの添加順序には特に制限はないが、芳香族ジアミン類の溶液中に芳香族テトラカルボン酸無水物類を添加するのが好ましい。重合反応によって得られるポリアミド酸溶液に占めるポリアミド酸の重量は、好ましくは5〜40重量%、より好ましくは10〜30重量%であり、前記溶液の粘度はブルックフィールド粘度計による測定(25℃)で、送液の安定性の点から、好ましくは10〜2000Pa・sであり、より好ましくは100〜1000Pa・sである。   Conventionally known conditions may be applied for the polymerization reaction for obtaining the polyamic acid (hereinafter also simply referred to as “polymerization reaction”). As a specific example, in a temperature range of 0 to 80 ° C., 10 Stirring and / or mixing continuously for minutes to 30 hours. If necessary, the polymerization reaction may be divided or the temperature may be increased or decreased. In this case, the order of adding both monomers is not particularly limited, but it is preferable to add aromatic tetracarboxylic acid anhydrides to the solution of aromatic diamines. The weight of the polyamic acid in the polyamic acid solution obtained by the polymerization reaction is preferably 5 to 40% by weight, more preferably 10 to 30% by weight, and the viscosity of the solution is measured with a Brookfield viscometer (25 ° C.). From the viewpoint of the stability of liquid feeding, it is preferably 10 to 2000 Pa · s, and more preferably 100 to 1000 Pa · s.

次に、支持体上に形成した塗膜を乾燥する工程について説明する。本発明の製造方法では、支持体上の塗膜の上側の雰囲気温度よりも前記塗膜の下側の雰囲気温度が1〜55℃高い条件下で塗膜を乾燥する。雰囲気温度の説明においては、塗膜から支持体へ向う方向を下方向、その逆を上方向として方向を定義する。このような上下方向の記載は着目すべき領域の位置を簡潔に表現するためになされるものであり、実際の製造における塗膜の絶対的な方向を特定するためのものではない。   Next, the process of drying the coating film formed on the support will be described. In the production method of the present invention, the coating film is dried under the condition that the atmospheric temperature below the coating film is higher by 1 to 55 ° C. than the atmospheric temperature above the coating film on the support. In the description of the atmospheric temperature, the direction is defined with the direction from the coating film toward the support being the downward direction and the opposite being the upward direction. Such a description in the vertical direction is made for concisely expressing the position of the region to be noted, and is not for specifying the absolute direction of the coating film in actual production.

「塗膜の上側の雰囲気温度」とは、塗膜の直上から塗膜の上方30mmに至る領域(通常は空間部分)の温度であり、塗膜から上方向に5〜30mm離れた位置の温度を熱電対などで計測することで、塗膜の上側の雰囲気温度を求めることができる。
「塗膜の下側の雰囲気温度」とは、塗膜の直下(支持体部分)から塗膜の下方30mmに至る領域(支持体および支持体の下方の部分を含むことが多い)の温度であり、塗膜から下方向に5〜30mm離れた位置の温度を熱電対などで計測することで、塗膜の下側の雰囲気温度を求めることができる。
The “atmosphere temperature above the coating film” is a temperature in a region (usually a space) from directly above the coating film to 30 mm above the coating film, and a temperature at a position 5 to 30 mm away from the coating film in the upward direction. By measuring with a thermocouple or the like, the ambient temperature above the coating film can be determined.
The “atmosphere temperature under the coating film” is a temperature in a region (often including the support and the lower part of the support) from directly below the coating (support part) to 30 mm below the coating film. Yes, the temperature of the lower side of the coating film can be determined by measuring the temperature at a position 5 to 30 mm below the coating film with a thermocouple or the like.

乾燥時に、塗膜の上側の雰囲気温度よりも前記塗膜の下側の雰囲気温度を1〜55℃高くすれば、乾燥温度自体を高くして塗膜の乾燥速度を高めても高品質なフィルムを得ることができる。塗膜の上側の雰囲気温度よりも塗膜の下側の雰囲気温度が低いか、あるいは、塗膜の上側の雰囲気温度と塗膜の下側の雰囲気温度の差が1℃未満であると、塗膜の上面付近が先に乾燥してフィルム化して「蓋」のようになってしまい、その後に、支持体付近から蒸発すべき溶剤の蒸散を妨げて、フィルムに不所望な穴が開いたり、表面が荒れたりすることが懸念される。塗膜の下側の雰囲気温度が塗膜の上側の雰囲気温度よりも高く、その温度差が55℃より大きくすることは、装置上、経済上に不利となり望ましくない。さらに大きな温度差になるとフィルムの表面が荒れる場合もある。好ましくは、乾燥時に、塗膜の上側の雰囲気温度よりも前記塗膜の下側の雰囲気温度を10〜50℃高くし、より好ましくは、15〜45℃高くする。   When drying, if the atmospheric temperature on the lower side of the coating film is higher by 1 to 55 ° C. than the atmospheric temperature on the upper side of the coating film, a high quality film can be obtained even if the drying temperature itself is increased to increase the drying speed of the coating film Can be obtained. If the ambient temperature below the coating is lower than the ambient temperature above the coating, or if the difference between the ambient temperature above the coating and the ambient temperature below the coating is less than 1 ° C. The upper surface of the membrane is first dried and turned into a film to become a “lid”, and then the evaporation of the solvent to be evaporated from the vicinity of the support is prevented, and an undesirable hole is opened in the film. There is a concern that the surface becomes rough. It is undesirable for the apparatus and the economy to be disadvantageous in that the ambient temperature below the coating film is higher than the ambient temperature above the coating film and the temperature difference is greater than 55 ° C. When the temperature difference is further increased, the film surface may be roughened. Preferably, at the time of drying, the atmospheric temperature on the lower side of the coating film is made higher by 10 to 50 ° C., more preferably 15 to 45 ° C. than the atmospheric temperature on the upper side of the coating film.

上記のような雰囲気温度の設定は、塗膜の乾燥の全工程にわたってなされてもよいし、塗膜の乾燥の一部の工程でなされてもよい。塗膜の乾燥をトンネル炉等の連続式乾燥機で行う場合、乾燥有効長の、好ましくは10〜100%、より好ましくは15〜100%の長さにおいて、上述の雰囲気温度を設定すればよい。   The setting of the atmospheric temperature as described above may be performed throughout the entire drying process of the coating film, or may be performed in a part of the drying process of the coating film. When the coating film is dried by a continuous dryer such as a tunnel furnace, the above-mentioned atmospheric temperature may be set in the drying effective length, preferably 10 to 100%, more preferably 15 to 100%. .

従来は乾燥時の温度は塗膜の上側、下側で同じになるようになされていた。上記のような温度制御を実現する手段自体は従来の加熱手段を援用でき、そのような手段の具体例として、赤外線加熱、温風加熱、マイクロ波加熱などが挙げられる。   Conventionally, the drying temperature is the same on the upper and lower sides of the coating film. Conventional heating means can be used as the means for realizing the temperature control as described above, and specific examples of such means include infrared heating, hot air heating, and microwave heating.

本発明の製造方法により製造する高分子フィルムがポリイミドフィルムである場合には、上記の乾燥によってポリイミド前駆体を含むフィルムが得られるので、前記ポリイミド前駆体をイミド化させることによりポリイミドフィルムを得ることができる。イミド化については公知の技術を適宜援用して実施することができる。   In the case where the polymer film produced by the production method of the present invention is a polyimide film, a film containing a polyimide precursor is obtained by the above-described drying, so that the polyimide film is obtained by imidizing the polyimide precursor. Can do. About imidation, a well-known technique can be used suitably and can be implemented.

本発明において塗膜の乾燥における雰囲気温度自体は、高分子溶液の種類などによって適宜決定することができる。本発明の製造方法では、従来よりも高温にて乾燥して乾燥速度を増しても良好な品質のフィルムが得られる。例えば、ポリイミドの前駆体であるポリアミド酸を含有するフィルムを製造する場合、塗膜の乾燥における塗膜の下側の雰囲気温度は、好ましくは80〜140℃であり、より好ましくは90〜120℃である。   In the present invention, the atmospheric temperature itself in drying the coating film can be appropriately determined depending on the type of the polymer solution. In the production method of the present invention, a film of good quality can be obtained even if the drying rate is increased by drying at a higher temperature than before. For example, when manufacturing the film containing the polyamic acid which is a precursor of a polyimide, the atmospheric temperature under the coating film in drying of a coating film becomes like this. Preferably it is 80-140 degreeC, More preferably, it is 90-120 degreeC It is.

以下、実施例および比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited by a following example. In addition, the evaluation method of the physical property in the following examples is as follows.

1.ポリアミド酸の還元粘度(ηsp/C)
ポリマー濃度が0.2g/dlとなるようにN−メチル−2−ピロリドンに溶解した溶液をウベローデ型の粘度管により30℃で測定した。
1. Reduced viscosity of polyamic acid (ηsp / C)
A solution dissolved in N-methyl-2-pyrrolidone so that the polymer concentration was 0.2 g / dl was measured at 30 ° C. using an Ubbelohde type viscosity tube.

2.フィルムの厚さ
マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。
2. Film thickness Measured using a micrometer (Finereuf, Millitron 1245D).

3.フィルムの引張弾性率、引張破断強度および引張破断伸度
測定対象のフィルムを、長手方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。引張試験機(島津製作所製、オートグラフ(R) 機種名AG−5000A)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張強度及び引張破断伸度を測定した。
3. Tensile modulus, tensile breaking strength and tensile breaking elongation of the film The film to be measured was cut into strips of 100 mm × 10 mm in the longitudinal direction (MD direction) and the width direction (TD direction), respectively, as test pieces. . Using a tensile tester (manufactured by Shimadzu Corp., Autograph (R) model name AG-5000A) under the conditions of a tensile speed of 50 mm / min and a distance between chucks of 40 mm, the tensile modulus and tensile strength in each of the MD and TD directions. And tensile elongation at break was measured.

4.フィルムの融点、ガラス転移温度
測定対象のフィルムについて、下記条件で示差走査熱量測定(DSC)を行い、融点(融解ピーク温度Tpm)とガラス転移点(Tmg)をJIS K 7121に準拠して求めた。
装置名 ; MACサイエンス社製DSC3100S
パン ; アルミパン(非気密型)
試料重量 ; 4mg
昇温開始温度 ; 30℃
昇温終了温度 ; 600℃
昇温速度 ; 20℃/min
雰囲気 ; アルゴン
4). The melting point of the film and the glass transition temperature The film to be measured was subjected to differential scanning calorimetry (DSC) under the following conditions, and the melting point (melting peak temperature Tpm) and the glass transition point (Tmg) were determined according to JIS K 7121. .
Device name: DSC3100S manufactured by MAC Science
Pan : Aluminum pan (non-airtight)
Sample weight; 4mg
Temperature rising start temperature: 30 ° C
Temperature rising end temperature: 600 ° C
Temperature increase rate: 20 ° C / min
Atmosphere: Argon

5.乾燥時の雰囲気温度
支持体の上下両面からそれぞれ5mm離れた位置に下記熱電対の検出部を設置した。尚、熱電対は幅方向の中央付近に設けた。乾燥ゾーン内で実際の塗布−乾燥工程と同様の乾燥速度(乾燥時間)で支持体を搬送し、その際の各ゾーンでの検出温度を記録した。
熱電対:K熱電対(φ;1.0mm, 長さ12m)
データ取り込み装置:キーエンス(株)製 NR−250
5). Atmospheric temperature during drying The following thermocouple detectors were installed at positions 5 mm away from the upper and lower surfaces of the support. The thermocouple was provided near the center in the width direction. In the drying zone, the support was transported at the same drying speed (drying time) as in the actual coating-drying process, and the detected temperature in each zone at that time was recorded.
Thermocouple: K thermocouple (φ; 1.0mm, length 12m)
Data capture device: NR-250 manufactured by Keyence Corporation

6.フィルムの品質(気泡)
目視によりフィルム表面付近の気泡の有無を確認した。
6). Film quality (bubbles)
The presence or absence of bubbles near the film surface was confirmed visually.

7.支持体の中心線平均粗さ(Ra)
マイクロマップ社製三次元非接触表面形状計測システムを用い、133.1μm×133.1μmの範囲においてRaの測定を行った。
7). Centerline average roughness of support (Ra)
Ra was measured in a range of 133.1 μm × 133.1 μm using a three-dimensional non-contact surface shape measurement system manufactured by Micromap.

8.フィルムの線膨張係数(CTE)
測定対象のフィルムについて、下記条件にてMD方向TD方向の伸縮率を測定し、30℃〜40℃、40℃〜50℃、…と10℃の間隔での伸縮率/温度を測定し、この測定を100℃まで行い、全測定値の平均値をCTEとして算出した。
装置名 ; MACサイエンス社製TMA4000S
試料長さ ; 20mm
試料幅 ; 2mm
昇温開始温度 ; 30℃
昇温終了温度 ; 100℃
昇温速度 ; 5℃/min
雰囲気 ; アルゴン
8). Film linear expansion coefficient (CTE)
For the film to be measured, the stretch rate in the MD direction TD direction is measured under the following conditions, and the stretch rate / temperature at intervals of 30 ° C. to 40 ° C., 40 ° C. to 50 ° C.,. Measurement was performed up to 100 ° C., and an average value of all measured values was calculated as CTE.
Device name: TMA4000S manufactured by MAC Science
Sample length; 20mm
Sample width: 2 mm
Temperature rising start temperature: 30 ° C
Temperature rise end temperature: 100 ° C
Temperature increase rate: 5 ° C / min
Atmosphere: Argon

(実施例1)
(ポリアミド酸溶液の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、500重量部の5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールを入れた。次いで、5000重量部のN−メチル−2−ピロリドンを加えて完全に溶解させてから、485重量部のピロメリット酸二無水物を加えて、25℃にて48時間攪拌すると、褐色の粘調なポリアミド酸溶液が得られた。この還元粘度(ηsp/C)は4.5であった。
Example 1
(Preparation of polyamic acid solution)
The inside of a reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 500 parts by weight of 5-amino-2- (p-aminophenyl) benzoxazole was added. Next, 5000 parts by weight of N-methyl-2-pyrrolidone was added and completely dissolved, and then 485 parts by weight of pyromellitic dianhydride was added and stirred at 25 ° C. for 48 hours. A polyamic acid solution was obtained. This reduced viscosity (ηsp / C) was 4.5.

(ポリアミド酸のフィルムの製造)
得られたポリアミド酸溶液を、鏡面仕上げ(表面粗さ Ra:0.5nm)したエンドレスのステンレスベルト上にスキージを用いてコーティングした(スキージ/ベルト間のギャップは、650μm)。3つのゾーンを有する連続式の乾燥炉を用いて、表1記載の条件で乾燥した。表1中、「ゾーン上」は塗膜の上側の雰囲気温度を意味し、「ゾーン下」は塗膜の下側の雰囲気温度を意味する。乾燥により得られた自己支持性のポリアミド酸フィルムを支持体から剥離した。このようにして、幅650mm、長さ60m、厚さ40μmのポリアミド酸フィルムを得た。
(Manufacture of polyamic acid film)
The obtained polyamic acid solution was coated on a mirror-finished (surface roughness Ra: 0.5 nm) endless stainless steel belt using a squeegee (squeegee / belt gap was 650 μm). It dried on the conditions of Table 1 using the continuous-type drying furnace which has three zones. In Table 1, “on the zone” means the ambient temperature above the coating film, and “under the zone” means the ambient temperature below the coating film. The self-supporting polyamic acid film obtained by drying was peeled off from the support. In this way, a polyamic acid film having a width of 650 mm, a length of 60 m, and a thickness of 40 μm was obtained.

(ポリイミドフィルムの製造)
得られたポリアミド酸フィルムを連続式の熱処理炉に通し、表1に記載の条件にて2段階の加熱処理を施すことによってイミド化反応を進行させた。その後、5分間で室温にまで冷却して、褐色を呈するポリイミドフィルムを得た。得られたフィルムの物性を表3に記載する。表1における「熱処理条件」の欄で、例えば、「200 ℃×5 min → 450 ℃×5 min」であるのは、支持体より剥離したフィルムを200℃で5分間処理した後に、450℃で5分間処理することを意味する。
(Manufacture of polyimide film)
The obtained polyamic acid film was passed through a continuous heat treatment furnace and subjected to two stages of heat treatment under the conditions shown in Table 1 to advance the imidization reaction. Then, it cooled to room temperature in 5 minutes, and obtained the polyimide film which exhibits brown. The physical properties of the obtained film are shown in Table 3. In the column of “Heat treatment conditions” in Table 1, for example, “200 ° C. × 5 min → 450 ° C. × 5 min” means that the film peeled off from the support was treated at 200 ° C. for 5 minutes and then at 450 ° C. It means processing for 5 minutes.

(実施例2)
ポリアミド酸フィルムを得るための乾燥条件を表1記載の条件に変えたことのほかは実施例1と同様にしてポリイミドフィルムを得た。
(Example 2)
A polyimide film was obtained in the same manner as in Example 1 except that the drying conditions for obtaining the polyamic acid film were changed to the conditions shown in Table 1.

(実施例3)
480重量部のピロメリット酸無水物と、480重量部の4,4’−ジシアノジフェニルエーテルとを5000重量部のジメチルアセトアミドに溶解して、温度を20℃以下に保ちながら48時間攪拌することでポリアミド酸溶液を得た。得られた溶液の還元粘度(ηsp/C)は4.5であった。このポリアミド酸溶液を用いたことの他は実施例1と同様の操作により、ポリイミドフィルムを得た。
(Example 3)
480 parts by weight of pyromellitic anhydride and 480 parts by weight of 4,4′-dicyanodiphenyl ether were dissolved in 5000 parts by weight of dimethylacetamide and stirred for 48 hours while maintaining the temperature at 20 ° C. or lower. An acid solution was obtained. The reduced viscosity (ηsp / C) of the obtained solution was 4.5. A polyimide film was obtained in the same manner as in Example 1 except that this polyamic acid solution was used.

(実施例4)
上述のポリアミド酸溶液の代わりに、1モルのトリメリット酸無水物に対して、0.25モルの2,4−トリレンジイソシアネート、0.75モルのo−トリジンジイソシアネートが反応してなるポリアミドイミド樹脂を20wt%含有するn−メチル−2−ピロリドン溶液を用いた。その他は実施例1の操作に準じて表1記載の条件によりポリアミドイミドフィルムを得た。
Example 4
Polyamideimide obtained by reacting 0.25 mol of 2,4-tolylene diisocyanate and 0.75 mol of o-tolidine diisocyanate with 1 mol of trimellitic anhydride instead of the above polyamic acid solution. An n-methyl-2-pyrrolidone solution containing 20 wt% resin was used. In other respects, a polyamideimide film was obtained according to the conditions described in Table 1 according to the procedure of Example 1.

(実施例5)
乾燥工程において、ステンレスベルトに代えて、ポリエステルフィルム コスモシャインA−4100(東洋紡績(株)製)を支持体として用いた。前記ポリエステルフィルムの長手方向の線膨張係数は20ppm/℃であり、幅方向の線膨張係数は18ppm/℃であり、Raは0.5nmであり、長手方向の引張弾性率は4.1GPaであり、幅方向の引張弾性率は4.2GPaである。前記ポリエステルフィルムの無滑剤面にポリアミド酸溶液を塗布した。エンドレスのステンレスベルトの場合とは異なり、上記ポリエステルフィルムを巻き出す装置と巻き取り装置とを乾燥機に設置した。以上の条件以外は実施例1と同様の操作によりポリイミドフィルムを製造した。
(Example 5)
In the drying step, a polyester film Cosmo Shine A-4100 (manufactured by Toyobo Co., Ltd.) was used as a support instead of the stainless steel belt. The polyester film has a linear expansion coefficient in the longitudinal direction of 20 ppm / ° C., a linear expansion coefficient in the width direction of 18 ppm / ° C., Ra of 0.5 nm, and a tensile modulus in the longitudinal direction of 4.1 GPa. The tensile modulus in the width direction is 4.2 GPa. A polyamic acid solution was applied to the non-lubricating surface of the polyester film. Unlike the case of the endless stainless steel belt, the polyester film unwinding device and the winding device were installed in a dryer. A polyimide film was produced in the same manner as in Example 1 except for the above conditions.

(比較例1〜3)
ポリアミド酸フィルムを得るための乾燥条件を表2記載の条件に変えたことのほかは実施例1と同様の操作によりポリイミドフィルムを得た。
(Comparative Examples 1-3)
A polyimide film was obtained in the same manner as in Example 1 except that the drying conditions for obtaining the polyamic acid film were changed to the conditions shown in Table 2.

(比較例4)
実施例5と同様のポリエステルフィルムを支持体に用いて、表2記載の条件によりポリイミドフィルムを得た。比較例1〜4にて得られたポリイミドフィルムの物性を表4にまとめる。
(Comparative Example 4)
Using the same polyester film as in Example 5 as a support, a polyimide film was obtained under the conditions described in Table 2. Table 4 summarizes the physical properties of the polyimide films obtained in Comparative Examples 1 to 4.

以下の表から明らかなように、本発明の実施例では機械的強度および品質に優れたフィルムを得ることができ、一方、比較例では機械的強度が低く、かつ、気泡が生じるなど品質の低下も認められた。   As is clear from the table below, in the examples of the present invention, films having excellent mechanical strength and quality can be obtained, while in the comparative examples, the mechanical strength is low and the quality is deteriorated such that bubbles are generated. Was also recognized.

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Figure 0003976036
Figure 0003976036

Claims (4)

主鎖にイミド結合またはアミド結合を有する高分子化合物を含む溶液を支持体上に塗布することで支持体上に前記高分子化合物を含む塗膜を形成する工程と、前記支持体上の塗膜の上側の雰囲気温度よりも前記塗膜の下側の雰囲気温度が10〜50℃高い条件下で上記塗膜を乾燥する工程とを有する、高分子フィルムの製造方法。 Forming a coating film containing the polymer compound on the support by applying a solution containing the polymer compound having an imide bond or an amide bond in the main chain on the support; and a coating film on the support. And a step of drying the coating film under a condition in which the atmospheric temperature below the coating film is higher by 10 to 50 ° C. than the upper atmosphere temperature. 上記高分子化合物がポリイミド前駆体である、請求項1記載の高分子フィルムの製造方法。 The polymer compound is a polyimide precursor, the production method of the polymer film of claim 1 Symbol placement. 上記溶液に含まれる高分子化合物が主鎖にベンザゾール環を有する、請求項1または2記載の高分子フィルムの製造方法。 The method for producing a polymer film according to claim 1 or 2 , wherein the polymer compound contained in the solution has a benzazole ring in the main chain. 上記支持体が長手方向および幅方向のいずれの方向についても3GPa以上の引張弾性率を有する有機高分子フィルムからなる、請求項1〜のいずれか一項に記載の高分子フィルムの製造方法。 The method for producing a polymer film according to any one of claims 1 to 3 , wherein the support is made of an organic polymer film having a tensile elastic modulus of 3 GPa or more in both the longitudinal direction and the width direction.
JP2004210547A 2004-07-16 2004-07-16 Method for producing polymer film Expired - Lifetime JP3976036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210547A JP3976036B2 (en) 2004-07-16 2004-07-16 Method for producing polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210547A JP3976036B2 (en) 2004-07-16 2004-07-16 Method for producing polymer film

Publications (2)

Publication Number Publication Date
JP2006027128A JP2006027128A (en) 2006-02-02
JP3976036B2 true JP3976036B2 (en) 2007-09-12

Family

ID=35894029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210547A Expired - Lifetime JP3976036B2 (en) 2004-07-16 2004-07-16 Method for producing polymer film

Country Status (1)

Country Link
JP (1) JP3976036B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177825B (en) * 2017-02-08 2022-05-10 Skc株式会社 Polyimide film and method for producing same

Also Published As

Publication number Publication date
JP2006027128A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP2008230018A (en) Method of manufacturing transparent polyimide film
JP2005344062A (en) Polyimide film and copper-clad laminate film using the same
JPWO2007029609A1 (en) Heat resistant adhesive sheet
JP5621310B2 (en) Coating die for solution casting and solution casting method
JP4893240B2 (en) Heat-resistant release sheet
JP4774901B2 (en) Method for producing polyimide film
JP3976036B2 (en) Method for producing polymer film
JP3858892B2 (en) Polyimide film
JP3953057B2 (en) Polyimide benzoxazole film and method for producing the same
JP2014201632A (en) Polyimide film and method for manufacturing the same
JP4807073B2 (en) Method for producing polyimide film
JP4214312B2 (en) Adhesive tape
JP5874184B2 (en) Coating die for solution casting and solution casting method
JP2009013245A (en) Polyimide film
JP5549360B2 (en) Method for producing polyimide film and polyimide film roll
JP2006027135A (en) Manufacturing method of polymer film
JP4977953B2 (en) Polyimide precursor film, method for producing polyimide film, and polyimide film
JP2006168222A (en) Polyimide film forming method
JP2005307044A (en) Polyimidebenzoxazole film and method for producing the same
JP2006176643A (en) Method for producing polymer film
JP5206310B2 (en) Polyimide film and method for producing the same
JP2007177116A (en) Process for producing polyimide film
JP2007069562A (en) Manufacturing method of polymer film
JP4967635B2 (en) Polymer film manufacturing method and polymer film manufacturing apparatus
JP2008094576A (en) Winding fixing method of high polymer film roll end

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3976036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350