[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3974604B2 - Surface treatment method of carbon nanomaterial - Google Patents

Surface treatment method of carbon nanomaterial Download PDF

Info

Publication number
JP3974604B2
JP3974604B2 JP2004226081A JP2004226081A JP3974604B2 JP 3974604 B2 JP3974604 B2 JP 3974604B2 JP 2004226081 A JP2004226081 A JP 2004226081A JP 2004226081 A JP2004226081 A JP 2004226081A JP 3974604 B2 JP3974604 B2 JP 3974604B2
Authority
JP
Japan
Prior art keywords
carbon
carbon nanomaterial
furnace
metal
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004226081A
Other languages
Japanese (ja)
Other versions
JP2006044970A (en
JP2006044970A5 (en
Inventor
秀一 滝澤
潤一 山本
美加 牧村
透 小池
雅資 菅沼
智之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGANO PREFECTURAL GOVERNMENT
Nissei Plastic Industrial Co Ltd
Original Assignee
NAGANO PREFECTURAL GOVERNMENT
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGANO PREFECTURAL GOVERNMENT, Nissei Plastic Industrial Co Ltd filed Critical NAGANO PREFECTURAL GOVERNMENT
Priority to JP2004226081A priority Critical patent/JP3974604B2/en
Publication of JP2006044970A publication Critical patent/JP2006044970A/en
Publication of JP2006044970A5 publication Critical patent/JP2006044970A5/ja
Application granted granted Critical
Publication of JP3974604B2 publication Critical patent/JP3974604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、濡れ性改善を目的としたカーボンナノ材料の表面処理技術及びカーボンナノ複合材料に関する。   The present invention relates to a carbon nanomaterial surface treatment technique and a carbon nanocomposite for the purpose of improving wettability.

ガラス繊維強化プラスチック(FRP)、炭素繊維強化プラスチック(CFRP)、繊維強化セラミックス(FRC)、炭素繊維強化金属(CFRM)と呼ばれる繊維強化材料が種々提案されてきた。   Various fiber reinforced materials called glass fiber reinforced plastic (FRP), carbon fiber reinforced plastic (CFRP), fiber reinforced ceramics (FRC), and carbon fiber reinforced metal (CFRM) have been proposed.

近年、カーボンナノファイバと称する特殊な炭素繊維が強化材料として注目を浴び、その活用方法が提案されている(例えば、特許文献1参照。)。
特開2003−102343公報(請求項3)
In recent years, special carbon fibers called carbon nanofibers have attracted attention as reinforcing materials, and methods for utilizing them have been proposed (for example, see Patent Document 1).
JP 2003-102343 A (Claim 3)

特許文献1は、樹脂系材料にカーボンナノファイバを混在させることで、全体的な強度向上を図ることを特徴とする。樹脂系材料とカーボンナノファイバとはリジンと称する含浸剤で結合することができるので、一体化に困難さはない。   Patent Document 1 is characterized in that the overall strength is improved by mixing carbon nanofibers in a resin-based material. Since the resin-based material and the carbon nanofiber can be bonded with an impregnating agent called lysine, there is no difficulty in integration.

一方、アルミニウムなどの金属の補強材料にカーボンナノファイバを採用しようとすると、経験したことのない問題が発生した。カーボンナノファイバの詳細とその問題を次に順に説明する。   On the other hand, when we tried to use carbon nanofibers as a reinforcing material for metals such as aluminum, there were problems that we had never experienced. The details of carbon nanofibers and their problems will be described next.

図8はカーボンナノファイバのモデル図であり、カーボンナノファイバ110は、六角網目状に配列した炭素原子のシートを筒状に巻いた形態のものであり、直径Dが1.0nm(ナノメートル)〜150nmであり、ナノレベルであるため、カーボンナノファイバ、カーボンナノ材料又はカーボンナノチューブと呼ばれる。なお、長さLは数μm〜100μmである。   FIG. 8 is a model diagram of a carbon nanofiber. The carbon nanofiber 110 has a configuration in which a sheet of carbon atoms arranged in a hexagonal network is wound in a cylindrical shape, and a diameter D is 1.0 nm (nanometer). Since it is ˜150 nm and at the nano level, it is called carbon nanofiber, carbon nanomaterial or carbon nanotube. The length L is several μm to 100 μm.

炭素原子が立方格子状に並んだものがダイヤモンドであって、ダイヤモンドは極めて硬い物質である。カーボンナノファイバ110は、ダイヤモンドと同様に規則的な結晶構造を有するために機械的強度は大きい。   A diamond is a very hard substance in which carbon atoms are arranged in a cubic lattice. Since the carbon nanofiber 110 has a regular crystal structure like diamond, the mechanical strength is large.

図9はカーボンナノファイバの問題点を説明する図である。
(a)にて、容器111に媒体112を満たし、この媒体112にカーボンナノファイバ113を入れる。
FIG. 9 is a diagram for explaining the problems of the carbon nanofiber.
In (a), the container 111 is filled with the medium 112, and the carbon nanofiber 113 is put into the medium 112.

(b)にて、攪拌機114で十分に撹拌する。この撹拌は振動式攪拌機で行ってもよい。
(c)は、一定時間放置した後の状態を示し、カーボンナノファイバ113が容器111の底に沈殿していることが分かる。
なお、媒体112の比重が大きければ、カーボンナノファイバ113は上に溜まる。
In (b), the agitator 114 is sufficiently stirred. This agitation may be performed with a vibration agitator.
(C) shows a state after being left for a certain period of time, and it can be seen that the carbon nanofiber 113 is deposited on the bottom of the container 111.
In addition, if the specific gravity of the medium 112 is large, the carbon nanofiber 113 is accumulated on the top.

媒体112が溶融金属である場合、カーボンナノファイバ113が溶融金属の上に溜まるようでは、カーボンナノファイバ113を金属に均等に分散させることはできない。
カーボンナノファイバ113が溶融金属に対して、濡れ性が悪いことがその原因である。
When the medium 112 is a molten metal, the carbon nanofibers 113 cannot be evenly dispersed in the metal if the carbon nanofibers 113 accumulate on the molten metal.
The cause is that the carbon nanofiber 113 has poor wettability with respect to the molten metal.

本発明は、カーボンナノ材料を溶融金属に均等に分散させるために、カーボンナノ材料の濡れ性を改善することができる処理方法を提供することを課題とする。   This invention makes it a subject to provide the processing method which can improve the wettability of carbon nanomaterial, in order to disperse | distribute carbon nanomaterial uniformly to molten metal.

請求項1に係るカーボンナノ材料の表面処理方法は、カーボンナノ材料に、炭素と反応して化合物を生成するSi又はTiからなる金属粉末を混合する工程と、得られた混合物を真空炉に入れ、高温真空下で前記金属粉末を蒸発させ、この蒸気を前記カーボンナノ材料の表面に付着させる蒸着処理工程と、からなるカーボンナノ材料の表面処理方法であって、前記蒸着処理工程では、真空炉の炉温を、前記金属粉末がSiであれば1350〜1400℃に保持し、前記金属粉末がTiであれば1360〜1550℃に保持し、且つ炉圧を金属の飽和蒸気圧状態に保ち、前記金属粉末の蒸発に伴うバブリング撹拌作用により、混合物を撹拌してカーボンナノ材料と金属蒸気との接触を促すようにすることを特徴とする。 The surface treatment method for a carbon nanomaterial according to claim 1 is a method of mixing a carbon nanomaterial with a metal powder made of Si or Ti that reacts with carbon to form a compound, and puts the obtained mixture into a vacuum furnace. A vapor deposition process step of evaporating the metal powder under a high temperature vacuum and attaching the vapor to the surface of the carbon nanomaterial, the carbon nanomaterial surface treatment method comprising a vacuum furnace If the metal powder is Si, the furnace temperature is maintained at 1350 to 1400 ° C., and if the metal powder is Ti, the furnace temperature is maintained at 1360 to 1550 ° C., and the furnace pressure is maintained at the saturated vapor pressure state of the metal, The mixture is stirred by a bubbling stirring action accompanying the evaporation of the metal powder to promote contact between the carbon nanomaterial and the metal vapor .

請求項1に係る発明では、カーボンナノ材料に、炭素と反応して化合物を生成する元素を含む金属粉末を混合し、得られた混合物を真空炉に入れ、高温真空下で金属粉末を蒸発させ、この蒸気をカーボンナノ材料の表面に付着させる。混合工程と蒸着処理工程の二工程でカーボンナノ材料の表面に金属微粒子を付着させることができる。   In the invention according to claim 1, the carbon nanomaterial is mixed with a metal powder containing an element that reacts with carbon to form a compound, and the resulting mixture is placed in a vacuum furnace to evaporate the metal powder under a high temperature vacuum. This vapor is attached to the surface of the carbon nanomaterial. Metal fine particles can be attached to the surface of the carbon nanomaterial in two steps, a mixing step and a vapor deposition step.

金属微粒子は炭素と化合物を生成し、この化合物が接合作用を発揮するため、金属微粒子はカーボンナノ材料に強固に結合する。
カーボンナノ材料を溶融金属に混入した場合には、金属微粒子は溶融金属との濡れ性が高いため、溶融金属にカーボンナノ材料を均等に分散させることができる。
The metal fine particles generate carbon and a compound, and this compound exhibits a bonding action, so that the metal fine particles are firmly bonded to the carbon nanomaterial.
When the carbon nanomaterial is mixed in the molten metal, the metal fine particles have high wettability with the molten metal, so that the carbon nanomaterial can be evenly dispersed in the molten metal.

加えて、請求項1に係る発明では、蒸着処理工程で金属粉末を蒸発させ、この蒸発に伴うバブリング撹拌作用で混合物を撹拌する。撹拌によりカーボンナノ材料と金属蒸気との接触を促す。したがって、金属微粒子をカーボンナノ材料の表面に均等に分散させることができる。 In addition, in the invention according to claim 1 , the metal powder is evaporated in the vapor deposition treatment step, and the mixture is stirred by the bubbling stirring action accompanying this evaporation. Agitation promotes contact between the carbon nanomaterial and the metal vapor. Therefore, the metal fine particles can be evenly dispersed on the surface of the carbon nanomaterial.

更には、請求項1に係る発明では、金属は、Si又はTiとした。
Si、Tiともに、真空下で蒸着可能な融点の金属であり、溶融金属との濡れ性も良好である。Si、Tiともに入手が容易であり、特にSiは安価であるため、本発明方法を広く普及させる上で、好適である。
Furthermore, in the invention according to claim 1 , the metal is Si or Ti.
Both Si and Ti are metals having a melting point that can be deposited under vacuum, and also have good wettability with molten metal. Since both Si and Ti are easily available, and especially Si is inexpensive, it is suitable for widely spreading the method of the present invention.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係るカーボンナノ材料の表面処理方法の工程説明図である。
(a):カーボンナノ材料11を準備する。例えば10g。
(b):Si粉末12を準備する。例えば1g。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a process explanatory diagram of a carbon nanomaterial surface treatment method according to the present invention.
(A): A carbon nanomaterial 11 is prepared. For example 10g.
(B): Si powder 12 is prepared. For example 1g.

(c):乳鉢13にカーボンナノ材料11及びSi粉末12を入れ、15分〜30分間乳棒14で混合する。
(d):得られた混合物15を、アルミナ製容器16に入れ、アルミナ製蓋17を被せる。この蓋17は非密閉蓋を採用することで、容器16の内部と外部との通気を可能にする。
(C): Carbon nanomaterial 11 and Si powder 12 are put in mortar 13 and mixed with pestle 14 for 15 to 30 minutes.
(D): The obtained mixture 15 is put in an alumina container 16 and covered with an alumina lid 17. The lid 17 employs a non-sealing lid, thereby allowing ventilation between the inside and the outside of the container 16.

(e):密閉炉体21と、炉体21内部を加熱する加熱手段22と、容器16を載せる台23と、炉体21内部を真空にする真空ポンプ24とを備える真空炉20を準備し、この真空炉20に容器16を入れる。  (E): A vacuum furnace 20 including a closed furnace body 21, heating means 22 for heating the inside of the furnace body 21, a table 23 on which the container 16 is placed, and a vacuum pump 24 for evacuating the inside of the furnace body 21 is prepared. The container 16 is put in the vacuum furnace 20.

真空炉20における加熱条件及び圧力条件は次図で説明するが、真空下で加熱することで、混合物15中のSi粉末が蒸発する。この蒸気は泡立つように容器16と蓋17とで形成する空間を撹拌する。このような作用をバブリング撹拌と呼ぶ。このバブリング撹拌によりカーボンナノ材料が解れ、解れたカーボンナノ材料の表面にSi蒸気が接触し、化合物を形成し、Siの微粒子となって付着する。   Although the heating conditions and pressure conditions in the vacuum furnace 20 will be described in the next figure, the Si powder in the mixture 15 evaporates by heating under vacuum. This vapor stirs the space formed by the container 16 and the lid 17 so as to foam. Such an action is called bubbling stirring. The carbon nanomaterial is unwound by this bubbling agitation, and Si vapor comes into contact with the surface of the unraveled carbon nanomaterial to form a compound, which adheres as Si fine particles.

図1をまとめると、カーボンナノ材料11に、炭素と反応して化合物を生成する元素を含む金属粉末12を混合する工程と、得られた混合物15を真空炉20に入れ、高温真空下で金属粉末12を蒸発させ、この蒸気をカーボンナノ材料11の表面に付着させる蒸着処理工程と、からなることを特徴とするカーボンナノ材料の表面処理方法である。   To summarize FIG. 1, a step of mixing carbon nanomaterial 11 with metal powder 12 containing an element that reacts with carbon to form a compound, and the resulting mixture 15 is placed in a vacuum furnace 20, and metal under high temperature vacuum. A carbon nanomaterial surface treatment method comprising: a vapor deposition treatment step of evaporating the powder 12 and attaching the vapor to the surface of the carbon nanomaterial 11.

図2はSiに対応する炉温及び炉内圧力のグラフであり、横軸は時間、縦軸は炉温と炉内圧力である。
開始〜5時:6×10−3Paの真空度で、5時間かけて炉温を室温から300℃まで上昇させる。
FIG. 2 is a graph of furnace temperature and pressure in the furnace corresponding to Si. The horizontal axis represents time, and the vertical axis represents furnace temperature and pressure in the furnace.
Start to 5:00: The furnace temperature is raised from room temperature to 300 ° C. over 5 hours at a vacuum degree of 6 × 10 −3 Pa.

5時〜9時:5.3×10−3〜2.1×10−2Paの真空度で、4時間かけて炉温を300℃から1400℃まで上昇させる。
9時〜19時:2.1×10−2Paの真空度、1400℃の条件で10時間保持する。
5:00 to 9:00: The furnace temperature is raised from 300 ° C. to 1400 ° C. over 4 hours at a vacuum degree of 5.3 × 10 −3 to 2.1 × 10 −2 Pa.
9 o'clock to 19 o'clock: Hold for 10 hours under conditions of a vacuum degree of 2.1 × 10 −2 Pa and 1400 ° C.

Siの融点は1427℃であるから、融点直下の温度(1350〜1400℃)に保持し、Siをこの温度での飽和蒸気圧状態に保つ。1350℃では飽和蒸気圧は1.3×10−3Pa程度になり、1400℃では飽和蒸気圧は2.1×10−2Pa程度になる。この程度の真空度は真空炉で容易に達成できるため、処理温度は1350〜1400℃が適当である。ただし、1350℃は蒸発速度が低く、1400℃は蒸発速度が高いため、実施例では1400℃とした。 Since the melting point of Si is 1427 ° C., the temperature is maintained at a temperature just below the melting point (1350 to 1400 ° C.), and Si is maintained in a saturated vapor pressure state at this temperature. At 1350 ° C., the saturated vapor pressure is about 1.3 × 10 −3 Pa, and at 1400 ° C., the saturated vapor pressure is about 2.1 × 10 −2 Pa. Since this degree of vacuum can be easily achieved in a vacuum furnace, the treatment temperature is suitably 1350 to 1400 ° C. However, 1350 ° C. has a low evaporation rate, and 1400 ° C. has a high evaporation rate.

次に、Siと炭素の化合物であるSiC(炭化けい素)について説明する。SiCの標準生成自由エネルギーは、1400℃で−39.6kJ/molであり、この条件を満たすことは可能であるから、Si蒸気がカーボンナノ材料の炭素に反応してSiCになると考えられる。   Next, SiC (silicon carbide) which is a compound of Si and carbon will be described. The standard free energy of formation of SiC is −39.6 kJ / mol at 1400 ° C., and this condition can be satisfied. Therefore, it is considered that Si vapor reacts with carbon of the carbon nanomaterial to become SiC.

そこで、混合物を半密閉された容器に入れ、Si粉末を蒸発させれば、バブリング撹拌が発生し、カーボンナノ材料にSiの微粒子が付着させることができる。
なお、保持時間が10時間と長いのは、十分撹拌し反応させることを目的とした。勿論、混合比や処理量などの条件によって、保持時間を増減することは差し支えない。
Therefore, if the mixture is placed in a semi-sealed container and the Si powder is evaporated, bubbling agitation occurs, and Si fine particles can adhere to the carbon nanomaterial.
The long holding time of 10 hours was aimed at sufficient agitation and reaction. Of course, the holding time may be increased or decreased depending on conditions such as the mixing ratio and the processing amount.

19時以降:加熱手段は停止するが、1.1×10−3Paの真空度は保ちながら、炉冷を実施する。炉冷は、製品を極めて徐々に冷却する手法である。 After 19:00: Although the heating means is stopped, furnace cooling is performed while maintaining a vacuum degree of 1.1 × 10 −3 Pa. Furnace cooling is a technique for cooling a product very gradually.

図3は本発明方法で製造したカーボンナノ複合材料の拡大図であり、カーボンナノ複合材料30は、凝集していないカーボンナノ材料11と、このカーボンナノ材料11の表面に均等に付着した多数のSi微粒子31とからなる。これらのSi微粒子31は、炭素と反応して化合物を生成する元素であるSiを結晶化させたものであることは既に述べたとおりである。   FIG. 3 is an enlarged view of the carbon nanocomposite material manufactured by the method of the present invention. Si fine particles 31 are included. As described above, these Si fine particles 31 are obtained by crystallizing Si, which is an element that reacts with carbon to form a compound.

さらに、Si微粒子31は炭化物であるSiCを介してカーボンナノ材料11に付着していることが重要となる。カーボンナノ材料11自身は濡れ性が悪い。したがって、単なるSi微粒子であれば接合強度が不足する虞れがある。この点、カーボンナノ材料11表面にSi微粒子を付着させることで、界面にSiCの反応層が形成し、カーボンナノ材料11にSi微粒子31を強固に付着させることができる。   Furthermore, it is important that the Si fine particles 31 are attached to the carbon nanomaterial 11 through SiC which is a carbide. The carbon nanomaterial 11 itself has poor wettability. Therefore, there is a possibility that the bonding strength is insufficient if it is simple Si particles. In this regard, by attaching Si fine particles to the surface of the carbon nanomaterial 11, a SiC reaction layer is formed at the interface, and the Si fine particles 31 can be firmly attached to the carbon nanomaterial 11.

次に、カーボンナノ複合材料30の濡れ性を調べる。
図4はカーボンナノ複合材料の濡れ性評価の原理図である。
(a)において、鋼(例えばSKD61)製の基材33に本発明のカーボンナノ複合材料30を放電プラズマ焼結法により密着接合し、中心に小孔34を開け、表面を研磨する。
Next, the wettability of the carbon nanocomposite material 30 is examined.
FIG. 4 is a principle diagram of wettability evaluation of the carbon nanocomposite material.
In (a), the carbon nanocomposite material 30 of the present invention is closely bonded to a base material 33 made of steel (for example, SKD61) by a discharge plasma sintering method, a small hole 34 is opened in the center, and the surface is polished.

(b)は実施例図であり、基材33とともにカーボンナノ複合材料30を真空チャンバー35に入れ、真空ポンプ36で真空引きした後に、アルゴンガス供給管37からアルゴンガスを供給して、真空チャンバー35内を非酸化性雰囲気にする。また、真空チャンバー35内を溶融マグネシウム合金(700℃)と同じ温度にする。   (B) is an embodiment diagram, and after putting the carbon nanocomposite material 30 together with the base material 33 into the vacuum chamber 35 and evacuating it with the vacuum pump 36, the argon gas is supplied from the argon gas supply pipe 37, and the vacuum chamber The inside of 35 is made a non-oxidizing atmosphere. Further, the inside of the vacuum chamber 35 is set to the same temperature as the molten magnesium alloy (700 ° C.).

次に、シリンダ38を用いて溶融マグネシウム合金39を押し上げる。溶融マグネシウム合金39はカーボンナノ複合材料30上で拡がり、ドーム状になった。このときの濡れ角をθ1とする。
なお、溶融マグネシウム合金に接触する部材(シリンダ38及び内蔵するピストンなど)は、窒化アルミニウム材料で構成し、溶融金属との反応を防止する。
Next, the molten magnesium alloy 39 is pushed up using the cylinder 38. The molten magnesium alloy 39 spread on the carbon nanocomposite material 30 and became a dome shape. Let the wetting angle at this time be θ1.
Members (such as the cylinder 38 and the built-in piston) that come into contact with the molten magnesium alloy are made of an aluminum nitride material to prevent reaction with the molten metal.

(c)は比較例図であり、基材33にカーボンナノ材料11(図1(a)参照)を密着接合し、同様に、溶融マグネシウム合金39を押し上げたところ、溶融マグネシウム合金39はほぼ球になった。このときの濡れ角をθ2とする。   (C) is a comparative example, and when the carbon nanomaterial 11 (see FIG. 1 (a)) is closely bonded to the base material 33 and the molten magnesium alloy 39 is similarly pushed up, the molten magnesium alloy 39 is almost spherical. Became. The wetting angle at this time is θ2.

図5は実施例1と比較例の触れ角を示すグラフであり、右縦軸に濡れ角を示す。
実施例1はθ1を示し、θ1は42°であった。比較例はθ2を示し、θ2は157°であった。
周知の通り、濡れ角が0°であれば濡れ性は最良、180°であれば最悪となる。そこで、グラフの左縦軸に濡れ性の良悪を示した。実施例1は比較例に比較して格段に濡れ性が良いことが確認できる。
FIG. 5 is a graph showing the touch angle of Example 1 and the comparative example, and the right vertical axis indicates the wetting angle.
Example 1 showed θ1, and θ1 was 42 °. The comparative example showed θ2, and θ2 was 157 °.
As is well known, wettability is best when the wetting angle is 0 °, and worst when it is 180 °. Thus, the left vertical axis of the graph indicates the wettability. It can be confirmed that Example 1 has much better wettability than the comparative example.

図3に戻って、カーボンナノ材料11は濡れ性が良くない。一方、Si微粒子31は濡れ性が良い。したがって、カーボンナノ複合材料30の濡れ性は、Si微粒子31で稼いでいることになる。このSi微粒子31は、後にマグネシウム合金などの溶融金属に混ぜたときに、濡れ性を発揮する。このため、溶融金属にカーボンナノ材料を均等に分散させることができ、この状態で溶融金属を冷却し凝固させれば、高い品質の製品(又は成形品)を得ることができる。   Returning to FIG. 3, the carbon nanomaterial 11 has poor wettability. On the other hand, the Si fine particles 31 have good wettability. Therefore, the wettability of the carbon nanocomposite material 30 is earned by the Si fine particles 31. The Si fine particles 31 exhibit wettability when mixed with a molten metal such as a magnesium alloy later. For this reason, the carbon nanomaterial can be uniformly dispersed in the molten metal, and if the molten metal is cooled and solidified in this state, a high-quality product (or molded product) can be obtained.

次に、金属粉末をTi粉末に変更した例を説明する。
図1(b)での粉末12をTi粉末に変更し、他の条件はそのままで図1(e)まで進た。ただし、真空炉20の温度条件及び圧力条件は次のとおりとした。
Next, an example in which the metal powder is changed to Ti powder will be described.
The powder 12 in FIG. 1 (b) was changed to Ti powder, other conditions were fit proceeds to FIG. 1 (e) as is. However, the temperature conditions and pressure conditions of the vacuum furnace 20 were as follows.

図6はTiに対応する炉温及び炉内圧力のグラフであり、横軸は時間、縦軸は炉温と炉内圧力である。
開始〜5時:1.4×10−3Paの真空度で、5時間かけて炉温を室温から300℃まで上昇させる。
FIG. 6 is a graph of furnace temperature and furnace pressure corresponding to Ti, with the horizontal axis representing time and the vertical axis representing furnace temperature and pressure in the furnace.
Start to 5:00: The furnace temperature is raised from room temperature to 300 ° C. over 5 hours at a vacuum of 1.4 × 10 −3 Pa.

5時〜9時:1.5×10−3〜1.3×10−2Paの真空度で、4時間かけて炉温を300℃から1450℃まで上昇させる。
9時〜19時:1.0×10−2Paの真空度、1450℃の条件で10時間保持する。
5:00 to 9:00: The furnace temperature is increased from 300 ° C. to 1450 ° C. over 4 hours at a vacuum degree of 1.5 × 10 −3 to 1.3 × 10 −2 Pa.
9 o'clock to 19 o'clock: Hold for 10 hours under conditions of a vacuum degree of 1.0 × 10 −2 Pa and 1450 ° C.

Tiの融点は1680℃であるから、融点直下の温度(1360〜1550℃)に保持し、Tiをこの温度での飽和蒸気圧状態に保つ。TiCの標準生成自由エネルギーは、1450℃で約−150kJ/molであり、この条件を満たすことは可能であるから、Ti蒸気がカーボンナノ材料の炭素に反応してTiCになると考えられる。   Since the melting point of Ti is 1680 ° C., the temperature is maintained at a temperature just below the melting point (1360 to 1550 ° C.), and Ti is maintained at a saturated vapor pressure state at this temperature. Since the standard free energy of formation of TiC is about −150 kJ / mol at 1450 ° C. and this condition can be satisfied, it is considered that Ti vapor reacts with carbon of the carbon nanomaterial to become TiC.

19時以降:加熱手段は停止するが、1.2×10−3Paの真空度は保ちながら、炉冷を実施する。 After 19:00: Although the heating means is stopped, the furnace is cooled while maintaining the vacuum degree of 1.2 × 10 −3 Pa.

図7は実施例2と比較例の触れ角を示すグラフであり、右縦軸に濡れ角を示す。
実施例2はθ1を示し、θ1は119°であった。比較例はθ2を示し、θ2は157°であった。
グラフの左縦軸は濡れ性の良悪を示し、実施例2は比較例に比較して濡れ性が良いことが確認できた。
FIG. 7 is a graph showing the touch angle of Example 2 and the comparative example, and the right vertical axis indicates the wetting angle.
Example 2 showed θ1, and θ1 was 119 °. The comparative example showed θ2, and θ2 was 157 °.
The left vertical axis of the graph indicates good or bad wettability, and it was confirmed that Example 2 had better wettability than the comparative example.

尚、炭素と反応して化合物を生成する元素として、Si及びTiを例示したが、その他としてZr(ジルコニウム)、V(バナジウム)が採用できる。
また、母材としての溶融金属は、マグネシウム合金、アルミニウム合金が好適である。
In addition, although Si and Ti were illustrated as an element which reacts with carbon and produces | generates a compound, Zr (zirconium) and V (vanadium) are employable as others.
The molten metal as the base material is preferably a magnesium alloy or an aluminum alloy.

本発明は、溶融マグネシウム合金に添加するカーボンナノ材料のための表面処理方法に好適である。   The present invention is suitable for a surface treatment method for a carbon nanomaterial added to a molten magnesium alloy.

本発明に係るカーボンナノ材料の表面処理方法の工程説明図である。It is process explanatory drawing of the surface treatment method of the carbon nanomaterial which concerns on this invention. Siに対応する炉温及び炉内圧力のグラフである。It is a graph of the furnace temperature and the furnace pressure corresponding to Si. 本発明方法で製造したカーボンナノ複合材料の拡大図である。It is an enlarged view of the carbon nanocomposite material manufactured by the method of the present invention. カーボンナノ複合材料の濡れ性評価の原理図である。It is a principle figure of wettability evaluation of a carbon nanocomposite material. 実施例1と比較例の触れ角を示すグラフである。It is a graph which shows the touch angle of Example 1 and a comparative example. Tiに対応する炉温及び炉内圧力のグラフである。It is a graph of the furnace temperature and furnace pressure corresponding to Ti. 実施例2と比較例の触れ角を示すグラフである。It is a graph which shows the touch angle of Example 2 and a comparative example. カーボンナノファイバのモデル図である。It is a model figure of a carbon nanofiber. カーボンナノファイバの問題点を説明する図である。It is a figure explaining the problem of carbon nanofiber.

符号の説明Explanation of symbols

11…カーボンナノ材料、12…金属粉末としてのSi粉末、15…混合物、20…真空炉、30…カーボンナノ複合材料、31…金属微粒子としてのSi微粒子。   DESCRIPTION OF SYMBOLS 11 ... Carbon nanomaterial, 12 ... Si powder as metal powder, 15 ... Mixture, 20 ... Vacuum furnace, 30 ... Carbon nanocomposite material, 31 ... Si fine particle as metal fine particle.

Claims (1)

カーボンナノ材料に、炭素と反応して化合物を生成するSi又はTiからなる金属粉末を混合する工程と、得られた混合物を真空炉に入れ、高温真空下で前記金属粉末を蒸発させ、この蒸気を前記カーボンナノ材料の表面に付着させる蒸着処理工程と、からなるカーボンナノ材料の表面処理方法であって、
前記蒸着処理工程では、真空炉の炉温を、前記金属粉末がSiであれば1350〜1400℃に保持し、前記金属粉末がTiであれば1360〜1550℃に保持し且つ炉圧を金属の飽和蒸気圧状態に保ち、前記金属粉末の蒸発に伴うバブリング撹拌作用により、混合物を撹拌してカーボンナノ材料と金属蒸気との接触を促すようにすることを特徴とするカーボンナノ材料の表面処理方法。
A step of mixing a carbon nanomaterial with a metal powder composed of Si or Ti that reacts with carbon to form a compound, and the resulting mixture is placed in a vacuum furnace to evaporate the metal powder under a high temperature vacuum. A vapor deposition process step for attaching the carbon nanomaterial to the surface of the carbon nanomaterial, and a carbon nanomaterial surface treatment method comprising:
In the vapor deposition treatment step, the furnace temperature of the vacuum furnace is maintained at 1350 to 1400 ° C. if the metal powder is Si, 1360 to 1550 ° C. if the metal powder is Ti , and the furnace pressure is set to metal. maintaining the saturated vapor pressure state, the surface of the metal by bubbling stirring effect due to evaporation of the powder, the mixture was stirred carbon nanomaterial, features and to Luke Bon'nano material to the urge contact with the metal vapor Processing method.
JP2004226081A 2004-08-02 2004-08-02 Surface treatment method of carbon nanomaterial Expired - Fee Related JP3974604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226081A JP3974604B2 (en) 2004-08-02 2004-08-02 Surface treatment method of carbon nanomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226081A JP3974604B2 (en) 2004-08-02 2004-08-02 Surface treatment method of carbon nanomaterial

Publications (3)

Publication Number Publication Date
JP2006044970A JP2006044970A (en) 2006-02-16
JP2006044970A5 JP2006044970A5 (en) 2006-03-30
JP3974604B2 true JP3974604B2 (en) 2007-09-12

Family

ID=36023982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226081A Expired - Fee Related JP3974604B2 (en) 2004-08-02 2004-08-02 Surface treatment method of carbon nanomaterial

Country Status (1)

Country Link
JP (1) JP3974604B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287461B2 (en) * 2006-11-17 2009-07-01 日精樹脂工業株式会社 Method for producing carbon nanocomposite metal material and method for producing carbon nanocomposite metal molded product
JP4764330B2 (en) * 2006-12-27 2011-08-31 日精樹脂工業株式会社 Composite plating product and manufacturing method thereof
JP5063176B2 (en) * 2007-04-27 2012-10-31 日精樹脂工業株式会社 Method for producing carbon nanocomposite metal material
US8110288B2 (en) 2007-07-11 2012-02-07 Nissei Plastic Industrial Co., Ltd. Carbon nanocomposite material comprising a SiC film coating, and method of manufacturing the same
US9121085B2 (en) * 2008-09-18 2015-09-01 Nissei Plastic Insdustrial Co., Ltd. Method for manufacturing composite metal alloy and method for manufacturing article from composite metal
GB2471102A (en) * 2009-06-17 2010-12-22 Mantis Deposition Ltd Apparatus for producing cored nanoparticles
JP6068334B2 (en) * 2011-04-15 2017-01-25 株式会社環境・エネルギーナノ技術研究所 Carbon nanomaterial manufacturing apparatus and use thereof
JP6138000B2 (en) * 2013-09-04 2017-05-31 長野県 Method for producing coated carbon nanotube

Also Published As

Publication number Publication date
JP2006044970A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US6080470A (en) Hard graphite-like material bonded by diamond-like framework
US6919127B2 (en) Silicon carbide composites, and methods for making same
AU777124B2 (en) Silicon carbide composites and methods for making same
JP3974604B2 (en) Surface treatment method of carbon nanomaterial
CN105543598B (en) Preparation method of reinforced magnesium matrix composite
US8110288B2 (en) Carbon nanocomposite material comprising a SiC film coating, and method of manufacturing the same
JP2009538814A (en) Phase powder and method for producing the phase powder
Morisada et al. SiC-coated carbon nanotubes and their application as reinforcements for cemented carbides
CN113443928B (en) Preparation method of zirconium and/or tungsten-based multiphase ceramic coating
Xu et al. Study on the synthesis and growth mechanisms of the refractory ZrC whiskers
JP2539712B2 (en) Nitride powder
US5667742A (en) Methods for making preforms for composite formation processes
JPH05507768A (en) Method of forming surface film
JP4299295B2 (en) Method for producing carbon nanocomposite metal molded product
JPH0513116B2 (en)
JP5063176B2 (en) Method for producing carbon nanocomposite metal material
JP4343915B2 (en) Method for producing composite metal alloy and method for producing composite metal molded product
IE60943B1 (en) Production of ceramic and ceramic-metal composite articles incorporating filler materials
JP2010121178A (en) Method for manufacturing carbon-nanocomposite magnesium-alloy base material
JP2004161507A (en) Silicon carbide nanorod and its production process
ITMI20001453A1 (en) CATHODES FOR CATHODIC DEPOSITION OF GETTER ALLOYS AND PROCESS FOR THEIR PRODUCTION.
Leu et al. Chemical vapor deposition of silicon carbide whiskers activated by elemental nickel
KR100561701B1 (en) Synthesis method of ??? nanorod and nanowire
JP4376479B2 (en) Method for producing Si-SiC composite material
RU1807981C (en) Method for production of earthenware articles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160622

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees