[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3970898B2 - Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester - Google Patents

Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester Download PDF

Info

Publication number
JP3970898B2
JP3970898B2 JP2005237115A JP2005237115A JP3970898B2 JP 3970898 B2 JP3970898 B2 JP 3970898B2 JP 2005237115 A JP2005237115 A JP 2005237115A JP 2005237115 A JP2005237115 A JP 2005237115A JP 3970898 B2 JP3970898 B2 JP 3970898B2
Authority
JP
Japan
Prior art keywords
monoester
acid
optically active
diester
methylalkanedicarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005237115A
Other languages
Japanese (ja)
Other versions
JP2005341972A (en
Inventor
英司 尾崎
俊孝 浦垣
啓一 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2005237115A priority Critical patent/JP3970898B2/en
Publication of JP2005341972A publication Critical patent/JP2005341972A/en
Application granted granted Critical
Publication of JP3970898B2 publication Critical patent/JP3970898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、種々の医薬、農薬等の合成中間体となる有用な特定の光学活性α−メチルアルカンジカルボン酸−ω−モノエステル及びその対掌体ジエステルを製造する方法に関する。   The present invention relates to a method for producing useful specific optically active α-methylalkanedicarboxylic acid-ω-monoesters and enantiomers thereof which serve as synthetic intermediates for various pharmaceuticals, agricultural chemicals and the like.

近年、医薬、農薬等の生理活性物質の合成中間体としての光学活性体の需要が急速に高まっており、様々な手法を用いた光学活性体の合成研究が盛んに行われている。   In recent years, the demand for optically active substances as synthetic intermediates of physiologically active substances such as pharmaceuticals and agricultural chemicals is rapidly increasing, and active researches on the synthesis of optically active substances using various techniques have been actively conducted.

一般式(2)で表されるα−メチルアルカンジカルボン酸誘導体の中で例えばα−メチルコハク酸モノエステルは、メチルコハク酸ジエステルをアルカリ触媒等により部分加水分解することにより得ることができる。しかしながら、この場合、反応生成物はα−メチルコハク酸、α−メチルコハク酸−1−モノエステル、α−メチルコハク酸−4−モノエステル及びα−メチルコハク酸ジエステルの混合物となるので、目的の生成物を選択的かつ高純度で得ることが困難である。さらに、ラセミ混合物を基質とした場合、このような反応様式では光学分割能は期待できない。   Among the α-methylalkanedicarboxylic acid derivatives represented by the general formula (2), for example, α-methylsuccinic acid monoester can be obtained by partial hydrolysis of methylsuccinic acid diester with an alkali catalyst or the like. However, in this case, the reaction product is a mixture of α-methyl succinic acid, α-methyl succinic acid-1-monoester, α-methyl succinic acid-4-monoester and α-methyl succinic acid diester. It is difficult to obtain selectively and with high purity. Furthermore, when a racemic mixture is used as a substrate, optical resolution cannot be expected in such a reaction mode.

一方、Barnett, Morris, Biochem.J. 40, 451(1946) にはα−メチルコハク酸モノエステルを選択的に合成する方法として一般的に下記反応式(4)に示されるような無水イタコン酸を原料とする方法が開示されている。 On the other hand, Barnett, Morris, Biochem. J. 40 , 451 (1946) generally uses itaconic anhydride as shown in the following reaction formula (4) as a method for selectively synthesizing α-methyl succinic acid monoester. A method of using as a raw material is disclosed.

Figure 0003970898
Figure 0003970898

しかし、かかる方法で得られるα−メチルコハク酸モノエステルはラセミ体であり、このような反応様式では光学活性体は得られないという問題がある。   However, the α-methylsuccinic acid monoester obtained by such a method is a racemate, and there is a problem that an optically active substance cannot be obtained in such a reaction mode.

T.Morimoto et al., Chem. Pharm. Bull. 41(6), 1149 (1993)にはイタコン酸又はイタコン酸ジメチルを不斉還元し、光学活性α−メチルコハク酸又は光学活性α−メチルコハク酸ジメチルを得る方法も報告されているが、高価な不斉触媒を使用しなければならないため、工業的に有利な方法とは言い難い。 In T. Morimoto et al., Chem. Pharm. Bull. 41 (6), 1149 (1993), itaconic acid or dimethyl itaconate was asymmetrically reduced to obtain optically active α-methyl succinic acid or optically active α-methyl succinic acid dimethyl. However, it is difficult to say that the method is industrially advantageous because an expensive asymmetric catalyst must be used.

一方、Eryka Guibe-Jampel et al., J. Chem. Soc., Chem.Commun.,1080,1987にはα−メチルコハク酸ジエステルを豚膵臓リパーゼで加水分解し、α−メチルコハク酸−1−モノエステルを得る方法が報告されている。しかしながら、この方法で得られるモノエステルの光学純度、位置選択性は高いものの、高価な動物由来の酵素を使用するため、工業的に有利な方法とは言い難い。   On the other hand, in Eryka Guibe-Jampel et al., J. Chem. Soc., Chem. Commun., 1080, 1987, α-methyl succinic acid diester is hydrolyzed with porcine pancreatic lipase to produce α-methyl succinic acid-1-monoester. How to get it has been reported. However, although the monoester obtained by this method has high optical purity and regioselectivity, it is difficult to say that it is an industrially advantageous method because an expensive animal-derived enzyme is used.

又、特開平2−195890号公報には微生物由来の酵素を用いてα−メチルコハク酸ジエステルを加水分解し、α−メチルコハク酸−4−モノエステルを得る方法が記載されている。この方法では4−モノエステルが95〜98%と位置選択性は高いものの、立体選択的な加水分解は殆ど達成されておらず、ラセミ体ジエステルを原料とした場合、生成物の光学純度は16%e.e.程度にすぎないという問題がある。   Japanese Patent Application Laid-Open No. 2-195890 describes a method of obtaining α-methylsuccinic acid-4-monoester by hydrolyzing α-methylsuccinic acid diester using an enzyme derived from a microorganism. In this method, although 4-monoester has high regioselectivity of 95 to 98%, stereoselective hydrolysis is hardly achieved. When racemic diester is used as a raw material, the optical purity of the product is 16 % E. e. There is a problem that it is only a degree.

本発明は、上述した如き問題点を有さずに、光学活性α−メチルアルカンジカルボン酸−ω−モノエステル及びその対掌体ジエステルを高い光学純度で位置選択的に効率よく製造する方法を提供することを目的としている。   The present invention provides a method for efficiently producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester regioselectively with high optical purity without the above-mentioned problems. The purpose is to do.

即ち、本発明は、下記一般式(1)で表されるα−メチルアルカンジカルボン酸ジエステルのラセミ体に、エステル結合を不斉加水分解する能力を有する微生物の培養物、菌体又は菌体処理物を作用させて下記一般式(2)で表される(R)体α−メチルアルカンジカルボン酸−ω−モノエステル及び下記一般式(3)で表される(S)体α−メチルアルカンジカルボン酸ジエステルを製造する方法にある。

Figure 0003970898
Figure 0003970898
Figure 0003970898
That is, the present invention provides a culture, a fungus body, or a fungus treatment of a microorganism having an ability to asymmetrically hydrolyze an ester bond to a racemic α-methylalkanedicarboxylic acid diester represented by the following general formula (1). (R) -form α-methylalkanedicarboxylic acid-ω-monoester represented by the following general formula (2) and (S) -form α-methylalkanedicarboxylic acid represented by the following general formula (3) It exists in the method of manufacturing an acid diester.
Figure 0003970898
Figure 0003970898
Figure 0003970898

本発明の方法により、光学純度の高い光学活性α−メチルアルカンジカルボン酸−ω−モノエステル及びその対掌体ジエステルを効率よく製造することが可能である。生成したカルボン酸ジエステルとカルボン酸モノエステルの分離、精製も容易であり、工業的に有利な方法である。   By the method of the present invention, it is possible to efficiently produce an optically active α-methylalkanedicarboxylic acid-ω-monoester having high optical purity and its enantiomer diester. Separation and purification of the produced carboxylic acid diester and carboxylic acid monoester are easy, and this is an industrially advantageous method.

本発明において、基質として使用可能な上記一般式(1)で表されるα−メチルアルカンジカルボン酸ジエステルのラセミ体としては、Rがメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基又はヘキシル基であり、nが1又は2のものが挙げられる。   In the present invention, as a racemate of the α-methylalkanedicarboxylic acid diester represented by the general formula (1) that can be used as a substrate, R is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl. Group, pentyl group or hexyl group, and n is 1 or 2.

本発明で用いる微生物は、α−メチルアルカンジカルボン酸ジエステルのエステル結合を不斉加水分解し、光学活性α−メチルアルカンジカルボン酸−ω−モノエステル及びその対掌体ジエステルを生産する能力を有するものであれば特に制限はない。代表的なものとしては、シュードモナス(Pseudomonas)属、エセリキア(Escherichia)属に属する微生物が挙げられる。具体的にはシュードモナス・プチダ(Pseudomonas putida)MR-2068(FERM BP-3846)、エセリキア・コリ(Escheri-chia coli)MR-2103(FERM BP-3835)が挙げられる。エセリキア・コリ(Escherich-ia coli)MR-2103(FERM BP-3835)は、シュードモナス・プチダ(Pseudomonasput-ida)MR-2068(FERM BP-3846)由来のエステラーゼ遺伝子で形質転換された株である。   The microorganism used in the present invention has the ability to asymmetrically hydrolyze the ester bond of α-methylalkanedicarboxylic acid diester to produce optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester If there is no restriction in particular. Typical examples include microorganisms belonging to the genus Pseudomonas and the genus Escherichia. Specific examples include Pseudomonas putida MR-2068 (FERM BP-3846) and Escheri-chia coli MR-2103 (FERM BP-3835). Escherichia coli MR-2103 (FERM BP-3835) is a strain transformed with an esterase gene derived from Pseudomonasput-ida MR-2068 (FERM BP-3846).

本発明で用いる微生物の培養は、液体培地でも固体培地でも行うことができる。培地としては、微生物が通常資化しうる炭素源、窒素源、ビタミン、ミネラル等の成分を適宜配合したものが用いられる。微生物の加水分解能を向上させるため、培地にエステルを少量添加することも可能である。培養は微生物が生育可能である温度、pHで行われるが、使用する菌株の最適培養条件で行うことが好ましい。微生物の生育を促進させるため、通気攪拌を行ってもよい。   The microorganism used in the present invention can be cultured in a liquid medium or a solid medium. As a culture medium, what mix | blended suitably components, such as a carbon source, a nitrogen source, a vitamin, a mineral which a microorganism can normally utilize, is used. In order to improve the hydrolytic ability of microorganisms, a small amount of ester can be added to the medium. The culture is performed at a temperature and pH at which the microorganism can grow, but it is preferably performed under the optimal culture conditions of the strain to be used. In order to promote the growth of microorganisms, aeration and agitation may be performed.

加水分解反応を行うに際しては、培養の開始時又は途中で培地にエステルを添加してもよく、予め微生物を培養した後、培養液にエステルを添加してもよい。また増殖した微生物の菌体を遠心分離等により採取し、これをエステルを含む反応媒体に加えても良い。菌体は、アセトン、トルエン等で処理した菌体を用いてもよい。   When performing the hydrolysis reaction, an ester may be added to the medium at the start or during the cultivation, or the microorganism may be cultured in advance and then the ester may be added to the culture solution. In addition, the cells of the grown microorganisms may be collected by centrifugation or the like and added to a reaction medium containing an ester. The cells treated with acetone, toluene or the like may be used.

又、菌体の代わりに培養液等の培養物、菌体破砕物、菌体抽出物、粗酵素、精製酵素等の菌体処理物を用いてもよく、更に、酵素又は微生物を適当な担体に固定化し、反応を行った後に回収再利用することも可能である。   Further, instead of the microbial cells, a culture such as a culture solution, a crushed microbial cell extract, a microbial cell extract, a crude enzyme, a purified enzyme or other processed microbial cells may be used, and the enzyme or microorganism may be used as a suitable carrier. It is also possible to immobilize and recover and reuse after reacting.

ここで、酵素としては微生物由来の各種リパーゼ、プロテアーゼ及びエステラーゼ等が使用可能である。   Here, various lipases derived from microorganisms, proteases, esterases and the like can be used as the enzymes.

なお、反応媒体としては例えばイオン交換水、緩衝液が用いられる。反応媒体又は培養液中のエステル濃度としては、0.1〜70重量%が好ましく、更に好ましくは5〜40重量%である。メタノール、アセトン、界面活性剤等を反応系に添加することも可能である。反応液のpHは、2〜11、好ましくは5〜8の範囲である。反応が進行するに従い生成したカルボン酸により反応液のpHが低下してくるが、この場合は適当な中和剤で最適pHに維持することが望ましい。反応温度は5〜70℃が好ましく、20〜60℃が更に好ましい。   In addition, as a reaction medium, ion-exchange water and a buffer solution are used, for example. The ester concentration in the reaction medium or the culture medium is preferably 0.1 to 70% by weight, more preferably 5 to 40% by weight. It is also possible to add methanol, acetone, surfactant, etc. to the reaction system. The pH of the reaction solution is in the range of 2-11, preferably 5-8. The pH of the reaction solution is lowered by the carboxylic acid produced as the reaction proceeds. In this case, it is desirable to maintain the optimum pH with a suitable neutralizing agent. The reaction temperature is preferably 5 to 70 ° C, more preferably 20 to 60 ° C.

反応終了液より生成物の分離精製は、酢酸エチル、クロロホルム、エーテル等の有機溶媒による抽出を行い、蒸留あるいはカラムクロマトグラフィーなどの常法を適用することにより、光学活性α−メチルアルカンジカルボン酸ジエステルを精製、取得することができる。抽出後の水層のpHを2以下に下げることにより、その対掌体である光学活性α−メチルアルカンジカルボン酸−ω−モノエステルを遊離酸とした後、有機溶媒、例えば酢酸エチルで抽出すれば光学活性α−メチルアルカンジカルボン酸−ω−モノエステルを回収することができる。   Separation and purification of the product from the reaction finished solution is performed by extraction with an organic solvent such as ethyl acetate, chloroform, ether, etc., and by applying a conventional method such as distillation or column chromatography, an optically active α-methylalkanedicarboxylic acid diester Can be purified and obtained. By lowering the pH of the aqueous layer after extraction to 2 or less, the enantiomer optically active α-methylalkanedicarboxylic acid-ω-monoester is converted into a free acid and then extracted with an organic solvent such as ethyl acetate. For example, optically active α-methylalkanedicarboxylic acid-ω-monoester can be recovered.

このようにして得られた光学活性α−メチルアルカンジカルボン酸−ω−モノエステル及びその対掌体ジエステルは、公知の方法でジエステルまたはジカルボン酸に誘導可能である。   The optically active α-methylalkanedicarboxylic acid-ω-monoester and the enantiomer diester thus obtained can be derived into a diester or a dicarboxylic acid by a known method.

以下、本発明を実施例によりさらに詳しく説明するが、これらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, it is not limited to these.

実施例1 光学活性α−メチルコハク酸モノエステル及びその対掌体ジエステルの製造。
エセリキア・コリ(Escherichia coli)MR-2103(FERM BP-3835)を50μg/mlのアンピシリンを含むLB培地(1%ポリペプトン、0.5%酵母エキス、0.5%NaCl)500mlに植菌し、37℃で20時間振盪培養した。培養終了後、培養液を遠心分離し、得られた菌体の全量をイオン交換水で洗浄した後、50mM燐酸緩衝液(pH7.0)500mlに懸濁した。この菌体懸濁液に、ラセミ体−α−メチルコハク酸ジメチル50gを加え、30℃で20時間反応させた。この間、反応液のpHは、10%NaOH水溶液を用いて7.0に調整した。反応終了後、遠心分離により菌体を除き、未反応のα−メチルコハク酸ジメチルを酢酸エチルで抽出した。有機層に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発除去し、更に蒸留精製し、19.8gの光学活性α−メチルコハク酸ジメチルを得た。この光学活性α−メチルコハク酸ジメチルは、光学分割カラム(キラルセルOD、ダイセル化学工業(株)社製)を用いて光学純度を測定したところ、(S)体で99%e.e.であった。次いで水相のpHを希硫酸で2.0に下げた後、水相中の酸分を酢酸エチルで抽出した。有機層に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発除去し、更に蒸留精製し、17.2gの光学活性α−メチルコハク酸−4−モノエステルを得た。これは、光学分割カラム(キラルセルOD、ダイセル化学工業(株)社製)を用いて光学純度を測定したところ、(R)体で96%e.e.であった。また、1H−NMRより、得られたモノエステルは4−エステルのみで、1−エステルの混在は認められなかった。
Example 1 Production of optically active α-methyl succinic acid monoester and its enantiomer diester.
Inoculate Escherichia coli MR-2103 (FERM BP-3835) in 500 ml of LB medium (1% polypeptone, 0.5% yeast extract, 0.5% NaCl) containing 50 μg / ml ampicillin, The culture was shaken at 37 ° C. for 20 hours. After completion of the culture, the culture solution was centrifuged, and the whole amount of the obtained cells was washed with ion-exchanged water and then suspended in 500 ml of 50 mM phosphate buffer (pH 7.0). To this bacterial cell suspension, 50 g of racemic α-methyl succinate was added and reacted at 30 ° C. for 20 hours. During this time, the pH of the reaction solution was adjusted to 7.0 using a 10% NaOH aqueous solution. After completion of the reaction, the cells were removed by centrifugation, and unreacted α-methyl succinate was extracted with ethyl acetate. The organic layer was dehydrated by adding anhydrous sodium sulfate, the solvent was removed by evaporation, and the residue was further purified by distillation to obtain 19.8 g of optically active dimethyl α-methylsuccinate. This optically active α-methyl succinate was measured for its optical purity using an optical resolution column (Chiral Cell OD, manufactured by Daicel Chemical Industries, Ltd.). e. Met. Next, the pH of the aqueous phase was lowered to 2.0 with dilute sulfuric acid, and then the acid content in the aqueous phase was extracted with ethyl acetate. Anhydrous sodium sulfate was added to the organic layer for dehydration, the solvent was removed by evaporation, and the residue was further purified by distillation to obtain 17.2 g of optically active α-methylsuccinic acid-4-monoester. When the optical purity was measured using an optical resolution column (Chiral Cell OD, manufactured by Daicel Chemical Industries, Ltd.), 96% e. e. Met. Further, from 1 H-NMR, the resulting monoester was only 4-ester, and no 1-ester was present.

実施例2 光学活性α−メチルグルタル酸モノエステル及びその対掌体ジエステルの製造。
実施例1で得た菌体懸濁液に、ラセミ体−α−メチルグルタル酸ジメチル50gを加え、30℃で20時間反応させた。この間、反応液のpHは、10%NaOH水溶液を用いて7.0に調整した。反応終了後、遠心分離により菌体を除き、未反応のα−メチルグルタル酸ジメチルを酢酸エチルで抽出した。有機層に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発除去し、更に蒸留精製し、18.2gの光学活性α−メチルグルタル酸ジメチルを得た。この光学活性α−メチルグルタル酸ジメチルは、tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]-europium(III)を用いて1H−NMRスペクトルより光学純度を測定したところ、(S)体で100%e.e.であった。次いで水相のpHを希硫酸で2.0に下げた後、水相中の酸分を酢酸エチルで抽出した。有機層に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発除去し、更に蒸留精製し、18.0gの光学活性α−メチルグルタル酸−4−モノエステルを得た。1H−NMRより、得られたモノエステルは4−エステルのみで、1−エステルの混在は認められなかった。この光学活性α−メチルグルタル酸−4−モノエステルを常法によりジエステルに導いた後、前記と同様の方法で光学純度をもとめたところ、(R)体で96%e.e.であった。
Example 2 Production of optically active α-methylglutaric acid monoester and its enantiomer diester.
To the cell suspension obtained in Example 1, 50 g of racemic dimethyl α-methylglutarate was added and reacted at 30 ° C. for 20 hours. During this time, the pH of the reaction solution was adjusted to 7.0 using a 10% NaOH aqueous solution. After completion of the reaction, the cells were removed by centrifugation, and unreacted dimethyl α-methylglutarate was extracted with ethyl acetate. The organic layer was dehydrated by adding anhydrous sodium sulfate, the solvent was removed by evaporation, and the residue was further purified by distillation to obtain 18.2 g of optically active dimethyl α-methylglutarate. This optically active α-methylglutarate dimethyl was measured for its optical purity from 1 H-NMR spectrum using tris [3- (heptafluoropropylhydroxymethylene)-(+)-camphorato] -europium (III). At 100% e.e. e. Met. Next, the pH of the aqueous phase was lowered to 2.0 with dilute sulfuric acid, and then the acid content in the aqueous phase was extracted with ethyl acetate. Anhydrous sodium sulfate was added to the organic layer for dehydration, the solvent was removed by evaporation, and the residue was further purified by distillation to obtain 18.0 g of optically active α-methylglutaric acid-4-monoester. From 1 H-NMR, the resulting monoester was only a 4-ester, and no 1-ester was present. This optically active α-methylglutaric acid-4-monoester was converted into a diester by a conventional method, and optical purity was determined by the same method as described above. As a result, 96% e.e. e. Met.

Claims (2)

下記一般式(1)で表されるα-メチルアルカンジカルボン酸ジエステルに、シュードモナス(Pseudomonas)属に属する微生物の培養物、菌体又は菌体処理物を作用させて、下記一般式(2)で表される(R)体α-メチルアルカンジカルボン酸-ω-モノエステル及び下記一般式(3)で表される(S)体α-メチルアルカンジカルボン酸ジエステルを採取する、(R)体α-メチルアルカンジカルボン酸-ω-モノエステル及び(S)体α-メチルアルカンジカルボン酸ジエステルの製造方法。
Figure 0003970898
Figure 0003970898
Figure 0003970898
The α-methylalkanedicarboxylic acid diester represented by the following general formula (1) is allowed to act on a culture, cell or treated cell of a microorganism belonging to the genus Pseudomonas, and the following general formula (2) (R) -form α-methylalkanedicarboxylic acid-ω-monoester and (S) -form α-methylalkanedicarboxylic acid diester represented by the following general formula (3) are collected. A process for producing methylalkanedicarboxylic acid-ω-monoester and (S) -α-methylalkanedicarboxylic acid diester.
Figure 0003970898
Figure 0003970898
Figure 0003970898
シュードモナス(Pseudomonas)属に属する微生物がシュードモナス・プチダ(Pseudom
onas putida )である請求項1記載の方法。
The microorganism belonging to the genus Pseudomonas is Pseudom.
onas putida).
JP2005237115A 2005-08-18 2005-08-18 Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester Expired - Fee Related JP3970898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237115A JP3970898B2 (en) 2005-08-18 2005-08-18 Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237115A JP3970898B2 (en) 2005-08-18 2005-08-18 Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13470094A Division JP3732535B2 (en) 1994-06-13 1994-06-16 Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester

Publications (2)

Publication Number Publication Date
JP2005341972A JP2005341972A (en) 2005-12-15
JP3970898B2 true JP3970898B2 (en) 2007-09-05

Family

ID=35494894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237115A Expired - Fee Related JP3970898B2 (en) 2005-08-18 2005-08-18 Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester

Country Status (1)

Country Link
JP (1) JP3970898B2 (en)

Also Published As

Publication number Publication date
JP2005341972A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP2707076B2 (en) Production method of optically active compound
JPS61239899A (en) Biotechnological production of optically active alpha-arylalkanoic acid
US5773240A (en) Optically active α-substituted carboxylic acid derivatives and method for producing the same
EP0237983A2 (en) Process for the biotechnological preparation of L (-)-carnitine chloride
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP3970898B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
US6455302B1 (en) Method for optically resolving a racemic α-substituted heterocyclic carboxylic acid using enzyme
JP4042454B2 (en) Process for producing optically active 3-methylglutaric acid monoester
JP3715662B2 (en) Process for producing optically active β-hydroxycarboxylic acid and its enantiomer ester
JPS62272983A (en) Production of l-(-)-carnitine chloride starting from 3, 4-epoxybutyric ester
JPH1014590A (en) Production of optically active 2-substituted-3-phenylpropionic acid and its ester
US5248601A (en) Process for preparing L(-)-carnitine chloride
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP2000023693A (en) Production of optically active 2-acetylthio-3- phenylpropionic acid
JP3679819B2 (en) Process for producing (S) -3- (2-thienylthio) butanoic acid
JPH0959217A (en) New optically active halogen-containing carboxylic acid derivative and its production
JP3545442B2 (en) Method for producing optically active 4- (2-halo-1-hydroxyethyl) -2-trifluoromethylthiazole
JPH0965891A (en) Production of optically active alpha-methylalkanoic acid derivative
JPH0573396B2 (en)
JP3935992B2 (en) Optically active 3-chlorolactonitrile and its ester and method for producing them
JPH08259500A (en) New optically active unsaturated carboxylic acid derivative and its production
JPH10210997A (en) Production of optically active 3-quinacridinol
JP3007461B2 (en) Method for producing optically active 2-cyclohexenylacetic acid and its ester
JP4746019B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JPH0959211A (en) New optically active dicarboxylic acid derivative and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees