JP3967733B2 - Magnetic detection element - Google Patents
Magnetic detection element Download PDFInfo
- Publication number
- JP3967733B2 JP3967733B2 JP2004133294A JP2004133294A JP3967733B2 JP 3967733 B2 JP3967733 B2 JP 3967733B2 JP 2004133294 A JP2004133294 A JP 2004133294A JP 2004133294 A JP2004133294 A JP 2004133294A JP 3967733 B2 JP3967733 B2 JP 3967733B2
- Authority
- JP
- Japan
- Prior art keywords
- gmr element
- magnetic field
- layer
- film
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 151
- 238000001514 detection method Methods 0.000 title description 55
- 230000001681 protective effect Effects 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 20
- 239000010408 film Substances 0.000 description 67
- 229910002546 FeCo Inorganic materials 0.000 description 28
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 238000003475 lamination Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010884 ion-beam technique Methods 0.000 description 5
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Description
この発明は、磁界の変化を検出する磁気検出素子に関するものである。 The present invention relates to a magnetic detection element that detects a change in a magnetic field.
一般に、磁気抵抗素子(以下、MR(Magnetoresistance)素子という)は、強磁性体(例えば、Ni−Fe、Ni−Co等)薄膜の磁化方向と電流方向のなす角度によって抵抗値が変化する素子である。
このようなMR素子は、電流方向と磁化方向が直角に交わるときに抵抗値が最小になり、電流方向と磁化方向のなす角が0度、すなわち同一あるいは全く逆の方向になるときにその抵抗値が最大になる。このような抵抗値の変化をMR変化率と呼び、一般にNi−Feで2〜3%、Ni−Coで5〜6%である。
In general, a magnetoresistive element (hereinafter referred to as an MR (Magnetoresistivity) element) is an element whose resistance value changes depending on an angle formed between a magnetization direction of a ferromagnetic (eg, Ni—Fe, Ni—Co, etc.) thin film and a current direction. is there.
Such an MR element has a minimum resistance value when the current direction and the magnetization direction intersect at right angles, and the resistance value when the angle between the current direction and the magnetization direction is 0 degrees, that is, the same or completely opposite direction. The value is maximized. Such a change in resistance value is called an MR change rate, which is generally 2 to 3% for Ni-Fe and 5 to 6% for Ni-Co.
図9及び図10は従来の磁気検出装置の構成を示す側面図及び斜視図である。
図9に示すように、従来の磁気検出装置は、回転軸41と、少なくとも1つ以上の凹凸を外周側に有し、回転軸41の回転に同期して回転する円板状の磁性回転体42と、この磁性回転体42の外周側と所定の間隙をもって配置されたMR素子43と、このMR素子43の背部に固着され、このMR素子43に磁界を与える磁石44と、MR素子43の出力を処理する集積回路45とからなり、MR素子43は、磁気抵抗パターン46と、薄膜面(感磁面)47とを備える。
このような磁気検出装置において、磁性回転体42が回転することでMR素子43の感磁面である薄膜面47を貫く磁界が変化し、磁気抵抗パターン46の抵抗値が変化する。
しかし、このような磁気検出装置で用いられている磁気検出素子のMR素子43は出力レベルが小さいため、精度の高い検出ができず、これを解決するために、出力レベルの大きな巨大磁気抵抗素子(以下、GMR(Giant Magnetoresistance)素子という。)を用いた磁気検出素子が、近時提案されている。
9 and 10 are a side view and a perspective view showing the configuration of a conventional magnetic detection device.
As shown in FIG. 9, the conventional magnetic detection device has a rotating
In such a magnetic detection device, when the
However, since the
図11は、従来のGMR素子の特性を示す図である。
図11の特性を示すGMR素子は、日本応用磁気学会誌Vol.15,No.51991,第813〜821頁の「人工格子の磁気抵抗効果」と題する論文に記載されている数オングストロームから数十オングストロームの厚さの磁性層と非磁性層とを交互に積層させたいわゆる人工格子膜としての積層体(Fe/Cr、パーマロイ/Cu/Co/Cu、Co/Cu、FeCo/Cu)である。この積層体は、上述のMR素子と比較して格段に大きなMR効果(MR変化率)を有するとともに、外部磁界の向きが電流に対してどのような角度であっても同じ抵抗値の変化が得られる素子である。
磁界の変化を検出するためにGMR素子で実質的に感磁面を形成し、その感磁面の各端に電極を形成してブリッジ回路を形成し、このブリッジ回路の対向する2つの電極間に定電圧、定電流の電源を接続し、GMR素子の抵抗値変化を電圧変化に変換して、このGMR素子に作用している磁界変化を検出することが考えられる。
FIG. 11 is a diagram showing the characteristics of a conventional GMR element.
The GMR element having the characteristics shown in FIG. 15, no. 51991, what is called an artificial lattice in which magnetic layers and nonmagnetic layers having a thickness of several angstroms to several tens of angstroms are alternately stacked as described in a paper entitled “Magnetoresistive Effect of Artificial Lattice” on pages 813 to 821 It is a laminated body (Fe / Cr, permalloy / Cu / Co / Cu, Co / Cu, FeCo / Cu) as a film. This laminated body has a remarkably large MR effect (MR change rate) as compared with the MR element described above, and the same resistance value changes regardless of the angle of the external magnetic field with respect to the current. It is an element obtained.
In order to detect a change in the magnetic field, a magnetosensitive surface is substantially formed by a GMR element, and an electrode is formed on each end of the magnetosensitive surface to form a bridge circuit. Between the two electrodes facing this bridge circuit, It is conceivable to connect a power source having a constant voltage and a constant current to the power source and convert a change in resistance value of the GMR element into a voltage change to detect a magnetic field change acting on the GMR element.
図12および図13は、従来のGMR素子を用いた磁気検出装置の構成を示す側面図および斜視図である。
図12および図13において、この磁気検出装置は、回転軸41と、少なくとも1つ以上の凹凸を外周に有し、回転軸41の回転に同期して回転する磁界変化付与手段としての円板状の磁性回転体42と、この磁性回転体42の外周と所定の間隙をもって配置されたGMR素子48と、このGMR素子48に磁界を与える磁界発生手段としての磁石44と、GMR素子48の出力を処理する集積回路45とからなり、GMR素子48は、感磁パターンとしての磁気抵抗パターン49と、薄膜面50とを有する。
このような磁気検出装置では、磁性回転体42が回転することで、GMR素子48の薄膜面(感磁面)50を貫く磁界が変化し、磁気抵抗パターン49の抵抗値が変化する。
12 and 13 are a side view and a perspective view showing a configuration of a magnetic detection device using a conventional GMR element.
12 and 13, this magnetic detection device has a rotating
In such a magnetic detection device, when the
図14は従来のGMR素子を用いた磁気検出装置を示すブロック図であり、図15は従来のGMR素子を用いた磁気検出装置の詳細を示すブロック図である。
図14および図15に示す磁気検出装置は、磁性回転体42と所定の間隙をもって配置され、磁石44より磁界が与えられるGMR素子48を用いたホイートストンブリッジ回路51と、このホイートストンブリッジ回路51の出力を増幅する差動増幅回路52と、この差動増幅回路52の出力を基準値と比較して“0”または“1”の信号を出力する比較回路53と、この比較回路53の出力を受けてスイッチングする出力回路54とを備える。
FIG. 14 is a block diagram showing a magnetic detection apparatus using a conventional GMR element, and FIG. 15 is a block diagram showing details of the magnetic detection apparatus using a conventional GMR element.
14 and 15 includes a Wheatstone
図16は従来のGMR素子を用いた磁気検出装置の回路構成の一例を示す図である。
図16において、ホイートストンブリッジ回路51は、例えば各辺にそれぞれGMR素子48a,48b,48cおよび48dを有し、GMR素子48aとGMR素子48cは電源端子VCCに接続され、GMR素子48bとGMR素子48dは接地され、GMR素子48aとGMR素子48bの各他端は接続点55に接続され、GMR素子48cとGMR素子48dの各他端は接続点56に接続される。
FIG. 16 is a diagram showing an example of a circuit configuration of a magnetic detection device using a conventional GMR element.
In FIG. 16, the Wheatstone
ホイートストンブリッジ回路51の接続点55が抵抗器57を介して差動増幅回路58のアンプ59の反転入力端子に接続され、接続点56が抵抗器60を介してアンプ59の非反転入力端子に接続されるとともに、更に抵抗器61を介して、電源端子VCCから供給される電圧にもとづいて基準電圧を構成する分圧回路62に接続される。
また、アンプ59の出力端子は抵抗器63を介して自己の反転入力端子に接続されるとともに、比較回路64のアンプ65の反転入力端子に接続され、アンプ65の非反転入力端子は、電源端子VCCから供給される電圧にもとづいて基準電圧を構成する分圧回路66に接続されるとともに、抵抗器67を介してアンプ65の出力端子に接続される。
そして、比較回路64の出力端は、出力回路68のトランジスタ69のベースに接続され、トランジスタ69のコレクタは、出力回路68の出力端子70に接続されるとともに、抵抗器71を介して電源端子VCCに接続され、そのエミッタは接地される。
The
The output terminal of the amplifier 59 is connected to its own inverting input terminal via the
The output terminal of the
図17は、従来の磁気検出素子の構成を示す図であり、図18は、従来の磁気検出素子の動作を示す特性図である。
図17に示すように、ホイートストンブリッジは、GMR素子48(48aないし48dから構成される)を備える。
磁性回転体42が回転すると、図18に示すように、GMR素子48(48aないし48d)に供給される磁界が変化し、差動増幅回路58の出力端には図18に示すように、磁性回転体42の凹凸に対応した出力が得られる。
この差動増幅回路58の出力は、比較回路64に供給されて、その比較レベルである基準値と比較されて“0”または“1”の信号に変換され、この信号は更に出力回路68で波形整形され、この結果、その出力端子70には図18に示すようにその立ち上がり、立ち下がりの急峻な“0”または“1”の出力が得られる。
As shown in FIG. 17, the Wheatstone bridge includes a GMR element 48 (consisting of 48a to 48d).
When the magnetic rotating
The output of the differential amplifier circuit 58 is supplied to the
しかしながら、上述の磁気検出素子に用いられるGMR素子は、GMR素子膜上に形成された保護膜上に写真製版技術によりレジストに素子パターンを転写し、イオンビームエッチング(IBE)を用いてエッチングを実施した後にレジスト除去して形成するが、基板に対するイオンビームの入射角を0度にてエッチングを実施しているので、レジストパターンの側壁に再付着した膜が縦方向の突起として残り、この突起がGMR素子の最終保護膜形成の障害となるという問題があった。 However, the GMR element used in the above-described magnetic detection element transfers an element pattern to a resist by a photoengraving technique on a protective film formed on the GMR element film, and performs etching using ion beam etching (IBE). After the resist is removed, the etching is performed with the incident angle of the ion beam with respect to the substrate being 0 degree, so that the film reattached to the side wall of the resist pattern remains as a vertical protrusion, and this protrusion There is a problem that it becomes an obstacle to the formation of the final protective film of the GMR element.
この発明は、上述のような課題を解決するためになされたものであり、GMR素子の最終保護膜を安定して形成でき、磁気検出素子の信頼性を向上できるようにすることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to stably form a final protective film of a GMR element and improve the reliability of a magnetic detection element. .
本発明の磁気検出素子は、GMR素子膜上に保護膜を形成した巨大磁気抵抗素子を備え、この巨大磁気抵抗素子の抵抗パターンの側面が前記巨大磁気抵抗素子を保持するための基板の表面に対して20°以上でかつ80°以下となるテーパを形成しこのテーパ上に最終保護膜を形成したことを特徴とする。また、GMR素子膜上に保護膜を形成した巨大磁気抵抗素子を備え、この巨大磁気抵抗素子の抵抗パターンの側面が前記巨大磁気抵抗素子を保持するための基板の表面に対して40°以上でかつ65°以下となるテーパを形成しこのテーパ上に最終保護膜を形成したことも特徴とする。
The magnetic sensing element of the present invention comprises a giant magnetoresistive element in which a protective film is formed on the GMR element film, the surface of the substrate to the side surface of the resistance pattern of the giant magnetoresistance device holds the giant magnetoresistive element On the other hand, a taper of 20 ° or more and 80 ° or less is formed , and a final protective film is formed on the taper . Also includes a giant magnetoresistive element in which a protective film is formed on the GMR element film, the giant side of the resistance pattern of the magnetoresistive element is the giant
本発明によれば、巨大磁気抵抗素子となる抵抗パターンの側面が基板表面に対して20°以上でかつ80°以下となるテーパーを形成したので、最終保護膜を安定して形成でき、磁気検出素子の信頼性を向上できる。また、抵抗パターンの側面が基板表面に対し40°以上でかつ65°以下のテーパーを形成したことを特徴とするので、最終保護膜をさらに安定して形成することができ、磁気検出素子の信頼性がさらに向上する。 According to the present invention, the side surface of the resistance pattern to be a giant magnetoresistive element is tapered so that the side surface of the resistance pattern is 20 ° or more and 80 ° or less with respect to the substrate surface. The reliability of the element can be improved. Further, since the side surface of the resistance pattern has a taper of 40 ° or more and 65 ° or less with respect to the substrate surface, the final protective film can be formed more stably, and the reliability of the magnetic detection element can be improved. The nature is further improved.
以下、この発明の実施の形態を図にもとづいて説明する。
実施の形態1.
図1は、この発明の実施の形態1に係る磁気検出素子およびその装置を構成するGMR素子の磁気特性を示す図である。
図1に示すように、この発明の実施の形態1に係るGMR素子の磁気特性を示す磁気曲線は、磁界0の近傍に抵抗値の最大値(以下Rmaxという)を有し、磁界の増大とともに抵抗値は減少していき、充分大きな磁界(例えば2KOe以上)である飽和状態をとる。この飽和状態での抵抗値をRminと定義する。磁界を飽和磁界から戻して行くと磁界を増大させた場合とは異なる経路で磁界0まで抵抗値が上昇していく、いわゆるヒステリシスを有する。
一般に飽和磁界とは、飽和状態に達する最小磁界を意味するが、規程が曖昧であるので、本発明においては、飽和磁界を「Rminに1%抵抗値を上乗せした値(Rmin×1.01)と磁界を増大させた場合の磁気抵抗曲線との交点の磁界」と定義する。
図2及び図3に示すように、磁気検出素子を備える磁気検出装置は、外周に沿って少なくとも1つ以上の凹凸を有し、回転軸29の回転に同期して回転する円板状の磁性回転体30と、この磁性回転体30と所定の間隙をもって磁性回転体30の外周に対向するように配置された磁気検出素子28と、磁気検出素子28に備えられたGMR素子7に磁界を与える磁石31と、GMR素子7の出力を処理する集積回路45とを備える。磁石31の漏洩磁束の大きさと磁石31とGMR素子7との距離と磁性回転体30とGMR素子7の間隔によってGMR素子7で検知する磁界幅は様々に変化させることができる。それらを調整し、GMR素子7の抵抗値が最大値となる磁界以上でGMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲の中にGMR素子7で検知する磁界幅が収まるようにする。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing the magnetic characteristics of the magnetic detection element and the GMR element constituting the apparatus according to
As shown in FIG. 1, the magnetic curve showing the magnetic characteristics of the GMR element according to
In general, the saturation magnetic field means the minimum magnetic field that reaches the saturation state, but the regulations are ambiguous. Therefore, in the present invention, the saturation magnetic field is expressed as “the value obtained by adding 1% resistance value to Rmin (Rmin × 1.01)”. And the magnetic field at the intersection of the magnetoresistance curve when the magnetic field is increased.
As shown in FIGS. 2 and 3, the magnetic detection device including the magnetic detection element has at least one unevenness along the outer periphery, and rotates in a disk-like manner in synchronization with the rotation of the
図2では、磁性回転体30の外周に対して対面するシリコン基板等の基板1の前面に積層処理技術で設けられたGMR素子7及び集積回路45より成る磁気検出素子28が配置される。この磁気検出素子28の背面に磁石31が図外の取付け手段で配置されている。本発明の実施の形態1では、磁気検出素子28の基板1の前面に備えられたGMR素子7の感磁面における検出方向の磁界変化が、GMR素子7の抵抗値が最大値となる磁界以上で動作させる。さらに、好ましくは、GMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲の中で動作させるものであるので、これを満足するような配置であれば、どのような配置でもよい。例えば、図3では、磁性回転体30の凹凸面に対して磁気検出素子28に備えられたGMR素子7の面がほぼ垂直になるように配置され、GMR素子7の直上(もしくは直下であってもよい)に磁石31が配置されている。この場合も、図外の集積回路がGMR素子7の近傍に取り付けられている。
In FIG. 2, a
GMR素子7が検知する磁界幅がRmaxの磁界より小さい磁界まで広がるとその磁界幅における磁気抵抗曲線のヒステリシスが大きくなり、磁性回転体30の凹凸のエッジを検出する場合の精度が低下したり、磁気検出素子28と対向する磁性回転体30の凹凸の間隔が一部狭くなっている場合のように磁界範囲がその部分だけ極端に小さくなるような場合には充分な出力信号が得られないという弊害をもたらす。
また、一般的にGMR膜の飽和磁界は、温度の上昇とともに小さくなってくるので、場合によっては、室温における飽和磁界に0.8をかけた磁界が、温度上昇とともに飽和磁界を超える場合も生じる。室温における飽和磁界近傍での抵抗変化率(%/Oe)は、もともと比較的小さな値しかなく、温度上昇とともに抵抗変化率(%/Oe)は、さらに小さくなってゆく。抵抗変化率(%/Oe)の大小が出力に係わってくるので、出力低下が大きくなる。このように、GMR素子7の飽和磁界に0.8をかけ合わせた磁界より大きな磁界までGMR素子7が検知する磁界幅が広がると高温動作時の出力低下が顕著となるという弊害をもたらす。
GMR素子7の抵抗値が最大値となる磁界以上でGMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲でGMR素子7を動作させることにより上記のような弊害が解消でき、使用温度範囲の拡大と高感度化を進めることができる。
このように、実施の形態1では、磁気検出素子28に備えられたGMR素子7の感磁面における検出方向の磁界変化が、GMR素子7の抵抗値が最大値となる磁界以上でGMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲の中で動作させるものであるので、広い使用環境温度範囲を有し、かつ、検出感度の高い磁気検出素子を提供することができる。なお、この0.8をかけ合わせた磁界以下の下限については、次のとおりである。
「0.8をかけ合わせた磁界」をHssと仮に名づけると、高温動作時の出力低下という観点でみると
−Hss≦H≦+Hss
というのが有効範囲といえると思われる。
When the magnetic field width detected by the
In general, the saturation magnetic field of the GMR film becomes smaller as the temperature rises. Therefore, in some cases, the magnetic field obtained by multiplying the saturation magnetic field at room temperature by 0.8 exceeds the saturation magnetic field as the temperature rises. . The rate of change in resistance (% / Oe) near the saturation magnetic field at room temperature originally has a relatively small value, and the rate of change in resistance (% / Oe) further decreases as the temperature rises. Since the magnitude of the resistance change rate (% / Oe) is related to the output, the output decrease is increased. As described above, when the magnetic field width detected by the
By operating the
Thus, in the first embodiment, the change in the magnetic field in the detection direction on the magnetosensitive surface of the
If “magnetic field multiplied by 0.8” is temporarily named Hss, it is −Hss ≦ H ≦ + Hss from the viewpoint of output reduction at high temperature operation.
This seems to be the effective range.
実施の形態2.
図4は、この発明の実施の形態2に係るGMR素子の単位磁界あたりの抵抗変化率と積層回数の関係を示す図である。
図4には、上記GMR素子7がFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層との繰り返しによりなる積層膜よりなり、かつ上記Cu層として、このCu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合の単位磁界あたりの抵抗変化率とFe(x)Co(1−x)[0≦x≦0.3]とCuをひとくくりとした積層回数との関係が示されてある。ここで、「ひとくくり」の語の定義については後述する。
図4に示す単位磁界あたりの抵抗変化率(以下では、磁界感度と称す)は、磁性層としてFe(x)Co(1−x)[0≦x≦0.3]を用いた場合には、積層回数15回から30回付近で大きな値を採り、磁気検出素子として150℃付近の高温においても充分な検出感度を有するためには、積層回数10回から40回の範囲で使用するのが良い。積層回数10回未満や40回を超えた場合には、どのサンプルでも充分な磁界感度は得られない。
このように、実施の形態2では、GMR素子7がFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層との繰り返しによりなる積層膜よりなり、かつCu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合の単位磁界あたりの抵抗変化率とFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層とをひとくくりとした積層回数を10回以上40回以下としたので、磁気検出素子28の感度向上を図ることができる。
FIG. 4 is a diagram showing the relationship between the rate of change in resistance per unit magnetic field and the number of laminations in the GMR element according to
In FIG. 4, the
The resistance change rate per unit magnetic field shown in FIG. 4 (hereinafter referred to as magnetic field sensitivity) is obtained when Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] is used as the magnetic layer. In order to take a large value in the vicinity of 15 to 30 times of lamination and have sufficient detection sensitivity even at a high temperature of about 150 ° C. as a magnetic detection element, it is used in the range of 10 to 40 times of lamination. good. If the number of laminations is less than 10 or exceeds 40, sufficient magnetic field sensitivity cannot be obtained with any sample.
As described above, in the second embodiment, the
実施の形態3.
図5は、この発明の実施の形態3に係るGMR素子の単位磁界あたりの抵抗変化率とFeCo層の厚さとの関係を示す図である。
図5には、図4にて最も良好な特性を示したGMR素子がFe(x)Co(1−x)[x=0.1]の層とCuの層との繰り返しによりなる積層膜よりなり、かつ上記Cu層として、Cu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合の単位磁界あたりの抵抗変化率とFe0.1Co0.9の1層あたりの膜厚との関係が示されている。
図5に示す単位磁界あたりの抵抗変化率は、FeCo層の厚さが10Åの付近から急激に立ち上がり、12Åから20Å付近で充分大きな値を示し、30Åより大きくなると充分な磁界感度が得られなくなる。
従って、FeCo層1層あたりの膜厚が10Å以上30Å以下の範囲でGMR素子7を形成するのが良い。
このように、実施の形態3では、GMR素子7がFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層の繰り返しによりなる積層膜よりなり、かつ上記Cu層として、Cu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合のFe(x)Co(1−x)[0≦x≦0.3]の膜厚を10Å以上30Å以下としたので、磁気検出素子28の感度向上を図ることができる。
Embodiment 3 FIG.
FIG. 5 is a diagram showing the relationship between the rate of change in resistance per unit magnetic field and the thickness of the FeCo layer in the GMR element according to Embodiment 3 of the present invention.
In FIG. 5, the GMR element that showed the best characteristics in FIG. 4 is a laminated film formed by repeating a layer of Fe (x) Co (1-x) [x = 0.1] and a layer of Cu. As the Cu layer, the rate of change in resistance per unit magnetic field and one layer of Fe0.1Co0.9 when the Cu thickness is such that the magnetoresistance change relative to the thickness of one Cu layer is in the vicinity of the second peak. The relationship with the film thickness is shown.
The resistance change rate per unit magnetic field shown in FIG. 5 rapidly rises from the vicinity of 10 mm of the thickness of the FeCo layer, shows a sufficiently large value in the vicinity of 12 mm to 20 mm, and when it exceeds 30 mm, sufficient magnetic field sensitivity cannot be obtained. .
Therefore, it is preferable to form the
As described above, in the third embodiment, the
実施の形態4.
図6ないし図7は、この発明の実施の形態4に係るGMR素子の膜構成を示す断面図である。
まず、図6に示すように、GMR素子膜5の形成過程において、例えば、Si基板などの基板1上に形成されたSi熱酸化膜等の下地層2の表面に、FeCoの層9aを形成してから、その上にCuの層10、Fe(x)Co(1−x)[0≦x≦0.3]の層9、Cuの層10、FeCoの層9を順次積層していく。FeCoの層9とCuの層10のペア層90を10から40回積層し、最上層が図6に示す如くFeCoの層9となるように形成する。FeCoの層9に比べて導電率の高い材料であるCuの層10を最上層とした場合には、GMR効果に寄与しない電子が表面付近を流れる確率が増え、結果として磁気抵抗変化率(MR比)の低下を招くため、最上層は図6に示す如くFeCoの層9である事が良い。
そして、図7に示すように、最上層のFeCoの層9のさらに上に続けて保護膜8としてSiNx膜を形成することによって、後の写真製版工程などでGMR素子膜5の酸化を防止でき、GMR素子7の特性を安定化させることができる。上記保護膜8としてのSiNx膜は最上層のFeCoの層9の形成後真空を破らずに続けて形成する。すなわち、Fe(x)Co(1−x)[0≦x≦0.3]の層9とCuの層10の繰り返しにより積層してなるGMR素子膜5(積層膜)を設け、このGMR素子膜5の最上層の上に保護膜8を形成して巨大磁気抵抗素子を製造するのであるが、上記最上層を真空中のスパッタリングや低温プラズマCVDや真空蒸着等の薄膜処理技術により形成した後、上記保護膜8も、真空を破ることなく、薄膜処理により形成する。このことにより、GMR素子膜5の自然酸化をも抑制することができ、安定化に対してさらに効果的に作用する。
上記保護膜8としては、SiNx膜の代わりに酸化Si膜や酸化Ta膜などの誘電体膜の他、Ti、V、Ta、Nb、Zrなどの金属膜やそれらを組み合せた金属膜やそれらの酸化膜や窒化膜を用いることができる。いずれもGMR素子膜5の特性を損なわないようにスパッタリングや低温プラズマCVDや真空蒸着によって形成することができる。
このように、この発明の実施の形態4においては、図7に示す如くGMR素子膜5の最上層をFeCo層の9としたので、GMR素子7の磁気特性を向上させることができ、GMR素子膜5形成後に保護膜8を形成したことによりGMR素子7の信頼性を向上させることができる。
ここで、前述の、「ひとくくり」の語の定義について説明する。図6や図7で示した積層構造をした膜において、図中、9がFeCoの層、10がCuの層であるが、基板1から順次、基板1/下地層2/最下部のFeCoの層9a/[Cuの層10/FeCoの層9]/[Cuの層10/FeCoの層9]/[Cuの層10/FeCoの層9]・・・/[Cuの層10/FeCoの層9]というように[Cuの層10/FeCoの層9]のペア層90の繰り返しで積層構造が出来上がっている。「ひとくくり」と言っているのは、この[Cuの層10/FeCoの層9]のペア層90のことである。最初のFeCo以外の、一組の積層構造のものと考えてよい。
この積層構造を簡略化して記述すると、最下部のFeCoの層9a/[Cuの層10/FeCoの層9]×n(ひとくくりの数がn個)となり、このときのnを積層回数として表記している。
この場合の最下部のFeCoの層9aは、必ず必要と言うものではないが、あった方が安定して製造ができるので、入れている。[Cuの層10/FeCoの層9]×nだけを表す呼び名としてCuの層10とFeCoの層9とのペア層90を「ひとくくり」と言っている。
6 to 7 are sectional views showing a film configuration of the GMR element according to the fourth embodiment of the present invention.
First, as shown in FIG. 6, in the process of forming the
Then, as shown in FIG. 7, by forming a SiNx film as the
As the
Thus, in
Here, the above-mentioned definition of the word “hitokuri” will be described. In the films having the laminated structure shown in FIGS. 6 and 7, in the figure, 9 is an FeCo layer, 10 is a Cu layer, and in order from the
When this stacked structure is described in a simplified manner, the
In this case, the
実施の形態5.
図8(a),(b)は、この発明の実施の形態5に係るGMR素子7のパターン化を行った際の膜構成を示す断面図である。
GMR素子7は、ペア層90をn回積層して成るGMR素子膜5をパターン化することで形成されるが、このGMR素子膜5のパターン化に際しては、GMR素子膜5上に形成された保護膜8上に写真製版技術によりレジストに素子パターンを転写し、イオンビームエッチング(IBE)を用いてエッチングを行い、最後にレジスト除去をするという方法がとられている。
図8(a)は基板1に対するイオンビームの入射角を0度にてエッチングを実施した後にレジストパターンを除去したGMR素子7の断面図であるが、レジストパターンの側壁に再付着した膜11が縦方向の突起として残り、この突起がGMR素子膜5の側壁保護を主たる目的とした最終保護膜形成の障害となる。
これに対し、図8(b)は基板1に対してイオンビームに入射角度を持たせた場合のエッチングを実施した後にレジストパターンを除去したGMR素子7の断面図である。図8(a)で見られた再付着膜11の残りがなくなり、かつ側面にテーパーがつき、最終保護膜形成におけるカバーレッジを向上させる。このときのテーパー角12は20°以上80°以下で充分効果があるが、パターン幅の精度やパターン幅の縮小やパターン間の間隔の縮小などの点で40°以上がさらに好ましく、また、再付着膜11の残りが確率的にほとんど0になることを考慮した量産性を考えると65°以下がさらに好ましい。
このように、実施の形態5では、GMR素子7のパターンに20°以上80°以下、好ましくは、40°以上65°以下のテーパー角12を設けたので、GMR素子7の信頼性を向上させることができる。
なお、GMR素子7は基板1の上に積層処理技術で形成するとして説明したが、GMR素子7自体を別の基板上に製造しておいたものを、基板1の上に接着してもよい。
8 (a) and 8 (b) are cross-sectional views showing the film configuration when the
The
FIG. 8A is a cross-sectional view of the
On the other hand, FIG. 8B is a cross-sectional view of the
As described above, in the fifth embodiment, since the
Although the
1 基板、2 下地層、5 GMR素子膜、7 GMR素子(巨大磁気抵抗素子)、
8 窒化Si膜(保護膜)、9 Fe(x)Co(1−x)[0≦x≦0.3]の層、
10 Cuの層、11 再付着膜、12 テーパー角、28 磁気検出素子、
30 磁性回転体、31 磁石。
1 substrate, 2 ground layer, 5 GMR element film, 7 GMR element (giant magnetoresistive element),
8 Nitride Si film (protective film), 9 Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] layer,
10 Cu layer, 11 reattachment film, 12 taper angle, 28 magnetic detection element,
30 Magnetic rotating body, 31 Magnet.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004133294A JP3967733B2 (en) | 2004-04-28 | 2004-04-28 | Magnetic detection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004133294A JP3967733B2 (en) | 2004-04-28 | 2004-04-28 | Magnetic detection element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10592699A Division JP3562993B2 (en) | 1999-04-13 | 1999-04-13 | Magnetic detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004233373A JP2004233373A (en) | 2004-08-19 |
JP3967733B2 true JP3967733B2 (en) | 2007-08-29 |
Family
ID=32959982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004133294A Expired - Lifetime JP3967733B2 (en) | 2004-04-28 | 2004-04-28 | Magnetic detection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3967733B2 (en) |
-
2004
- 2004-04-28 JP JP2004133294A patent/JP3967733B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004233373A (en) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5734657B2 (en) | Self-pinned spin valve magnetoresistive film, magnetic sensor and rotation angle detector using the same | |
JP5191652B2 (en) | MAGNETIC SENSING DEVICE INCLUDING A SENSENHANCING LAYER | |
US7750627B2 (en) | Magnetic film sensor having a magnetic film for generating a magnetostriction and a depressed insulating layer | |
KR0175984B1 (en) | Spin valve magnetoresistive sensor with self-pinned laminated layer and magnetic recording system using the sensor | |
US20030070497A1 (en) | Rotation angle sensor capable of accurately detecting rotation angle | |
US6600314B2 (en) | Tunneling magnetoresistive effect device and direction sensor system using said device | |
JP6842741B2 (en) | Magnetic sensor | |
JP4692805B2 (en) | Magnetic sensing element and method for forming the same | |
JP2008306112A (en) | Magneto-resistance effect film, magnetic sensor, and rotation angle detecting device | |
TW201530109A (en) | Pressure sensor, acceleration sensor, and method for manufacturing pressure sensor | |
JP3562993B2 (en) | Magnetic detector | |
JP2020067365A (en) | Magnetic sensor | |
JP2005109243A (en) | Magnetoresistance effect element and magnetic head | |
JP2006269955A (en) | Magnetic field detecting device | |
JP2010256366A (en) | Magnetic sensor and method of manufacturing the same | |
JP3967733B2 (en) | Magnetic detection element | |
JP4616021B2 (en) | Angle detection sensor | |
JP4520353B2 (en) | Thin film magnetic sensor | |
JP3449160B2 (en) | Magnetoresistive element and rotation sensor using the same | |
JP2002207071A (en) | Magnetic sensing element and azimuth-sensing system using the element | |
JP5467210B2 (en) | Magnetic sensor | |
JP2003282999A (en) | Magnetic sensor | |
WO2024135038A1 (en) | Magnetic sensor, magnetic sensor for linear encoder, and magnetic rotary encoder | |
JP2005049262A (en) | Magnetic sensor and magnetic sensor unit | |
JP2009229380A (en) | Thin-film magnetic sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070531 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |