[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3962140B2 - Hot stove operation method - Google Patents

Hot stove operation method Download PDF

Info

Publication number
JP3962140B2
JP3962140B2 JP00479798A JP479798A JP3962140B2 JP 3962140 B2 JP3962140 B2 JP 3962140B2 JP 00479798 A JP00479798 A JP 00479798A JP 479798 A JP479798 A JP 479798A JP 3962140 B2 JP3962140 B2 JP 3962140B2
Authority
JP
Japan
Prior art keywords
hot
hot stove
furnace
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00479798A
Other languages
Japanese (ja)
Other versions
JPH11199910A (en
Inventor
徹雄 越智
信二 森
照雄 香川
茂 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP00479798A priority Critical patent/JP3962140B2/en
Publication of JPH11199910A publication Critical patent/JPH11199910A/en
Application granted granted Critical
Publication of JP3962140B2 publication Critical patent/JP3962140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱風炉の操業方法に関し、特に、熱風炉の炉切り替え時における排圧、充圧時間を迅速化して燃焼時間を増やし、熱風炉の蓄熱量を増加させるための新規な改良に関する。
【0002】
【従来の技術】
一般に、高炉へ熱風を送る熱風炉の操業方法としては図10および図11に示す方法が採用されており、熱風炉の構成は図8のように構成されていた。
すなわち、図8において符号1で示されるものは送風機で有り、この送風機1は第1送風弁2aおよび第1充風弁2bを介して第1熱風炉3に接続され、また第2送風弁2cおよび第2充風弁2dを介して第2熱風炉4に接続されると共に、第3送風弁2eおよび第3充風弁2fを介して第3熱風炉5にそれぞれ接続されている。
前記第1〜第3熱風炉3〜5には、燃料ガスを導くガス本管6から第1〜第3ガス遮断弁7a〜7cが接続されるとともに、第1〜第3煙道弁9a〜9cを介して煙突10へと接続され、さらには、第1〜第3熱風弁11a〜11cを介し、送風本管13経由で高炉12へ接続されている。また、第1〜第3煙道弁9a〜9cには、第1〜第3排風弁8a〜8cが並列に接続されている。
この場合、1例として、第1熱風炉3を燃焼炉として使用し蓄熱し、今まで蓄熱していた第2熱風炉4を送風炉として使用し、さらに第3熱風炉5を燃焼炉として使用している場合において、例えば第2熱風炉4の送風炉として熱量が減少し、第1熱風炉3が十分に蓄熱されたと仮定し、第2熱風炉4を送風炉から燃焼炉として切り替え、第1熱風炉3を燃焼炉から送風炉として使用するように切り替え操作を行い、第3熱風炉5は燃焼炉として継続している。現時点においては第1熱風炉3は燃焼炉として操業しているため、第1ガス遮断弁7aと第1煙道弁9aは開いた状態で第1熱風炉3はガスを燃焼して蓄熱しているが、炉内蓄熱室の煉瓦が所定温度に達すると蓄熱が終りであるとの信号が演算処理装置34から出され、切り替わり作動信号が出て切り替わりが開始される。
すなわち、図8に示すように、まず燃焼遮断を行うために第1ガス遮断弁7aを閉じて続いて第1煙道弁9aが閉じられる。
熱風炉の操業パターンの基本は送風時間一定とした炉替えサイクルで図9に示すように、例えば1号熱風炉3が現在燃焼工程で2号熱風炉4が高炉へ熱風を送る送風工程にある時、1号熱風炉3が燃焼を終えると、炉替え信号が出されると同時に2号熱風炉4には送風終了の指令が出されるが、1号熱風炉3の炉替えが終わって初めて、2号熱風炉4の炉替え信号が出されこれから炉替えが始まる操業となる。なお、図9の炉切替パターンは従来及び本発明とも同じである。
【0003】
第1煙道弁9aが閉じられた時点で第1熱風炉3の炉内圧力は大気圧と等しくなり、図11に示す送風準備として第1充風弁2bの開閉を監視するLs(リミットスイッチ)を閉から開くために第1充風弁2bを開く信号が演算処理装置34から出され第1充風弁2bを開きLsが開きの信号を発してから送風圧力と炉内圧力が等しくなり、且つ安全を見越し時間T6時間が経過した後に送風圧力と炉内圧力が等しくなったと判断して第1熱風弁11aを開く指令信号を出して所定時間を経過して第1熱風弁11aのリミットスイッチLsがONとなることにより第1熱風弁11aの全開を確認し、さらに第1送風弁2aを開かせて送風機1から冷たい空気が第1送風弁2aを通り第1熱風炉3の煉瓦に蓄えられた熱と熱交換し第1熱風弁11aを経由して高炉12へ熱風が供給される。
【0004】
他方、図10,11に示すように、第2熱風炉4は第1熱風炉3が燃焼から送風に切り替えが完了した信号が出された時点から第2熱風弁11bと第2送風弁2cを閉じて蓄熱のための準備に入る。
すなわち、図10に示すように第2排風弁8bを開く信号を出して弁の動作に要する時間をかせぎ、弁を一気に開くと、熱風炉に張られている蓄熱用の煉瓦が剥離するのを防止することから、小タイマーT2、T3のタイマー時間を取って送風完了して弁を閉めるように小さい弁開度の制御を行っている。
また、排風弁小タイマーT1のタイマー時間から排圧保持タイマーT2のタイマー時間の所定時間をかけて第2排風弁8bを開く。タイマーT1から弁を開くに要する時間としてタイマーT2の時間経過した後に、排風弁の開閉確認リミットスイッチLsが開の信号を出し、タイマーT3のタイマー時間経過してから排風が完了して大気圧となったと判断して第2煙道弁9bと第2ガ遮断弁7bを開き第2熱風炉4に燃焼ガスが供給されて燃焼が始まる。このように複数基配された熱風炉3〜5は順次蓄熱のための燃焼と送風の工程を繰り返すことにより高炉12へ連続して熱風を供給する。なお、前述の各制御系の信号の取り出し及び処理は前記演算処理装置34で行われる。
【0005】
【発明が解決しようとする課題】
従来の熱風炉の操業方法は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、熱風炉の切り替え時の送風準備(充風)と燃焼準備(排風)共に予め設定した時間をタイマー作動に基づいて行っていた。
本来送風準備完了とは先行送風している熱風炉と後行送風しようとする熱風炉の炉内圧力が一致した時である。
さらに、燃焼準備完了とは送風を行っている熱風炉の炉内圧力が大気圧と等しくなった時であるが、前記したように時間設定をしたタイマーで操業を行うと、炉内圧力で操業管理が行われないので、トラブルの少ない安全な操業を行う必要からどうしても長めの時間設定管理を行っている。
このために熱風炉の切替え時の充風と排風に時間が掛かり炉替え時間が長くなってしまう。この事により蓄熱のための燃焼時間も炉替え時間が長くなるほど短くなっていた。
【0006】
本発明は以上のような課題を解決するためになされたもので、特に熱風炉の炉替え時の炉替え終了を設定した時間から炉内圧力管理方法に変えて炉替え時間の短縮を図り燃焼時間を延長して熱風炉の蓄熱量を増やす熱風炉の操業方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による熱風炉の操業方法は、複数基配置された高炉へ接続された熱風炉の熱風を制御するようにした熱風炉の操業において、各熱風炉の炉内圧力を検出する第1〜3圧力センサーを設けると共に、さらに各熱風炉の弁を制御する開閉信号を用い、前記第〜3圧力センサーからの第1〜3圧力信号と、各熱風炉の弁を制御する開閉信号とを演算処理装置に取り込み比較演算を行い、その演算結果があらかじめ設定した設定条件と同等であれば熱風炉の炉切替えを行う方法であり、また、前記高炉に先行して熱風を送っている先行する熱風炉と後行している熱風炉において、次の(1)式で示される条件が成立し、且つ後行する熱風炉が休止から送風へ移行中の時、先行する熱風炉と後行する熱風炉の炉内圧力が等しいと判定して、後行する熱風炉の熱風弁を開く方法であり、また、
C−A≦10Kpa (1)
但し
A:後行する熱風炉の炉内圧力値
C:先行する熱風炉の炉内圧力値
前記先行する熱風炉の送風弁と熱風弁が閉まった状態でなおかつ排風弁が開いている時に先行する熱風炉の炉内圧力が10Kpa以下となった時に排風完了と判断して煙道弁を開く方法である。
【0008】
【発明の実施の形態】
以下、図面と共に本発明による熱風炉の操業方法の好適な実施の形態について詳細に説明する。
なお、送風機1、各送風弁2a,2c,2e、各充風弁2b,2d,2f、各熱風炉3,4,5、各遮断弁7a,7b,7c、各排風弁8a,8b,8c、各煙道弁9a,9b,9c、各熱風弁11a,11b,11c、ガス本管6、煙突10、高炉12、送風本管13の構成は図8で示した従来構成と同一で一部にセンサーが追加(図8に点線で示している)されたのみであるため、図8の構成をそのまま本発明の実施の形態に適用し、その説明は省略する。
【0009】
すなわち、前記複数基の熱風炉の炉内圧力を検出する圧力センサーとして第1熱風炉3には第1圧力センサー30、第2熱風炉4には第2圧力センサー31、第3熱風炉5には第3圧力センサー32がそれぞれ設けられ、各圧力センサー30,31,32からの炉内圧力信号である圧力値が演算処理装置34に取り込まれる。さらに、高炉へ熱風を送る送風本管13にも送風圧力を検出する第4圧力センサー33が設けられ第4圧力センサー33の圧力信号も演算処理装置34に取り込まれる。複数基の熱風炉3,4,5に設けられている送風弁2a,2c,2e、充風弁2b,2d,2f、遮断弁7a,7b,7c、排風弁8a,8b,8c、煙道弁9a,9b,9c、熱風弁11a,11b,11cの開閉状態を監視する図示しない周知のLs(リミットスイッチ)の開閉信号も前記演算処理装置34に取り込まれている。
【0010】
図1には本発明による前述の各信号を演算処理装置34に取り込む構成を示しているが、第1〜第3熱風弁11a〜11cの開閉を監視するために設けた図示しない開閉Ls(リミットスイッチ)からの開閉信号を演算処理装置34に取り込み、さらに前記第1〜第3熱風炉3〜5の炉内圧力値と高炉へ送風を送る送風圧力値を取り込む。
【0011】
前記演算処理装置34では、燃焼を休止して高炉12へ熱風を送る炉替え作業を行うための演算が行われる状況を図2で示している。
先行する熱風炉の炉内圧力値から後行する熱風炉の炉内圧力値を差引いた値が10Kpa以下で、後行する熱風炉の熱風送風を休止して送風に移行中であれば、充風が完了したと判断をし、各熱風炉の弁の開閉作動時間を取り込み、後行する熱風炉の熱風弁を開く信号を出す。
このとき、圧力のしきい値を10Kpaに設定した理由は高炉12への送風圧力が約400Kpaで送風を行い、熱風炉に設けられた制御弁はバタフライ弁で開閉作動させるには差圧が大きければ負荷が大きくて機械的に開閉動作ができないことと、送風圧力のおよそ3%以下であれば操業に支障を来たさないためである。
なお、充風完了後、所定の時間(タイマーによる)が経過した後に後行する熱風炉の熱風弁を開く指令を出すようにしているのは、前述した充風時の圧力△Pを10Kpaとしていることから安全を見越して圧力が下がる時間を確保してタイマーを入れている。
【0012】
次に、送風を休止して燃焼に移る工程の制御を図3に示す。
先行する熱風炉の送風弁が閉まり、さらに先行する熱風炉の熱風弁が閉まり、排風弁が開き、先行する熱風炉の炉内圧力が10Kpa以下となると排風完了の信号を出すが、ここでも安全を見越してタイマーによりある程度の待ち時間を設定し、予め設定した時間が経過した後に先行する熱風炉の煙道弁を開いて燃焼を始めて蓄熱を行う。
【0013】
次に、図2で示した制御信号の判断を図6のフローチャート(演算処理装置34で行う)で説明する。
先行する第1熱風炉3が現在送風末期で後行する第2熱風炉4は蓄熱末期で第1熱風炉3から第2熱風炉4へ切替え第2熱風炉4を送風炉とする際に、第1ステップ100で炉の切替え予告信号がオフからオンになった事を確認してオンであれば、第2ステップ101で第2熱風炉4の第2充風弁2d開の指令信号を出す。第3ステップ102では第2充風弁2dが開いたかどうかを確認する。第2充風弁2dが完全に開くと、第4ステップ103で、図2で示した演算が演算処理装置34で先行する第1熱風炉3の炉内圧力と後行する熱風炉4の炉内圧力の差が同じか又は10Kpa以下かを演算し、前記条件が成立すると充風完了と判断をして後行する熱風炉4の第2熱風弁11bを開いて高炉12へ熱風を送る送風炉となる。
【0014】
次に、図3で示した送風休止から燃焼蓄熱への炉替工程を図7で示す。
第1ステップ200で炉の切替え予告信号がオンからオフになったかを確認し、オフであれば、第2ステップ201で排風弁を開く指令をオンさせるが、排風弁を一気に開くと、熱風炉の蓄熱のために構築している煉瓦が剥離する恐れがあるため、一定の時間を設けて開けるタイマーT1をスタートさせる。
タイマーT1がスタートして設定したタイマー時間が経過したかを第3ステップ202で確認して、このタイマー時間が経過したら第4ステップ203で排風弁の駆動を停止する停止信号を出すと共に、排圧を保持する時間を確保するためにタイマーT2をスタートさせる。タイマーT2がこのタイマー時間経過したタイムアップを第5ステップ204で確認すると第6ステップ205で排風弁を開く指令を出して排風弁を開く。この排風弁を開き炉内の圧力が10Kpa以下になったかどうかを第7ステップ206で演算処理装置34で演算して10Kpa以下であれば第8ステップ207で排風完了したと判断をするが、確実な操業をするために数秒間保持時間を設定してその後先行する熱風炉の煙道弁を開く。
図4及び図5には従来の操業方法と本発明による操業方法の違いを示すが充風及び排風準備に要する時間が両者ともに短縮できた。
【0015】
【発明の効果】
本発明による熱風炉の操業方法は、以上のように構成されているため、次のような効果を奏する。
各熱風炉に設けた各圧力センサーの圧力値から得られた炉内圧力のプロセスデータで充風完了及び排風完了の信号を取出して用い、演算処理によって得た判定データに基づいて炉切替えを行うことができるため、従来のタイマーによる時間設定管理による操業時間を最小限に抑え、炉替えに掛かる時間を短縮でき、蓄熱燃焼時間を延長することが可能となり大幅に蓄熱量を増やす事が出来た。また、蓄熱量一定とするならば、時間延長しただけ投入する燃料のガスカロリーを低下させることにより、燃料原単位の低減が可能となる。
【図面の簡単な説明】
【図1】本発明による熱風炉の操業方法を説明する説明図である。
【図2】本発明の充風信号処理を説明する説明図である。
【図3】本発明の排風信号処理を説明する説明図である。
【図4】本発明と従来の充風に関する時間と圧力の関係を比較した特性図である。
【図5】本発明と従来の排風に関する時間と圧力の関係を比較した特性図である。
【図6】本発明の休止から送風(充風)を説明するフロー図である。
【図7】本発明の休止から燃焼(排風)を説明するフロー図である。
【図8】本発明と従来の熱風炉の構成を説明する構成図である。
【図9】本発明及び従来の炉切替え状態の概略を示す説明図である。
【図10】従来の時間設定をした操業を示す排風弁の特性図である。
【図11】従来の時間設定をした操業を示す充風弁の特性図である。
【符号の説明】
1 送風機
2a,2c,2e 送風弁
2b,2d,2f 充風弁
3 第1熱風炉
4 第2熱風炉
5 第3熱風炉
6 ガス本管
7a,7b,7c ガス遮断弁
8a,8b,8c 排風弁
9a,9b,9c 煙道弁
10 煙突
11a,11b,11c 熱風弁
12 高炉
13 送風本管
30,31,32 第1〜第3圧力センサー
33 第4圧力センサー
34 演算処理装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a hot stove, and more particularly, to a novel improvement for increasing the heat storage amount of the hot stove by increasing the combustion time by speeding up the exhaust pressure and the charging time when the hot stove is switched.
[0002]
[Prior art]
In general, the method shown in FIGS. 10 and 11 is adopted as a method for operating a hot blast furnace for sending hot air to a blast furnace, and the configuration of the hot blast furnace is configured as shown in FIG.
That is, what is indicated by reference numeral 1 in FIG. 8 is a blower, and this blower 1 is connected to the first hot stove 3 via the first blower valve 2a and the first air-blowing valve 2b, and the second blower valve 2c. The second hot air furnace 4 is connected to the second hot air furnace 4 and the third hot air furnace 2 is connected to the third hot air furnace 5 via the third air blowing valve 2e and the third air blowing valve 2f.
First to third gas shutoff valves 7a to 7c are connected to the first to third hot stove 3 to 5 from a gas main pipe 6 that guides fuel gas, and first to third flue valves 9a to 9a are connected. It is connected to the chimney 10 via 9c, and further connected to the blast furnace 12 via the blower main pipe 13 via the first to third hot air valves 11a to 11c. The first to third flue valves 9a to 9c are connected in parallel to the first to third exhaust valves 8a to 8c.
In this case, as an example, the first hot stove 3 is used as a combustion furnace to store heat, the second hot stove 4 that has been stored so far is used as a blower furnace, and the third hot stove 5 is used as a combustion furnace. In this case, for example, it is assumed that the amount of heat is reduced as the blast furnace of the second hot stove 4, the first hot stove 3 is sufficiently stored, and the second hot stove 4 is switched from the blast furnace as the combustion furnace. The switching operation is performed so that the 1 hot stove 3 is used as the blower from the combustion furnace, and the third hot stove 5 is continued as the combustion furnace. At the present time, the first hot stove 3 operates as a combustion furnace, so that the first hot stove 3 burns gas and stores heat while the first gas shut-off valve 7a and the first flue valve 9a are open. However, when the brick in the heat storage chamber in the furnace reaches a predetermined temperature, a signal indicating that the heat storage is over is output from the arithmetic processing unit 34, and a switching operation signal is output to start switching.
That is, as shown in FIG. 8, first, the first gas shut-off valve 7a is closed in order to shut off the combustion, and then the first flue valve 9a is closed.
As shown in FIG. 9, the basic operation pattern of the hot stove operation is a furnace change cycle in which the air blowing time is constant. When the No. 1 hot stove 3 finishes burning, a furnace change signal is issued, and at the same time, the No. 2 hot stove 4 is instructed to end the blowing, but only after the No. 1 hot stove 3 is changed. A furnace change signal for the No. 2 hot stove 4 is issued, and the operation starts from now on. Note that the furnace switching pattern of FIG. 9 is the same as that of the conventional and the present invention.
[0003]
When the first flue valve 9a is closed, the pressure in the furnace of the first hot stove 3 becomes equal to the atmospheric pressure, and Ls (limit switch) that monitors the opening / closing of the first charging valve 2b as preparation for blowing air shown in FIG. ) Is opened from the closed state, a signal for opening the first charge valve 2b is output from the arithmetic processing unit 34, and the first charge valve 2b is opened and Ls is opened. In addition, after the time T6 has elapsed in anticipation of safety, it is determined that the blowing pressure is equal to the pressure in the furnace, and a command signal for opening the first hot air valve 11a is issued. After a predetermined time has passed, the limit of the first hot air valve 11a is reached. When the switch Ls is turned on, it is confirmed that the first hot air valve 11a is fully opened, and further, the first blower valve 2a is opened, and cold air from the blower 1 passes through the first blower valve 2a to the bricks of the first hot stove 3 Heat exchange with stored heat 1st hot air valve 1 Hot air to the blast furnace 12 is supplied via a.
[0004]
On the other hand, as shown in FIGS. 10 and 11, the second hot air furnace 4 is connected to the second hot air valve 11b and the second air valve 2c from the time when a signal indicating that the first hot air furnace 3 has been switched from combustion to air blowing is issued. Close and get ready for heat storage.
That is, as shown in FIG. 10, a signal for opening the second exhaust valve 8b is issued to allow time required for the operation of the valve, and when the valve is opened all at once, the heat storage bricks stretched on the hot stove are separated. Therefore, the small valve opening is controlled so that the air blow is completed and the valve is closed by taking the timer times of the small timers T2 and T3.
Further, the second exhaust valve 8b is opened over a predetermined time of the timer time of the exhaust pressure holding timer T2 from the timer time of the exhaust air valve small timer T1. After the timer T2 has elapsed as the time required to open the valve from the timer T1, the exhaust valve open / close confirmation limit switch Ls outputs an open signal, and after the timer time of the timer T3 has elapsed, exhausting is complete. It is determined that the pressure has been reached, the second flue valve 9b and the second gas shut-off valve 7b are opened, and combustion gas is supplied to the second hot stove 4 to start combustion. The plurality of hot blast furnaces 3 to 5 thus supplied successively supply hot blast to the blast furnace 12 by sequentially repeating combustion and air blowing processes for storing heat. It should be noted that the extraction and processing of the signals of each control system described above are performed by the arithmetic processing unit 34.
[0005]
[Problems to be solved by the invention]
Since the conventional operation method of a hot stove was configured as described above, the following problems existed.
In other words, the pre-set time for both the air blow preparation (charging) and the combustion preparation (exhaust air) at the time of switching the hot air furnace is performed based on the timer operation.
Originally, the preparation for blowing is completed when the pressure in the furnace of the hot stove that is blowing ahead coincides with the pressure in the hot stove that tries to blow behind.
Furthermore, the completion of combustion preparation is when the furnace pressure of the hot stove that is blowing air is equal to the atmospheric pressure, but if the operation is performed with the timer set as described above, the operation is performed at the furnace pressure. Since management is not performed, a long time setting management is inevitably performed because it is necessary to perform safe operation with less trouble.
For this reason, it takes time to charge and exhaust the hot blast furnace at the time of switching, and the furnace replacement time becomes long. As a result, the combustion time for heat storage was shorter as the furnace change time was longer.
[0006]
The present invention has been made to solve the above-described problems. In particular, the time for changing the furnace at the time of changing the furnace of the hot blast furnace is changed to a pressure management method in the furnace to reduce the time for changing the furnace. An object of the present invention is to provide a method for operating a hot stove to increase the heat storage amount of the hot stove by extending the time.
[0007]
[Means for Solving the Problems]
The operation method of the hot stove according to the present invention is a first to first method for detecting the pressure in the furnace of each hot stove in the operation of the hot stove to control the hot air of the hot stove connected to a plurality of blast furnaces arranged. provided with a pressure sensor, using the switching signal for controlling the valve of each hot air furnace is al, and first to third pressure signal from the first one to three pressure sensors, a closing signal for controlling the valve of each hot air oven Is a method for performing a comparison operation and performing a comparison operation, and switching the hot blast furnace if the calculation result is equivalent to a preset setting condition, and also sending a hot air prior to the blast furnace. in hot air oven that is trailing the hot air oven to, and conditions GaNaru elevational represented by the following formula (1), when the trailing hot air furnace is in transition to the blower from the rest and, preceding a hot air oven and after Judging that the furnace pressure of the hot stove is equal, Open the hot air valve of the hot air furnace,
C-A ≦ 10 Kpa (1) Formula A: In-furnace pressure value of the following hot-air stove C: In-furnace pressure value of the preceding hot-air stove In a state where the blower valve and the hot-air valve of the preceding hot stove are closed This is a method in which the flue valve is opened when it is determined that the exhaust air has been exhausted when the in-furnace pressure of the preceding hot air furnace becomes 10 Kpa or less when the exhaust air valve is open.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a method for operating a hot stove according to the present invention will be described in detail with reference to the drawings.
In addition, the blower 1, each blower valve 2a, 2c, 2e, each charging valve 2b, 2d, 2f, each hot air furnace 3, 4, 5, each shut-off valve 7a, 7b, 7c, each exhaust valve 8a, 8b, 8c, each flue valve 9a, 9b, 9c, each hot air valve 11a, 11b, 11c, the gas main pipe 6, the chimney 10, the blast furnace 12, and the blower main pipe 13 are the same as the conventional structure shown in FIG. Since only the sensor is added to the part (indicated by a dotted line in FIG. 8), the configuration of FIG. 8 is applied to the embodiment of the present invention as it is, and the description thereof is omitted.
[0009]
That is, as the pressure sensors for detecting the pressures in the furnaces of the plurality of hot stoves, the first hot stove 3 has the first pressure sensor 30, the second hot stove 4 has the second pressure sensor 31, and the third hot stove 5 has A third pressure sensor 32 is provided, and a pressure value, which is a furnace pressure signal from each pressure sensor 30, 31, 32, is taken into the arithmetic processing unit 34. Further, a fourth pressure sensor 33 that detects the blowing pressure is also provided in the blowing main pipe 13 that sends hot air to the blast furnace, and the pressure signal of the fourth pressure sensor 33 is also taken into the arithmetic processing unit 34. Blow valves 2a, 2c, 2e, charge valves 2b, 2d, 2f, shut-off valves 7a, 7b, 7c, exhaust valves 8a, 8b, 8c, smoke provided in a plurality of hot air furnaces 3, 4, 5 An open / close signal of a well-known Ls (limit switch) (not shown) for monitoring the open / close state of the road valves 9a, 9b, 9c and the hot air valves 11a, 11b, 11c is also taken into the arithmetic processing unit 34.
[0010]
FIG. 1 shows a configuration in which the above-described signals according to the present invention are taken into the arithmetic processing unit 34, but an unillustrated opening / closing Ls (limit) provided for monitoring the opening / closing of the first to third hot air valves 11a to 11c. An open / close signal from the switch) is taken into the arithmetic processing unit 34, and further, the pressure values in the furnaces of the first to third hot stove furnaces 3 to 5 and the air pressure value for sending air to the blast furnace are taken in.
[0011]
FIG. 2 shows a situation where the arithmetic processing unit 34 performs an operation for performing a furnace replacement operation for stopping combustion and sending hot air to the blast furnace 12.
If the value obtained by subtracting the in-furnace pressure value of the subsequent hot stove from the in-furnace pressure value of the preceding hot stove is 10 Kpa or less, It is judged that the wind has been completed, and the opening / closing operation time of each hot stove valve is taken in, and a signal for opening the hot stove valve of the subsequent hot stove is issued.
At this time, the reason why the pressure threshold is set to 10 Kpa is that the blowing pressure to the blast furnace 12 is about 400 Kpa, and the control valve provided in the hot stove has a large differential pressure to open and close with the butterfly valve. This is because the load is large and cannot be mechanically opened and closed, and if it is about 3% or less of the blowing pressure, the operation is not hindered.
Note that the command to open the hot air valve of the subsequent hot stove after a predetermined time (by the timer) has elapsed after completion of the air charging is that the pressure ΔP at the time of air charging is 10 Kpa. In order to ensure safety, a timer is set to ensure time for pressure to drop.
[0012]
Next, FIG. 3 shows the control of the process of stopping the blowing and moving to combustion.
The blower valve of the preceding hot stove is closed, the hot air valve of the preceding hot stove is closed, the exhaust air valve is opened, and when the in-furnace pressure of the preceding hot stove is 10 Kpa or less, a signal for exhausting air is output. However, in anticipation of safety, a certain waiting time is set by a timer, and after the preset time has elapsed, the flue valve of the preceding hot stove furnace is opened to start combustion and perform heat storage.
[0013]
Next, the determination of the control signal shown in FIG. 2 will be described with reference to the flowchart of FIG. 6 (performed by the arithmetic processing unit 34).
When the preceding first hot stove 3 is currently switched to the second hot stove 4 at the end of the ventilation, the second hot stove 4 is switched from the first hot stove 3 to the second hot stove 4 at the end of the heat storage. If it is confirmed that the furnace switching notice signal has been turned on from OFF in the first step 100, a command signal for opening the second charging valve 2d of the second hot stove 4 is issued in the second step 101. . In the third step 102, it is confirmed whether or not the second charging valve 2d is opened. When the second charging valve 2d is fully opened, in the fourth step 103, the operation shown in FIG. 2 is preceded by the arithmetic processing unit 34 in the furnace pressure of the first hot air furnace 3 and the furnace of the hot air furnace 4 that follows. Calculate whether the difference in internal pressure is the same or less than 10 Kpa, and if the above condition is met, determine that charging is complete and open the second hot air valve 11b of the subsequent hot air furnace 4 to send hot air to the blast furnace 12 Become a wind furnace.
[0014]
Next, the furnace replacement process from the air suspension to the combustion heat storage shown in FIG. 3 is shown in FIG.
In the first step 200, it is confirmed whether the furnace switching notice signal has been turned off from on. If it is off, a command to open the exhaust valve is turned on in the second step 201, but when the exhaust valve is opened at once, Since there is a possibility that the brick constructed for the heat storage of the hot stove may be peeled off, the timer T1 that is opened after a certain period of time is started.
In the third step 202, it is confirmed whether or not the set timer time has elapsed since the timer T1 is started. When this timer time has elapsed, a stop signal for stopping the driving of the exhaust valve is output in the fourth step 203, and the exhaust time is also discharged. The timer T2 is started in order to secure time for holding the pressure. When the timer T2 confirms that the timer has elapsed in the fifth step 204, the sixth step 205 issues a command to open the exhaust valve and opens the exhaust valve. The exhaust valve is opened to calculate whether or not the pressure in the furnace has become 10 Kpa or less by the arithmetic processing unit 34 in the seventh step 206, and if it is 10 Kpa or less, it is determined that the exhaust has been completed in the eighth step 207. In order to ensure reliable operation, set the holding time for a few seconds and then open the preceding hot-blast furnace flue valve.
4 and 5 show the difference between the conventional operation method and the operation method according to the present invention, both of the time required for charging and exhausting can be shortened.
[0015]
【The invention's effect】
Since the operation method of the hot stove according to the present invention is configured as described above, the following effects can be obtained.
Using taken out a signal charge and wind completion and air exhaust complete the process pressure data values or we obtained furnace pressure force of the pressure sensor provided on each hot air oven, switch the furnace on the basis of the determination data obtained by the processing Therefore, it is possible to minimize the operation time by the time setting management by the conventional timer, shorten the time required for the furnace change, extend the heat storage combustion time, and greatly increase the heat storage amount. done. Further, if the heat storage amount is constant, the fuel consumption rate can be reduced by reducing the gas calorie of the fuel to be input by extending the time.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view illustrating a method for operating a hot stove according to the present invention.
FIG. 2 is an explanatory diagram for explaining a charging signal processing of the present invention.
FIG. 3 is an explanatory diagram for explaining the exhaust signal processing of the present invention.
FIG. 4 is a characteristic diagram comparing the relationship between time and pressure related to the present invention and the conventional air charging.
FIG. 5 is a characteristic diagram comparing the relationship between time and pressure relating to the present invention and conventional exhaust air.
FIG. 6 is a flowchart for explaining air blowing (charging) from a pause according to the present invention.
FIG. 7 is a flowchart for explaining combustion (exhaust air) from a pause according to the present invention.
FIG. 8 is a configuration diagram illustrating the configuration of the present invention and a conventional hot stove.
FIG. 9 is an explanatory diagram showing an outline of the present invention and a conventional furnace switching state.
FIG. 10 is a characteristic diagram of an exhaust valve showing an operation with a conventional time setting.
FIG. 11 is a characteristic diagram of a rechargeable valve showing an operation with a conventional time setting.
[Explanation of symbols]
1 Blowers 2a, 2c, 2e Blower valves 2b, 2d, 2f Charging valve 3 First hot stove 4 Second hot stove 5 Third hot stove 6 Gas main pipes 7a, 7b, 7c Gas shut-off valves 8a, 8b, 8c Wind valve 9a, 9b, 9c Flue valve 10 Chimney 11a, 11b, 11c Hot air valve 12 Blast furnace 13 Blower main body 30, 31, 32 First to third pressure sensor 33 Fourth pressure sensor 34 Arithmetic processing unit

Claims (3)

複数基配置された高炉へ接続された熱風炉の熱風を制御するようにした熱風炉の操業において、各熱風炉(3〜5)の炉内圧力を検出する第1〜3圧力センサー(30〜32)を設けると共に、さらに各熱風炉(3〜5)の弁を制御する開閉信号を用い、前記第〜3圧力センサー(30〜32)からの第1〜3圧力信号と、各熱風炉(3〜5)の弁を制御する開閉信号とを演算処理装置(34)に取り込み比較演算を行い、その演算結果があらかじめ設定した設定条件と同等であれば熱風炉の炉切替えを行うことを特徴とする熱風炉の操業方法。In operation of a hot stove controlled to control hot air of a hot stove connected to a plurality of blast furnaces arranged, first to third pressure sensors (30 to 30) that detect the pressure in each hot stove (3 to 5) 32) provided with a, with a switching signal for controlling the valve of each hot-air furnace (3-5) to the al, the first to third pressure signal from the first one to three pressure sensors (30-32), each The open / close signal for controlling the valves of the hot stove (3-5) is taken into the arithmetic processing unit (34) and compared, and if the result is the same as the preset condition, the hot stove is switched. A method of operating a hot stove. 前記高炉(12)に先行して熱風を送っている先行する熱風炉と後行している熱風炉において、次の(1)式で示される条件が成立し、且つ後行する熱風炉が休止から送風へ移行中の時、先行する熱風炉と後行する熱風炉の炉内圧力が等しいと判定して、後行する熱風炉の熱風弁を開くことを特徴とする請求項1記載の熱風炉の操業方法。
C−A≦10Kpa (1)
但し
A:後行する熱風炉の炉内圧力値
C:先行する熱風炉の炉内圧力値
In hot air oven that is trailing with hot air oven preceding is sending hot air prior to the blast furnace (12), a hot air oven to condition GaNaru elevational represented by the following formula (1), is trailing and has The hot air valve of the subsequent hot stove is opened when it is determined that the in-furnace pressure of the preceding hot stove and the subsequent hot stove are equal when the transition from the pause to the blow is in progress. How to operate the hot stove.
C−A ≦ 10 Kpa (1) Formula where A: pressure value in the furnace of the subsequent hot stove C: pressure value in the furnace of the preceding hot stove
前記先行する熱風炉(3)の送風弁(2a)と熱風弁(11a)が閉まった状態でなおかつ排風弁(8a)が開いている時に先行する熱風炉の炉内圧力が10Kpa以下となった時に排風完了と判断して煙道弁(9a)を開くことを特徴とする請求項1又は2記載の熱風炉の操業方法。  When the blast valve (2a) and the hot blast valve (11a) of the preceding hot stove (3) are closed and the exhaust wind valve (8a) is open, the in-furnace pressure of the preceding hot stove becomes 10 Kpa or less. 3. A method for operating a hot stove according to claim 1 or 2, wherein the flue valve (9a) is opened when it is determined that exhaust air has been exhausted.
JP00479798A 1998-01-13 1998-01-13 Hot stove operation method Expired - Fee Related JP3962140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00479798A JP3962140B2 (en) 1998-01-13 1998-01-13 Hot stove operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00479798A JP3962140B2 (en) 1998-01-13 1998-01-13 Hot stove operation method

Publications (2)

Publication Number Publication Date
JPH11199910A JPH11199910A (en) 1999-07-27
JP3962140B2 true JP3962140B2 (en) 2007-08-22

Family

ID=11593775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00479798A Expired - Fee Related JP3962140B2 (en) 1998-01-13 1998-01-13 Hot stove operation method

Country Status (1)

Country Link
JP (1) JP3962140B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871657B (en) * 2017-03-29 2019-03-22 清华大学 More recirculation furnace coordinated control systems of one kind and method
CN114990271B (en) * 2022-06-29 2023-07-25 马鞍山钢铁股份有限公司 Furnace changing stress linear adjusting method for blast furnace hot air pipe system
CN115044721B (en) * 2022-06-29 2023-07-25 马鞍山钢铁股份有限公司 Blast furnace hot air pipe system stress detection and furnace replacement stress linear control method
CN115198048B (en) * 2022-06-29 2023-07-25 马鞍山钢铁股份有限公司 Blast furnace hot air system capable of realizing furnace replacement stress monitoring
CN115287386B (en) * 2022-06-30 2023-09-01 山东省冶金设计院股份有限公司 Pressure equalizing system and method for full recovery of waste gas of hot blast stove
CN115181827B (en) * 2022-07-13 2024-02-27 中冶京诚工程技术有限公司 Hot-blast stove charging and discharging pressure system and charging and discharging pressure control method
CN115094178B (en) * 2022-07-13 2024-02-09 中冶京诚工程技术有限公司 Hot blast stove pressurizing mechanism, collaborative furnace changing system and pressure stabilizing furnace changing method
CN118548519A (en) * 2024-07-23 2024-08-27 杭州老板电器股份有限公司 Control method of central range hood and central range hood

Also Published As

Publication number Publication date
JPH11199910A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP3962140B2 (en) Hot stove operation method
JPH10245611A (en) Hot stove control method
CN114317860A (en) Combustion control method of heat accumulating type hot blast stove
JP3267140B2 (en) Heating furnace, combustion control method thereof, and combustion control device
JP2936449B2 (en) Furnace operation method of heating furnace provided with regenerative alternating combustion burner system
JP2885072B2 (en) Heating furnace control method
JP2715489B2 (en) Reburning device for particulate trap
JP3235700B2 (en) Waste gas temperature control device of regenerative burner device
CN114608331B (en) Heat preservation and baking device and heat preservation and baking method
JPH0726135B2 (en) Hot stove temperature control device
JPH09217104A (en) Operation method for hot stove
JPS5935403B2 (en) Hot air supply method
JP3733803B2 (en) Furnace pressure control method for rotary hearth furnace
JP4144774B2 (en) Boiler that performs purge control based on the measured value of air flow
JP3601578B2 (en) Method to control black smoke generation from chimney of coke oven
JP3752948B2 (en) Blast furnace blowing control method
JP4162322B2 (en) Water heater control device
JP4082829B2 (en) Combustion device
JPH10185180A (en) Temperature control method for regenerative burner combustion system
JP3425705B2 (en) Method of controlling regenerative burner group
JP3677797B2 (en) Heating chamber pressure control device for heating device
CN114234635A (en) A regenerative smelting furnace furnace pressure automatic control device and method
JPH09202908A (en) How to keep the hot stove
JP3007275B2 (en) NOx control method for regenerative combustion burner system
JPH09243058A (en) Combustion control apparatus for boiler

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees