[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3957308B2 - Lead-free copper alloy for castings with excellent pressure resistance - Google Patents

Lead-free copper alloy for castings with excellent pressure resistance Download PDF

Info

Publication number
JP3957308B2
JP3957308B2 JP2004344541A JP2004344541A JP3957308B2 JP 3957308 B2 JP3957308 B2 JP 3957308B2 JP 2004344541 A JP2004344541 A JP 2004344541A JP 2004344541 A JP2004344541 A JP 2004344541A JP 3957308 B2 JP3957308 B2 JP 3957308B2
Authority
JP
Japan
Prior art keywords
copper alloy
lead
content
pressure resistance
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004344541A
Other languages
Japanese (ja)
Other versions
JP2006152373A (en
Inventor
武 小林
徹 丸山
廣志 西内
弘幸 阿部
良蔵 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiga Prefectural Government.
Shiga Valve Cooperative
Original Assignee
Shiga Prefectural Government.
Shiga Valve Cooperative
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiga Prefectural Government. , Shiga Valve Cooperative filed Critical Shiga Prefectural Government.
Priority to JP2004344541A priority Critical patent/JP3957308B2/en
Publication of JP2006152373A publication Critical patent/JP2006152373A/en
Application granted granted Critical
Publication of JP3957308B2 publication Critical patent/JP3957308B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、耐圧性に優れた鋳物用銅合金に関するものであり、殊に人体に有害な鉛を含有させずとも優れた耐圧性および被削性を発揮すると共に、強度等の機械的特性にも優れた鋳物用無鉛銅合金に関するものである。   The present invention relates to a copper alloy for castings having excellent pressure resistance, and in particular exhibits excellent pressure resistance and machinability without containing lead harmful to the human body, and mechanical properties such as strength. Also relates to an excellent lead-free copper alloy for castings.

銅合金は、導電性や熱伝導性に優れていることから、従来から各種電気部品等の素材として広く使用されている。また銅合金のうち鋳物用銅合金については、JIS H5120に各種規定されており、バルブ胴体、給水栓、軸受等、各種用途で使用されることが予定されている。   Copper alloys have been widely used as materials for various electric parts and the like since they are excellent in electrical conductivity and thermal conductivity. Among the copper alloys, various copper alloys for casting are defined in JIS H5120, and are planned to be used for various purposes such as valve bodies, water taps, and bearings.

ところで、上下水道の水栓金具や一般配管用の接水栓には、鋳物用銅合金が一般に使用されており、特に上記JIS H5120に規定されているもののうち、CAC203合金等の黄銅系(Cu−Zn系)の銅合金やCAC403,406等の青銅系(Cu−Sn−Zn系、Cu−Sn−Pb−Zn系)等がその素材として知られている。   By the way, a copper alloy for casting is generally used for water faucet fittings for general water supply and sewerage and water pipes for general piping, and among those specified in the above JIS H5120, a brass system such as CAC203 alloy (Cu -Zn-based) copper alloys and bronze-based (Cu-Sn-Zn-based, Cu-Sn-Pb-Zn-based) such as CAC403 and 406 are known as materials.

上記の様な水栓金具や接水栓等に使用される場合には、耐圧性、耐磨耗性、鋳造性、機械的特性(強度や硬さ)の他、被削性が良好であることも要求されるのであるが、こうした被削性を向上させる手段として、鉛(Pb)を含有させることが良く知られており、上記鋳物用銅合金のうちCAC406は鉛を4〜6%程度含有させることによって被削性を向上させたものである。また鉛を含有させることは、銅合金の耐圧性を向上させる上でも有用であることが知られている(例えば、非特許文献1)。   When used in faucets and water faucets as described above, machinability is good in addition to pressure resistance, wear resistance, castability and mechanical properties (strength and hardness). However, it is well known that lead (Pb) is contained as a means for improving the machinability, and among the above copper alloys for casting, CAC406 contains about 4 to 6% of lead. By incorporating it, the machinability is improved. Moreover, it is known that inclusion of lead is also useful in improving the pressure resistance of a copper alloy (for example, Non-Patent Document 1).

しかしながら、鉛を含有させた鋳物用銅合金によって水栓金具や給水栓等を製作すると、その中に含まれる有害な鉛が飲料水中に溶出して水質悪化を招き、人体に悪影響を及ぼすことが指摘されている。特に、我が国においては、平成15年度から鉛の水質基準が従来の1/5に強化され、それにともなって水栓金具や給水栓等に使用される鋳物用銅合金における鉛の規制が厳しくなってきている。   However, if a faucet fitting or water faucet is manufactured using a copper alloy for casting containing lead, harmful lead contained in the faucet elutes in the drinking water, causing water quality deterioration and adversely affecting the human body. It has been pointed out. In particular, in Japan, the water quality standard for lead has been strengthened to 1/5 of the conventional level since fiscal 2003, and as a result, the regulation of lead in copper alloys for castings used for faucets and faucets has become stricter. ing.

こうしたことから、鉛を積極的に含有させずに被削性を向上させる鋳物用銅合金がこれまでにも様々提案されている。切削性改善のために、鉛の代替としてBiやSeを添加した銅合金が欧米を中心に開発され、CDA(Copper Development Association)規格として登録されている(例えば、非特許文献2)。また、BiとともにSbを含有することも知られている(前記非特許文献1)。   For these reasons, various copper alloys for casting that improve the machinability without actively containing lead have been proposed. In order to improve machinability, a copper alloy to which Bi or Se is added as an alternative to lead has been developed mainly in Europe and the United States, and is registered as a CDA (Copper Development Association) standard (for example, Non-Patent Document 2). It is also known to contain Sb together with Bi (Non-Patent Document 1).

これらの銅合金は、快削性元素として鉛の代わりにBi、Se、Sbを含有させるものであり、こうした技術の開発によって鉛による害を防止しつつ比較的良好な被削性を維持できたのである。   These copper alloys contain Bi, Se, and Sb as free-cutting elements instead of lead, and the development of such technology has been able to maintain relatively good machinability while preventing harm from lead. It is.

しかしながら、これまで開発されている無鉛銅合金では、鋳造欠陥である「鋳巣」が発生しやすくなっており、これが原因して従来の規格銅合金よりも耐圧性が劣化することがあり、更なる改善が望まれているのが実情である。また、BiやSeは、埋蔵量の少ないレアメタルであるので、原料や資源利用の点からも問題を残している。
「まてりあ」、第43巻、第8号(2004)、第647〜650頁 「素形材」、2003.8月、(財)素形材センター発行、第7〜第14頁
However, lead-free copper alloys that have been developed so far are more prone to casting defects, which are likely to deteriorate the pressure resistance of conventional standard copper alloys. The actual situation is that improvement is desired. In addition, Bi and Se are rare metals with a small reserve amount, so that problems remain in terms of raw materials and resource utilization.
“Materia”, Vol. 43, No. 8 (2004), pp. 647-650 “Shape Material”, August 2003, Issued by the Shape Materials Center, pages 7-14

本発明はこうした状況の下になされたものであって、その目的は、水質悪化を招く鉛を含有させずとも優れた耐圧性および被削性を発揮すると共に、強度、伸び等の機械的特性にも優れ、水栓金具や接水栓等の素材として有用な鋳物用無鉛銅合金を提供することにある。   The present invention has been made under such circumstances, and its purpose is to exhibit excellent pressure resistance and machinability without containing lead that causes deterioration of water quality, and mechanical properties such as strength and elongation. Another object of the present invention is to provide a lead-free copper alloy for castings that is excellent as a material for faucets and water faucets.

上記の目的を達成し得た本発明の鋳物用無鉛銅合金とは、S:0.05〜1.5%(質量%の意味、以下同じ)、Sn:10%以下(0%を含まない)およびZn:10%以下(0%を含まない)を夫々含有すると共に、Fe:0.5%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)を含有し、残部がCuおよび不可避不純物からなり、且つ硫化物が分散されたものである点に要旨を有するものである。   The lead-free copper alloy for castings of the present invention that can achieve the above object is S: 0.05 to 1.5% (meaning of mass%, the same shall apply hereinafter), Sn: 10% or less (not including 0%) ) And Zn: not more than 10% (not including 0%), respectively, Fe: not more than 0.5% (not including 0%) and / or Ni: not more than 3.0% (not including 0%) ), The remainder is made of Cu and inevitable impurities, and the sulfide is dispersed.

本発明の鋳物用無鉛銅合金においては、S含有量は0.05〜0.6%程度であることが好ましい。   In the lead-free copper alloy for castings of the present invention, the S content is preferably about 0.05 to 0.6%.

本発明の銅合金では、Sと共にFeやNiを含有させることによって銅マトリクス内に硫化物を効果的に分散させることができ、水質悪化を招く鉛を含有させずとも優れた耐圧性および被削性を発揮すると共に、強度等の機械的特性にも優れた鋳物用無鉛銅合金が実現できた。この銅合金は水栓金具や接水栓等の素材として有用である。また、本発明でPbの代替となる元素には、資源の豊富なSやFeを基本的に用いるものであるので、資源問題も招くことはない。   In the copper alloy of the present invention, by containing Fe and Ni together with S, sulfide can be effectively dispersed in the copper matrix, and excellent pressure resistance and machinability can be achieved without containing lead that causes deterioration of water quality. As a result, a lead-free copper alloy for castings with excellent mechanical properties such as strength was realized. This copper alloy is useful as a material for water faucets and water faucets. In addition, since the element that substitutes for Pb in the present invention basically uses S or Fe, which has abundant resources, there is no resource problem.

本発明者らは、鉛を含有させずとも優れた耐圧性および被削性を発揮する鋳物用銅合金を実現するべく、様々な角度から検討した。その結果、硫黄(S)を必須成分として含有させると共に、FeやNiの含有量を適切な範囲に調整して添加し、且つ金属組織中に硫化物が形成・分散した銅合金では、上記目的が見事に達成されることを見出し、本発明を完成した。   The present inventors have studied from various angles to realize a copper alloy for castings that exhibits excellent pressure resistance and machinability without containing lead. As a result, in addition to containing sulfur (S) as an essential component, the content of Fe and Ni is adjusted to an appropriate range and added, and in the copper alloy in which sulfide is formed and dispersed in the metal structure, Was successfully achieved and the present invention was completed.

鉄鋼材料の分野においては、Sは被削性向上元素であることは知られている。しかしながら、銅合金の場合には、Sは被削性元素として採用されていない。これは、溶解させた銅中ではSは早期に硫化物を形成し、溶解した銅の表面に浮上・分離してしまい、硫化物を銅マトリクス中に分散させること自体が困難であると考えられていた。   It is known that S is a machinability improving element in the field of steel materials. However, in the case of a copper alloy, S is not employed as a machinable element. This is because, in dissolved copper, S forms sulfides at an early stage, floats and separates on the surface of the dissolved copper, and it is considered difficult to disperse sulfides in the copper matrix itself. It was.

本発明者らは、硫化物を銅マトリクス中に効果的に分散できたら良好な被削性が実現できるのではないかとの着想の下で更に検討してきた。その結果、所定量のFeやNiを共存させた状態では、Sの活量が抑えられ、硫化物が比較的低温となった段階(即ち、銅の凝固完了直前の段階)で形成されることによって、銅マトリクス中に硫化物を効果的に分散できることを見出したのである。また、硫化物を分散させた銅合金では、鋳巣の発生も抑えられて、良好な耐圧性が発揮され、機械的特性も良好に維持できたのである。   The present inventors have further studied under the idea that good machinability can be realized if the sulfide can be effectively dispersed in the copper matrix. As a result, in the state where a predetermined amount of Fe or Ni coexists, the activity of S is suppressed, and the sulfide is formed at a stage where the temperature is relatively low (that is, a stage immediately before completion of solidification of copper). Thus, it has been found that sulfide can be effectively dispersed in the copper matrix. In addition, in the copper alloy in which sulfide is dispersed, the occurrence of a cast hole is suppressed, good pressure resistance is exhibited, and the mechanical characteristics can be maintained well.

本発明の鋳物用銅合金によって、上記のような効果が得られる理由についてはその全てを解明し得た訳ではないが、おそらく次の様に考えることができた。   Although not all of the reasons why the above-described effects can be obtained by the copper alloy for castings of the present invention can be considered as follows.

鋳物用銅合金が凝固する際には、デンドライト(樹枝状晶)が形成され、このデンドライト間に微小な空隙(気泡)を残しながら凝固が完了し(最終凝固領域)、それが鋳巣となることは知られている。本発明の銅合金では、Sと共にFeやNiを共存させることによって、比較的低温まで硫化物の形成が抑えられ、デンドライトが形成される凝固完了直前でも硫化物は銅との共晶融液の状態になっている。そして、鋳巣の原因となる気泡中にこの共晶融液が流れ込んで硫化物を形成することになる。そして、その結果として鋳巣の発生を抑制して良好な耐圧性を発揮すると共に、強度等の機械的特性が向上するものと考えられた。また、硫化物がデンドライト間に共晶状若しくは微細に分散することによって、該硫化物が切削屑を分断するチップブレーカの役割を発揮すると共に(切り屑が細かくなり)、硫化物自体が固体潤滑剤として寄与することによって、被削性が向上するものと考えられた。   When the copper alloy for castings solidifies, dendrites (dendrites) are formed, and solidification is completed while leaving minute voids (bubbles) between the dendrites (final solidification region), which becomes the casting cavity. It is known. In the copper alloy of the present invention, the formation of sulfide is suppressed to a relatively low temperature by coexisting Fe and Ni together with S, and the sulfide is an eutectic melt with copper even immediately before completion of solidification to form dendrites. It is in a state. Then, this eutectic melt flows into the bubbles that cause the cast hole to form sulfides. As a result, it was considered that the occurrence of a cast hole was suppressed and good pressure resistance was exhibited, and mechanical properties such as strength were improved. In addition, when sulfides are eutectic or finely dispersed between dendrites, the sulfides function as a chip breaker that breaks up cutting chips (chips become finer), and the sulfides themselves are solid lubricated. It was considered that the machinability was improved by contributing as an agent.

本発明の無鉛銅合金では、Sを必須成分として含む他、所定量のFeやNiを含有するものであるが、これらの範囲限定理由は下記の通りである。   In addition to containing S as an essential component, the lead-free copper alloy of the present invention contains a predetermined amount of Fe or Ni. The reasons for limiting these ranges are as follows.

S:0.05〜1.5%
Sは、Cuと結合して、Cu2S化合物(Znを含有する場合にはZnS化合物)を形成し、銅合金の良好な耐圧性、被削性および機械的強度を向上させるのに有用な元素である。こうした効果を発揮させる為には、S含有量は少なくとも0.05%以上とする必要があるが、1.5%を越えて過剰に含有されると耐圧性、機械的性質が却って低下するので1.5%以下とすべきである。尚、S含有量の好ましい上限は0.6%程度であり、この含有量では後述するSnを含有させずとも、良好な強度が確保できる。但し、それほど強度が要求されない部材(例えば、軸受け部材)に適用する場合には、Sの含有量が0.6%超〜1.5%程度であっても、Snを含有しなくても良い。
S: 0.05 to 1.5%
S combines with Cu to form a Cu 2 S compound (ZnS compound when Zn is contained), and is useful for improving the good pressure resistance, machinability and mechanical strength of the copper alloy. It is an element. In order to exert such effects, the S content needs to be at least 0.05%, but if it exceeds 1.5% and excessively contained, the pressure resistance and mechanical properties will decrease. Should be less than 1.5%. In addition, the preferable upper limit of S content is about 0.6%, and even if it does not contain Sn mentioned later by this content, favorable intensity | strength is securable. However, when applied to a member (for example, a bearing member) that does not require so much strength, even if the S content is more than about 0.6% to about 1.5%, Sn may not be contained. .

Fe:0.5%以下(0%を含まない)および/またはNi:3.0%以下(0を含まない)
FeおよびNiは、硫化物(Cu2SやZnS)を低温で形成させて、硫化物を銅マトリクス中に分散させるために必要な元素である。こうした効果は、その含有量が増加するにつれて増大するが、過剰に含有させると、溶湯の湯流れ性が悪くなって鋳造性が悪化する。こうしたことから、Feについては0.5%以下、Niについては3.0%以下と規定した。尚、Fe含有量の好ましい下限は0.1%であり、より好ましくは0.2%以上とするのが良い。またFe含有量の好ましい上限は0.4%であり、より好ましくは0.3%以下とするのが良い。一方、Ni含有量の好ましい下限は0.5%であり、より好ましくは1.0%以上とするのが良い。またNi含有量の好ましい上限は2.5%であり、より好ましくは2.0%以下とするのが良い。
Fe: 0.5% or less (not including 0%) and / or Ni: 3.0% or less (not including 0)
Fe and Ni are elements necessary for forming sulfides (Cu 2 S and ZnS) at a low temperature and dispersing the sulfides in the copper matrix. Such an effect increases as the content thereof increases. However, if the content is excessive, the flowability of the molten metal deteriorates and the castability deteriorates. For these reasons, Fe is defined as 0.5% or less, and Ni is defined as 3.0% or less. In addition, the minimum with preferable Fe content is 0.1%, It is good to set it as 0.2% or more more preferably. Moreover, the upper limit with preferable Fe content is 0.4%, More preferably, it is good to set it as 0.3% or less. On the other hand, the preferable lower limit of the Ni content is 0.5%, more preferably 1.0% or more. Moreover, the upper limit with preferable Ni content is 2.5%, It is good to set it as 2.0% or less more preferably.

本発明の銅合金における基本的な化学成分組成は上記の通りであり、残部は実質的に銅(Cu)からなるものであるが、必要によってSn,Zn等を含有させることも有効である。これらを含有させるときの範囲限定理由は下記の通りである。尚、「実質的に銅」とは、本発明の銅合金にはCu以外にその特性を阻害しない程度の微量元素(許容成分)を含み得るものであり、こうした許容成分としては、例えばSb,P,Si等の元素や、Al,Mn等の不可避不純物が挙げられる。   The basic chemical composition of the copper alloy of the present invention is as described above, and the balance is substantially made of copper (Cu), but it is also effective to contain Sn, Zn or the like as necessary. The reasons for limiting the range when these are contained are as follows. In addition, “substantially copper” means that the copper alloy of the present invention can contain trace elements (allowable components) to the extent that they do not impede their properties in addition to Cu. Examples of such allowable components include Sb, Examples thereof include elements such as P and Si, and inevitable impurities such as Al and Mn.

Sn:10%以下(0%を含まない)
Snは銅合金の強度(引張強さ)を向上させるのに有効な元素である。特に、Sを含有することによって、低下する強度を、Snを含有させることによって補填することに効果がある。例えば、Sを0.6%超〜1.5%程度含有させた場合には、強度が低下する傾向を示すが(後記図1参照)、Sを含有させることによる被削性向上効果を維持しつつ(後記図2参照)、良好な強度を確保する上で有効な元素である。こうした効果は、その含有量が多くなればなるほど大きくなるが、過剰に含有されると機械的特性を劣化させるので(後記図5参照)、10%以下とすべきである。こうした効果を発揮させる上で、Sn含有量の好ましい下限は2.0%である。またSn含有量の好ましい上限は6.0%程度であり、より好ましくは5.0%以下とするのが良い。
Sn: 10% or less (excluding 0%)
Sn is an element effective for improving the strength (tensile strength) of the copper alloy. In particular, by containing S, it is effective to compensate for the decreasing strength by containing Sn. For example, when S exceeds 0.6% to about 1.5%, strength tends to decrease (see FIG. 1 described later), but the effect of improving machinability by containing S is maintained. However, it is an element effective in securing good strength (see FIG. 2 described later). These effects increase as the content increases, but if excessively contained, the mechanical properties deteriorate (see FIG. 5 below), and should be 10% or less. In order to exert such an effect, the preferable lower limit of the Sn content is 2.0%. Moreover, the upper limit with preferable Sn content is about 6.0%, More preferably, it is good to set it as 5.0% or less.

Zn:10%以下(0%を含まない)
ZnはZnS化合物を形成することによって、銅合金の耐圧性、被削性および機械的強度を更に向上させるのに有用な元素である。こうした効果はその含有量が増すにつれて大きくなるのであるが、少なくとも3.0%以上含有させることが好ましい。しかしながら、Znが過剰に含有されるとZnの溶出量が増加するので10%以下とすることが好ましく、より好ましくは8.0%以下とするのが良い。
Zn: 10% or less (excluding 0%)
Zn is an element useful for further improving the pressure resistance, machinability and mechanical strength of a copper alloy by forming a ZnS compound. Such effects increase as the content increases, but it is preferable to contain at least 3.0% or more. However, if Zn is excessively contained, the elution amount of Zn increases, so that it is preferably 10% or less, more preferably 8.0% or less.

本発明の銅合金は、金属組織(銅マトリクス)中に硫化物が分散されることによって上記の効果を発揮するものであるが、こうした硫化物は、S,Fe,Niの含有量を適切に調整して溶解・凝固させることによって必然的に形成されることになる。また、本発明の銅合金を用いて鋳物を製造するに当たっては、砂型鋳造、金型鋳造、遠心鋳造、精密鋳造等、これまで一般的に行われている方法を採用することができる。   The copper alloy of the present invention exhibits the above effect by dispersing sulfides in the metal structure (copper matrix), but such sulfides have an appropriate content of S, Fe, Ni. It is inevitably formed by adjusting and dissolving and solidifying. Moreover, when manufacturing a casting using the copper alloy of this invention, the methods generally performed until now, such as sand casting, metal mold casting, centrifugal casting, and precision casting, can be adopted.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.

(実施例1)
下記表1に化学成分組成を示す各銅合金(No.6のものは従来のCAC406合金)を、常法に従って溶解・鋳造した。得られた銅合金鋳物について、各種機械的特性(引張強さおよび伸び)を調査した。尚、表1に示したS以外の各成分の値(含有量)は、蛍光X線分析装置[エレメント・アナライザーJSX−3202(商品名:日本電子株式会社製)]によって測定した値であり、Sは燃焼法によって求めた値である。
Example 1
Each copper alloy having the chemical composition shown in Table 1 below (No. 6 is a conventional CAC406 alloy) was melted and cast according to a conventional method. Various mechanical properties (tensile strength and elongation) of the obtained copper alloy casting were investigated. In addition, the value (content) of each component other than S shown in Table 1 is a value measured by a fluorescent X-ray analyzer [Element Analyzer JSX-3202 (trade name: manufactured by JEOL Ltd.)] S is a value obtained by the combustion method.

Figure 0003957308
Figure 0003957308

測定結果(S含有量と機械的特性の関係)を、図1に示す(n=2回の平均値)。尚、図中CAC406の引張強さ(195MPa)および伸び(15%)はJISを参照した値である。この結果から次の様に考察できる。まずS含有量が0.1〜0.5%程度で、引張強さや伸びの点で従来の銅合金(CAC406)と遜色がないことが分かる。しかしながら、S含有量がこれより多くなると機械的性質が若干低下する傾向を示すことになる。尚、各本発明の銅合金(No.1〜5)のものについて、走査型電子顕微鏡(SEM)によって組織を観察したところ、最終凝固領域に硫化物が分散していることが確認できた。   The measurement results (relationship between S content and mechanical properties) are shown in FIG. 1 (n = 2 average values). In the figure, the tensile strength (195 MPa) and elongation (15%) of CAC406 are values referring to JIS. This result can be considered as follows. First, it can be seen that the S content is about 0.1 to 0.5%, which is comparable to the conventional copper alloy (CAC406) in terms of tensile strength and elongation. However, when the S content is higher than this, the mechanical properties tend to be slightly lowered. In addition, when the structure | tissue was observed with the scanning electron microscope (SEM) about the thing of each copper alloy (No. 1-5) of this invention, it has confirmed that the sulfide was disperse | distributing to the last solidification area | region.

(実施例2)
上記表1に示した各銅合金鋳物について、被削性について調査した。このときの切削条件は下記の通りである。そして、試験片をφ23mm→φ22mm→21mmと削った後、φ20mmの切削で切削抵抗を測定し、下記(1)式によって求められる切削性指数によって被削性を評価した。このとき、下記表2に示す化学成分組成の銅合金(No.7)について、同様にして被削性を調査した。
(Example 2)
The machinability of each copper alloy casting shown in Table 1 was investigated. The cutting conditions at this time are as follows. Then, after cutting the test piece with φ23 mm → φ22 mm → 21 mm, cutting resistance was measured by cutting with φ20 mm, and machinability was evaluated by a machinability index obtained by the following equation (1). At this time, the machinability was investigated in the same manner for the copper alloy (No. 7) having the chemical composition shown in Table 2 below.

[切削条件]
NC旋盤:OKUMA LP25C(商品名:オークマ株式会社製)
チップ:イゲタロイ
切削動力計:KISLER9257B(商品名:日本キスラー株式会社製)
切削油:油性
切削速度:100m/min
送り速度:0.1mm/rev
切り込み量:1.0mm
試験片径:φ23mm
加工径:φ20mm
切削性指数=(CAC406の切削抵抗値/各試験片の切削抵抗値)
×100…(1)
[Cutting conditions]
NC lathe: OKUMA LP25C (trade name: manufactured by Okuma Corporation)
Tip: Igetaroy cutting dynamometer: KISER 9257B (trade name: manufactured by Nippon Kistler Co., Ltd.)
Cutting oil: Oil-based cutting speed: 100 m / min
Feeding speed: 0.1mm / rev
Cutting depth: 1.0mm
Test piece diameter: φ23mm
Processing diameter: φ20mm
Machinability index = (cutting resistance value of CAC406 / cutting resistance value of each test piece)
× 100 ... (1)

Figure 0003957308
Figure 0003957308

その結果(S含有量と切削指数の関係)を図2に示す。尚、図2中、ラインAはJIS CAC406合金の切削指数を100とした場合の切削指数85%を示すものである。この結果から明らかなように、S含有量が増すにつれて、被削性が向上しており、特にNiおよびFeを適切量含有させたものでは(No.7)、被削性が大幅に向上していることが分かる。これは、硫化物が均一分散したという理由によるものと考えられる。   The results (relationship between S content and cutting index) are shown in FIG. In FIG. 2, line A shows a cutting index of 85% when the cutting index of JIS CAC406 alloy is 100. As is clear from this result, the machinability is improved as the S content is increased. Especially when Ni and Fe are contained in appropriate amounts (No. 7), the machinability is greatly improved. I understand that This is considered to be due to the fact that the sulfide was uniformly dispersed.

(実施例3)
上記表1に示した各銅合金ついて、耐圧性について調査した。耐圧性力の試験方法は、「JIS B 2062 水道水の仕切弁」中の「9.1弁箱の耐圧試験」に準拠して行った(水圧:3MPa,2分間)。そして、各試験片について、24回(n=24)試験を行い、水漏れの有無を肉眼で観察し、「漏れ」が確認された場合を不良品と判定し、その発生率(不良率=不良品の個数/24)で耐圧性を評価した。
(Example 3)
Each copper alloy shown in Table 1 was examined for pressure resistance. The test method of pressure resistance was performed in accordance with “9.1 Pressure Box Pressure Test” in “JIS B 2062 Tap Water Gate Valve” (water pressure: 3 MPa, 2 minutes). Each test piece is tested 24 times (n = 24), the presence or absence of water leakage is observed with the naked eye, and when “leakage” is confirmed, it is determined as a defective product, and the occurrence rate (defective rate = The pressure resistance was evaluated by the number of defective products / 24).

その結果(耐圧性試験結果)を図3示すが、S含有量が0.5%程度までのもの(No.1〜3)では不良率が極めて低くなっており、良好な耐圧性を示していることが分かる。これに対して、S含有量が1.0%以上のもの(No.4,5)では耐圧性が悪くなっている。これは比較的粗大な硫化物の不均一分散によるものと考えられる。   The results (pressure resistance test results) are shown in FIG. 3, but those having an S content up to about 0.5% (Nos. 1 to 3) have a very low defect rate and exhibit good pressure resistance. I understand that. On the other hand, in the case where the S content is 1.0% or more (No. 4, 5), the pressure resistance is deteriorated. This is considered to be due to non-uniform dispersion of relatively coarse sulfides.

(実施例4)
下記表3に化学成分組成を示す各銅合金(No.11のものは表1のNo.2のものと同じ)を、常法に従って溶解・鋳造し、各合金における硫化物形成温度範囲を熱分析法によって測定した。その結果を、図4に示すが、NiやFeを全く含有しないもの(No.8)では、硫化物形成温度が高くなっているのに対して、NiやFeを含有したものでは(No.9〜11)、硫化物形成温度が低くなっていることが分かる。このことは、NiやFeを含有させることによって、比較的低温まで硫化物が形成しないことを示しており、銅合金の凝固が完了するまでSが溶融状態で維持していることが分かる。こうした現象によって、本発明の銅合金では鋳巣等の鋳造欠陥が発生し難くなるものと考えられる。
Example 4
Each copper alloy having the chemical composition shown in Table 3 below (No. 11 is the same as No. 2 in Table 1) is melted and cast according to a conventional method, and the sulfide formation temperature range in each alloy is heated. Measured by analytical method. The results are shown in FIG. 4, while those having no Ni or Fe (No. 8) have a high sulfide formation temperature, whereas those containing Ni or Fe (No. 8). 9-11), it can be seen that the sulfide formation temperature is low. This indicates that by containing Ni or Fe, sulfide is not formed until a relatively low temperature, and it can be seen that S is maintained in a molten state until the solidification of the copper alloy is completed. Due to such a phenomenon, it is considered that the copper alloy of the present invention is less likely to cause a casting defect such as a casting hole.

Figure 0003957308
Figure 0003957308

(実施例5)
下記表4に化学成分組成を示す各銅合金を、常法に従って溶解・鋳造した。得られた銅合金鋳物について、各種機械的特性(引張強さおよび伸び)を調査した。
(Example 5)
Each copper alloy having chemical composition shown in Table 4 below was melted and cast according to a conventional method. Various mechanical properties (tensile strength and elongation) of the obtained copper alloy casting were investigated.

Figure 0003957308
Figure 0003957308

測定結果(Sn含有量と機械的特性の関係)を、図5に示すが(n=2回の平均値)、この結果から次の様に考察できる。まずSn含有量が5%程度までは引張強さや伸びが向上しており、特にSn含有量が2%以上になると、従来の銅合金(CAC406)と遜色がないことが分かる。これは、Snの固溶強化によるものと考えることができる。   The measurement results (relationship between Sn content and mechanical properties) are shown in FIG. 5 (n = 2 average values), and can be considered as follows from this result. First, it can be seen that the tensile strength and the elongation are improved up to about 5% of Sn content, and in particular, when the Sn content is 2% or more, it is not inferior to the conventional copper alloy (CAC406). This can be considered to be due to the solid solution strengthening of Sn.

(実施例6)
上記表4に示した各銅合金鋳物について、実施例2と同様にして被削性について調査した。その結果(Sn含有量と切削性指数の関係)を図6に示すが、Sn含有量が3%程度までは良好な被削性を発揮していることが分かる。
(Example 6)
About each copper alloy casting shown in the said Table 4, it carried out similarly to Example 2, and investigated machinability. The results (relationship between the Sn content and the machinability index) are shown in FIG. 6, and it can be seen that good machinability is exhibited until the Sn content is about 3%.

銅合金におけるS含有量と機械的特性の関係を示したグラフである。It is the graph which showed the relationship between S content and a mechanical characteristic in a copper alloy. 銅合金におけるS含有量と被削性の関係を示したグラフである。It is the graph which showed the relationship between S content and a machinability in a copper alloy. 銅合金におけるS含有量と耐圧性の関係を示したグラフである。It is the graph which showed the S content and the pressure | voltage resistance in a copper alloy. 各種銅合金の硫化物形成温度を比較して示した棒グラフである。It is the bar graph which compared and showed the sulfide formation temperature of various copper alloys. 銅合金におけるSn含有量と機械的特性の関係を示したグラフである。It is the graph which showed the relationship between Sn content and a mechanical characteristic in a copper alloy. 銅合金におけるSn含有量と被削性の関係を示したグラフである。It is the graph which showed the relationship between Sn content and a machinability in a copper alloy.

Claims (2)

S:0.05〜1.5%(質量%の意味、以下同じ)、Sn:10%以下(0%を含まない)およびZn:10%以下(0%を含まない)夫々含有すると共に、Fe:0.5%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)を含有し、残部がCuおよび不可避不純物からなり、且つ硫化物が分散されたものであることを特徴とする耐圧性に優れた鋳物用無鉛銅合金。 S: 0.05 to 1.5% (mean mass%, hereinafter the same), Sn: 10% or less (not including 0%) and Zn: 10% or less (not including 0%) respectively with containing Fe: 0.5% or less (not including 0%) and / or Ni: 3.0% or less (not including 0%), the balance being Cu and inevitable impurities, and sulfides dispersed A lead-free copper alloy for castings excellent in pressure resistance, characterized in that Sの含有量が0.05〜0.6%である請求項1に記載の鋳物用無鉛銅合金。   The lead-free copper alloy for castings according to claim 1, wherein the content of S is 0.05 to 0.6%.
JP2004344541A 2004-11-29 2004-11-29 Lead-free copper alloy for castings with excellent pressure resistance Active JP3957308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344541A JP3957308B2 (en) 2004-11-29 2004-11-29 Lead-free copper alloy for castings with excellent pressure resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344541A JP3957308B2 (en) 2004-11-29 2004-11-29 Lead-free copper alloy for castings with excellent pressure resistance

Publications (2)

Publication Number Publication Date
JP2006152373A JP2006152373A (en) 2006-06-15
JP3957308B2 true JP3957308B2 (en) 2007-08-15

Family

ID=36631011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344541A Active JP3957308B2 (en) 2004-11-29 2004-11-29 Lead-free copper alloy for castings with excellent pressure resistance

Country Status (1)

Country Link
JP (1) JP3957308B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470101B2 (en) 2009-05-26 2013-06-25 Shiga Valve Cooperative Lead-free copper alloy for casting with excellent mechanical properties
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130524B2 (en) * 2006-04-24 2013-01-30 国立大学法人 鹿児島大学 Free-cutting copper alloy and manufacturing method thereof
JP2007297675A (en) * 2006-04-28 2007-11-15 Shiga Valve Cooperative Lead-free copper alloy for casting superior in machinability
JP5201444B2 (en) * 2007-11-28 2013-06-05 株式会社栗本鐵工所 Copper alloy for sliding members
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
JP4630387B1 (en) * 2010-04-07 2011-02-09 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
WO2011125264A1 (en) 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
JP5607460B2 (en) * 2010-08-30 2014-10-15 古河電気工業株式会社 Copper alloy ingot and copper alloy material excellent in machinability, and copper alloy parts using the same
JP4824124B1 (en) * 2010-09-17 2011-11-30 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
JP2014501844A (en) * 2010-10-29 2014-01-23 スローン バルブ カンパニー Low lead ingot
US9829122B2 (en) 2011-11-07 2017-11-28 Nibco Inc. Leach-resistant leaded copper alloys
JP6224992B2 (en) * 2013-10-31 2017-11-01 株式会社栗本鐵工所 Copper alloy for sliding member and sliding member using the same
JP7214451B2 (en) * 2018-02-13 2023-01-30 株式会社栗本鐵工所 Copper alloy
KR102103327B1 (en) * 2018-07-11 2020-04-22 영동금속(주) Lead-free Copper Alloy with High Strength
DE102020106999A1 (en) 2020-03-13 2021-09-16 Ks Gleitlager Gmbh Copper-tin cast alloy
DE102020106995A1 (en) 2020-03-13 2021-09-16 Ks Gleitlager Gmbh Copper-tin-bronze continuous casting alloy
DE102021131763A1 (en) 2021-12-02 2023-06-07 Ks Gleitlager Gmbh Copper-tin continuously cast alloy, continuously cast blank made from it or machined machine part or gear part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470101B2 (en) 2009-05-26 2013-06-25 Shiga Valve Cooperative Lead-free copper alloy for casting with excellent mechanical properties
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy

Also Published As

Publication number Publication date
JP2006152373A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP5335558B2 (en) Lead-free copper alloy for castings with excellent mechanical properties
JP3957308B2 (en) Lead-free copper alloy for castings with excellent pressure resistance
US10017841B2 (en) Copper alloy casting and method of casting the same
KR102623143B1 (en) Free-cutting copper alloy castings, and method for manufacturing free-cutting copper alloy castings
KR101969010B1 (en) Lead free cutting copper alloy with no lead and bismuth
JP6799305B1 (en) Method for manufacturing free-cutting copper alloy castings and free-cutting copper alloy castings
JP2007297675A (en) Lead-free copper alloy for casting superior in machinability
CN105624463A (en) Lead-free free-cutting brass alloy and preparation method thereof
JP2008214760A (en) Lead-free free-cutting brass alloy and its manufacturing method
CN104862520B (en) Brass alloy as well as preparation method and application thereof
JP5642603B2 (en) Lead-free free-cutting brass alloy for casting
KR101852053B1 (en) Copper-based alloy
TWI597371B (en) White antimicrobial copper alloy
WO2011121799A1 (en) Lead-free free-machining bronze casting alloy
US20020110478A1 (en) Copper base alloy that contains intermetallic constituents rich in calcium and/or magnesium
KR100555854B1 (en) Lead-Free cutting bronze alloy
JP6796355B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
JP6363931B2 (en) Copper alloy for slide bearing
WO2024228354A1 (en) Free-machining copper alloy casting and production method for free-machining copper alloy casting
KR102314457B1 (en) Low-lead brass alloy for plumbing member
JP2003147460A (en) Lead-free copper alloy for casting having excellent machinability
KR20040062314A (en) Composition of Unleaded Free Cutting Brass with Advenced Corrosion Resistance
JP2006322059A (en) Lead-free free-cutting brass alloy and its manufacturing method
JP2015227475A (en) Lead-free free-cutting bronze alloy for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Ref document number: 3957308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250