[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3956478B2 - Method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP3956478B2
JP3956478B2 JP08730898A JP8730898A JP3956478B2 JP 3956478 B2 JP3956478 B2 JP 3956478B2 JP 08730898 A JP08730898 A JP 08730898A JP 8730898 A JP8730898 A JP 8730898A JP 3956478 B2 JP3956478 B2 JP 3956478B2
Authority
JP
Japan
Prior art keywords
electrode
current collector
container
binder
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08730898A
Other languages
Japanese (ja)
Other versions
JPH11288739A (en
Inventor
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP08730898A priority Critical patent/JP3956478B2/en
Publication of JPH11288739A publication Critical patent/JPH11288739A/en
Application granted granted Critical
Publication of JP3956478B2 publication Critical patent/JP3956478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオン2次電池の製造方法、特にサイクル特性に優れたリチウムイオン2次電池の製造方法に関する。
【0002】
【従来の技術】
従来、リチウム2次電池用電極を集電体上に形成する際、電極活物質と結着剤を混合した電極材に集電体を配し、これにプレスを施すことにより電極活物質の密度を上げ、電流密度を上げる技術がある。
【0003】
例えば、特開昭62−226563号公報には、リチウムと合金化可能な金属の粉末に黒鉛粉末及び熱可塑性樹脂を混合した負極材を、ステンレスネットからなる負極集電体をその内底面にスポット溶接して固着した負極缶に盛込み、150℃,1ton/cm2の条件でホットプレスする技術が記載されている。
【0004】
このように電極材にホットプレスを施すことにより、電極材中の結着剤を溶融させることができ、電極活物質間及び電極活物質と集電体との結着力を増加させることができる。
しかし、このようにホットプレスを施した電極をセパレータを介して容器内に配した場合、容器に電解液を注入しても電極はほとんど膨潤しない為、電極及びセパレータと容器との密着力が高められることにより生じる容器からの電極及びセパレータへの圧縮応力は働かない。よって、電極とセパレータとの密着性が悪く、正負極間の厚さがセパレータ厚と一致せず不均一になる。
この正負極間の厚さの不均一により、電池の容量が安定せずサイクル特性が十分でないという問題があった。
【0005】
また、ホットプレスではなくコールドプレスを施した場合は、プレスにより電極材中に歪み応力が残留し(ホットプレスでは加工中の熱により与えられた歪み応力が除去される。)、電解液を注入した際、電極が膨潤することにより容器と電極及びセパレータとの密着力が高められ、容器から電極及びセパレータへ圧縮応力が働き、正負極間の厚さが均一になる。
しかし、電極材にコールドプレスを施しただけでは電極材中の結着剤を溶融させることができない為、電極活物質間及び電極活物質と集電体との結着力は小さい。
この為、充放電による電極活物質の膨張収縮に伴い、繰り返し使ううちに電極活物質間及び電極活物質と集電体との間で剥離が生じ界面抵抗が増大してしまい、ホットプレスと同様にサイクル特性が十分でないという問題があった。
【0006】
【発明が解決しようとする課題】
リチウムイオン2次電池のサイクル特性を向上させることを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決する請求項1に記載のリチウムイオン2次電池の製造方法の特徴は、電極活物質と結着剤とを含む電極材を集電体に配する行程と、該電極材が配された集電体を前記結着剤が溶融する温度でホットプレスし、電極充填率が30〜60体積%となる電極を製造する行程と、該電極にコールドプレスを施し該電極に歪み応力を与え、電極充填率を40〜70体積%とする行程と、該歪み応力が与えられた電極を含む正極及び負極をセパレータを介して対向させ倦回する倦回式電極を円筒容器内に配する行程と、該容器内に電解液を注入することにより前記電極を膨潤させ前記容器との間で圧縮応力を発生させる行程と、を有することである。
【0008】
また請求項2に記載のリチウムイオン2次電池の製造方法の特徴は、電極活物質と結着剤とを含む電極材を集電体に配する行程と、該電極材が配された集電体をコールドプレスする行程と、該電極材を前記結着剤が溶融する温度で加熱し、電極充填率が30〜60体積%となる電極を製造する行程と、該電極にコールドプレスを施し該電極に歪み応力を与え、電極充填率を40〜70体積%とする行程と、該歪み応力が与えられた電極を含む正極及び負極をセパレータを介して対向させ倦回する倦回式電極を円筒容器内に配する行程と、該容器内に電解液を注入することにより前記電極を膨潤させ前記容器との間で圧縮応力を発生させる行程と、を有することである。
【0009】
【発明の実施の形態】
以下、本件の実施の形態(以下実施形態という)について説明する。
【0010】
実施形態1.
本発明のリチウムイオン2次電池の製造方法では、電極活物質と結着剤とを含む電極材を集電体に配したものにホットプレスを行った後に結着剤が溶融する温度で加熱することにより、電極活物質間及び電極活物質と集電体との十分な結着力を得ることができる。
また、その後こうして得られた電極にコールドプレスを施すことにより、電極に歪み応力を残留させ、この電極を容器内に挿入した後、電解液を注入することにより電極が膨潤し、容器との密着力が向上する。
電極と容器との密着力が向上することにより、容器から電極へ圧縮応力が生じ、電極間厚さを均一に保つことができるようになる。
【0011】
即ち、本発明により電極活物質間及び電極活物質と集電体との十分な結着力の確保と、電極間厚さの均一化が両立でき、サイクル特性を向上させることができる。
【0012】
ここで、ホットプレス又はコールドプレス後加熱し、その後コールドプレスを施す処理は正極及び負極のいずれか一方以上に行えば効果を有し、両方に行えば一方に行ったものよりもなおいっそうの効果を有する。
【0013】
また、上記ホットプレスまたはコールドプレス後に加熱を施す工程は、電極活物質間及び電極活物質と集電体との密着力を向上させる為、結着剤の融点以上の温度となるようにし、電極の充填率が30〜60体積%(空孔率が40〜70体積%)となるように条件を設定するのが望ましい。
【0014】
更に、その後のコールドプレス工程は、電解液注入後に電極が膨潤するよう電極の充填率が40〜70体積%となるようにプレスするのが望ましい。
【0015】
実施形態2.
実施形態1でホットプレスを行う代わりに、コールドプレスを行い、その後結着剤が溶融する温度で加熱して電極を製造することもできる。
この場合はコールドプレスで電極材中に歪み応力が残留するが、加熱によりこの歪み応力が除去される為、実施形態1と同様にこの後の処理で電極に歪み応力を付与する為のコールドプレスが必要である。
実施形態2も1と同様の理由で、サイクル特性を向上させることができる。
【0016】
以下に、上記実施形態の具体例を実施例として説明する。
【実施例】
(実施例1)
図1に本件発明に係る実施例1のリチウムイオン2次電池製造過程のフローチャートを示す。
図1において、ステップ100では、集電箔上に電極活性物質と結着剤と溶剤からなるペーストを塗布する。
【0017】
正極の場合、85wt%のLiMn2O4を電極活性物質とし、10wt%のカーボンブラックを導電化材として、結着剤PVDFを5wt%溶かしたN−メチルピロリドン(NMP)溶液中に混合,混練してペースト状とした。このペーストをアルミニウム集電箔上に塗布した。
【0018】
負極の場合、90wt%の天然黒鉛を電極活性物質とし、結着剤PVDFを10wt%溶かしたN−メチルピロリドン(NMP)溶液中に混合,混練してペースト状とした。このペーストを銅集電箔上に塗布した。
【0019】
ステップ101では、上記ペーストを集電箔上で乾燥した。
【0020】
ステップ102は、ホットプレス工程を表す。
正極は0.5ton/cm2、負極は0.1ton/cm2の圧力をかけ、両者ともPVDFが溶融する175℃でホットプレスを行った。
この工程で結着剤は溶融し、電極活物質間及び電極活物質と集電箔との結着力が向上するとともに、電極内部の応力は緩和される。
【0021】
ステップ103は、コールドプレス工程を表す。
正極は1ton/cm2、負極は0.2ton/cm2の圧力をかけ、常温でコールドプレスを行った。
この工程でのコールドプレスの加圧力は、後の工程で電解液を注入し電極を膨張させることにより容器との間で発生させたい応力量とする。
【0022】
ステップ104では、こうして出来上がった正極及び負極をセパレータを介して対向させ捲回することにより捲回式電極を得た。
【0023】
ステップ105では、上記捲回式電極を円筒型容器に挿入した。
【0024】
ステップ106では、容器内にエチレンカーボネート(EC)とジエチレンカーボネート(DEC)を体積比1:1で混合した溶媒に1mol/lのLiBF4を溶解させた電解液を注入した。
電解液を注入することによって、電極が膨張し電極と容器とが密着することにより電極間に圧縮応力が発生した。
【0025】
(実施例2)
図2に本件発明に係る実施例2の製造過程のフローチャートを示す。
【0026】
実施例2では実施例1のステップ102のホットプレス代わりにステップ202として第1のコールドプレスを行い、ステップ203として電極の加熱工程が加わったのみで、他は実施例1と同様の条件で製造した。
【0027】
ステップ202では、正極は1ton/cm2、負極は0.2ton/cm2の圧力をかけ、常温でコールドプレスを行った。
また、ステップ203では、正極及び負極をPVDFが溶融する175℃で加熱した。
(比較例1)
比較例1では、電極にホットプレスのみを施した例を示す。
比較例1では、実施例1のステップ103のコールドプレスを行わなかった他は実施例1と同様の条件で製造した。
【0028】
(比較例2)
比較例2では、電極にコールドプレスのみを施した例を示す。
比較例2では、実施例2のステップ203の加熱工程及びステップ204の第2のコールドプレスを行わなかった他は実施例2と同様の条件で製造した。
【0029】
(評価)
これら作製されたリチウムイオン2次電池のサイクル特性を評価した。
【0030】
表1には、サイクル特性の評価結果が示させる。
サイクル特性は、(1/3)C、すなわち3時間で満充電できる定電流を充放電させる工程を1サイクルとし、初期容量に対する200サイクル後の容量で評価した。
【0031】
【表1】

Figure 0003956478
【0032】
表1から分かるように、本実施例はいずれの比較例に比べてもサイクル特性が大きく向上していることが分かる。
【0033】
比較例1でサイクル特性が低いのは、正負極間の厚さが不均一である為、充放電容量が安定しないことによると考えられる。
また、比較例2でサイクル特性が低いのは、電極活物質間及び電極活物質と集電箔との結着力が小さく、繰り返し使ううちに電極活物質間及び電極活物質と集電箔との間で剥離が生じ界面抵抗が増大してしまうことによると考えられる。
【0034】
これに対して、実施例1及び2のサイクル特性が高いのは、正負極間の厚さの均一化と電極活物質間及び電極活物質と集電箔との結着力向上が両立している為だと考えられる。
【0035】
【発明の効果】
即ち、本発明のリチウムイオン2次電池の製造方法では、電極活物質間及び電極活物質と集電体との十分な結着力が得られるとともに、容器から電極へ圧縮応力を生じさせ、正負極間の厚さを均一化することができ、サイクル特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明実施例1の製造過程のフローチャートを示す図である。
【図2】本発明実施例2の製造過程のフローチャートを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lithium ion secondary battery, and more particularly to a method for producing a lithium ion secondary battery having excellent cycle characteristics.
[0002]
[Prior art]
Conventionally, when forming an electrode for a lithium secondary battery on a current collector, the current collector is disposed on an electrode material in which an electrode active material and a binder are mixed, and the density of the electrode active material is determined by pressing the current collector. To increase the current density.
[0003]
For example, in Japanese Patent Laid-Open No. 62-226563, a negative electrode material in which graphite powder and a thermoplastic resin are mixed with metal powder that can be alloyed with lithium is spotted on a negative electrode current collector made of a stainless steel net on its inner bottom surface. A technique is described in which a negative electrode can fixed by welding is loaded and hot pressed under conditions of 150 ° C. and 1 ton / cm 2 .
[0004]
By performing hot pressing on the electrode material in this manner, the binder in the electrode material can be melted, and the binding force between the electrode active materials and between the electrode active material and the current collector can be increased.
However, when an electrode subjected to hot pressing in this way is placed in a container through a separator, the electrode hardly swells even when an electrolyte is injected into the container, so that the adhesion between the electrode and the separator and the container is increased. The compressive stress from the container to the electrode and the separator caused by being applied does not work. Therefore, the adhesion between the electrode and the separator is poor, and the thickness between the positive and negative electrodes does not match the thickness of the separator and becomes non-uniform.
Due to the uneven thickness between the positive and negative electrodes, there is a problem that the capacity of the battery is not stable and the cycle characteristics are not sufficient.
[0005]
In addition, when cold pressing is performed instead of hot pressing, strain stress remains in the electrode material due to pressing (in hot pressing, strain stress applied by heat during processing is removed), and an electrolytic solution is injected. When the electrode is swollen, the adhesion between the container, the electrode, and the separator is enhanced, and a compressive stress acts from the container to the electrode and the separator, so that the thickness between the positive and negative electrodes becomes uniform.
However, since the binder in the electrode material cannot be melted only by performing a cold press on the electrode material, the binding force between the electrode active materials and between the electrode active material and the current collector is small.
For this reason, as the electrode active material expands and contracts due to charge and discharge, peeling between the electrode active materials and between the electrode active material and the current collector occurs during repeated use, increasing the interface resistance. However, there is a problem that the cycle characteristics are not sufficient.
[0006]
[Problems to be solved by the invention]
It is an object to improve the cycle characteristics of a lithium ion secondary battery.
[0007]
[Means for Solving the Problems]
The feature of the manufacturing method of the lithium ion secondary battery according to claim 1 for solving the above-described problem is that a step of arranging an electrode material including an electrode active material and a binder on a current collector, and the electrode material is disposed. And hot-pressing the collected current collector at a temperature at which the binder melts to produce an electrode having an electrode filling rate of 30 to 60% by volume , and cold-pressing the electrode to apply strain stress to the electrode. give, distribution electrode filling rate and the stroke shall be the 40 to 70% by volume, the倦回type electrodes倦回are opposed through a separator positive electrode and a negative electrode comprising electrodes strained stress is given to a cylindrical vessel And a step of causing the electrode to swell by injecting an electrolytic solution into the container and generating a compressive stress between the container and the container.
[0008]
The method for producing a lithium ion secondary battery according to claim 2 is characterized in that an electrode material including an electrode active material and a binder is disposed on a current collector, and a current collector on which the electrode material is disposed. A step of cold pressing the body, a step of heating the electrode material at a temperature at which the binder melts, and manufacturing an electrode having an electrode filling rate of 30 to 60% by volume; distorts stress on the electrode, and the stroke you an electrode filling factor and 40 to 70 vol%, the倦回type electrodes倦回are opposed through a separator positive electrode and a negative electrode comprising electrodes strained stress is given A process of arranging in a cylindrical container, and a process of injecting an electrolytic solution into the container to swell the electrode and generate a compressive stress between the container and the container.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention (hereinafter referred to as an embodiment) will be described.
[0010]
Embodiment 1. FIG.
In the method for producing a lithium ion secondary battery of the present invention, an electrode material containing an electrode active material and a binder is placed on a current collector, and hot pressing is performed at a temperature at which the binder melts. Thus, a sufficient binding force between the electrode active materials and between the electrode active material and the current collector can be obtained.
Also, after that, the electrode thus obtained is subjected to a cold press to leave strain stress in the electrode, and after inserting the electrode into the container, the electrode is swollen by injecting the electrolytic solution, so that the electrode is in close contact with the container. Power is improved.
By improving the adhesion between the electrode and the container, a compressive stress is generated from the container to the electrode, and the thickness between the electrodes can be kept uniform.
[0011]
That is, according to the present invention, sufficient binding force between the electrode active materials and between the electrode active material and the current collector can be ensured and the thickness between the electrodes can be made uniform, and the cycle characteristics can be improved.
[0012]
Here, the process of heating after hot pressing or cold pressing and then performing cold pressing has an effect when performed on one or more of the positive electrode and the negative electrode, and even more effective than that performed on one when both are performed. Have
[0013]
In addition, the step of heating after the hot press or cold press is performed at a temperature equal to or higher than the melting point of the binder in order to improve the adhesion between the electrode active materials and between the electrode active material and the current collector. It is desirable to set the conditions so that the filling ratio is 30 to 60% by volume (the porosity is 40 to 70% by volume).
[0014]
Further, in the subsequent cold pressing step, it is desirable to press the electrode so that the filling rate of the electrode is 40 to 70% by volume so that the electrode swells after the electrolyte solution is injected.
[0015]
Embodiment 2. FIG.
Instead of performing hot pressing in the first embodiment, cold pressing is performed, and then the electrode can be manufactured by heating at a temperature at which the binder melts.
In this case, strain stress remains in the electrode material by cold pressing, but since this strain stress is removed by heating, a cold press for applying strain stress to the electrode in the subsequent processing as in the first embodiment. is required.
In the second embodiment, the cycle characteristics can be improved for the same reason as in the first embodiment.
[0016]
Specific examples of the above embodiment will be described below as examples.
【Example】
Example 1
FIG. 1 shows a flowchart of a process of manufacturing a lithium ion secondary battery of Example 1 according to the present invention.
In FIG. 1, in step 100, a paste made of an electrode active material, a binder, and a solvent is applied on the current collector foil.
[0017]
In the case of the positive electrode, 85 wt% LiMn 2 O 4 is used as the electrode active material, 10 wt% carbon black is used as the conductive material, and the paste is mixed and kneaded in an N-methylpyrrolidone (NMP) solution containing 5 wt% binder PVDF. It was in the shape. This paste was applied onto an aluminum current collector foil.
[0018]
In the case of the negative electrode, 90 wt% of natural graphite was used as an electrode active material, and the mixture was mixed and kneaded in an N-methylpyrrolidone (NMP) solution in which 10 wt% of a binder PVDF was dissolved to form a paste. This paste was applied onto a copper current collector foil.
[0019]
In step 101, the paste was dried on a current collector foil.
[0020]
Step 102 represents a hot press process.
Positive electrode 0.5 ton / cm 2, the negative electrode applying a pressure of 0.1ton / cm 2, PVDF both were subjected to hot pressing at 175 ° C. to melt.
In this step, the binder is melted, the binding force between the electrode active materials and between the electrode active material and the current collector foil is improved, and the stress inside the electrode is relaxed.
[0021]
Step 103 represents a cold press process.
The positive electrode was 1 ton / cm 2 and the negative electrode was 0.2 ton / cm 2 , and cold pressed at room temperature.
The pressure of the cold press in this step is set to the amount of stress desired to be generated between the container by injecting an electrolyte solution and expanding the electrode in the subsequent step.
[0022]
In Step 104, a wound electrode was obtained by winding the positive electrode and the negative electrode thus obtained with a separator interposed therebetween.
[0023]
In step 105, the wound electrode was inserted into a cylindrical container.
[0024]
In step 106, an electrolytic solution in which 1 mol / l LiBF4 was dissolved in a solvent in which ethylene carbonate (EC) and diethylene carbonate (DEC) were mixed at a volume ratio of 1: 1 was injected into the container.
By injecting the electrolytic solution, the electrodes expanded, and the electrodes and the container were brought into close contact with each other, thereby generating a compressive stress between the electrodes.
[0025]
(Example 2)
FIG. 2 shows a flowchart of the manufacturing process of the second embodiment according to the present invention.
[0026]
In Example 2, instead of the hot pressing in Step 102 of Example 1, the first cold press is performed as Step 202, and only the electrode heating process is added as Step 203, and the other conditions are the same as in Example 1. did.
[0027]
In step 202, the positive electrode 1 ton / cm 2, the negative electrode applying a pressure of 0.2ton / cm 2, was cold pressed at room temperature.
In Step 203, the positive electrode and the negative electrode were heated at 175 ° C. at which PVDF was melted.
(Comparative Example 1)
Comparative Example 1 shows an example in which only hot pressing is applied to the electrode.
Comparative Example 1 was manufactured under the same conditions as in Example 1 except that the cold press in Step 103 of Example 1 was not performed.
[0028]
(Comparative Example 2)
Comparative Example 2 shows an example in which only the cold press is applied to the electrode.
Comparative Example 2 was manufactured under the same conditions as in Example 2 except that the heating process in Step 203 of Example 2 and the second cold press in Step 204 were not performed.
[0029]
(Evaluation)
The cycle characteristics of these produced lithium ion secondary batteries were evaluated.
[0030]
Table 1 shows the evaluation results of the cycle characteristics.
The cycle characteristics were evaluated by (1/3) C, that is, the capacity after 200 cycles with respect to the initial capacity, with the process of charging / discharging a constant current that can be fully charged in 3 hours as one cycle.
[0031]
[Table 1]
Figure 0003956478
[0032]
As can be seen from Table 1, it can be seen that the cycle characteristics of the present example are greatly improved compared to any of the comparative examples.
[0033]
It is considered that the reason why the cycle characteristics are low in Comparative Example 1 is that the charge / discharge capacity is not stable because the thickness between the positive and negative electrodes is not uniform.
In addition, the cycle characteristics in Comparative Example 2 are low because the binding force between the electrode active materials and between the electrode active materials and the current collector foil is small, and between the electrode active materials and between the electrode active materials and the current collector foil during repeated use. This is thought to be due to the fact that separation occurs between them and the interface resistance increases.
[0034]
On the other hand, the high cycle characteristics of Examples 1 and 2 are compatible with the uniformity of the thickness between the positive and negative electrodes and the improvement of the binding force between the electrode active materials and between the electrode active materials and the current collector foil. It is thought to be for the purpose.
[0035]
【The invention's effect】
That is, in the method for producing a lithium ion secondary battery of the present invention, a sufficient binding force between the electrode active materials and between the electrode active material and the current collector can be obtained, and a compressive stress is generated from the container to the electrode, so that the positive and negative electrodes The thickness in between can be made uniform, and the cycle characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is a flowchart of a manufacturing process according to Embodiment 1 of the present invention.
FIG. 2 is a flowchart showing a manufacturing process according to Embodiment 2 of the present invention.

Claims (2)

電極活物質と結着剤とを含む電極材を集電体に配する行程と、該電極材が配された集電体を前記結着剤が溶融する温度でホットプレスし、電極充填率が30〜60体積%となる電極を製造する行程と、該電極にコールドプレスを施し該電極に歪み応力を与え、電極充填率を40〜70体積%とする行程と、該歪み応力が与えられた電極を含む正極及び負極をセパレータを介して対向させ倦回する倦回式電極を円筒容器内に配する行程と、該容器内に電解液を注入することにより前記電極を膨潤させ前記容器との間で圧縮応力を発生させる行程と、を有するリチウムイオン2次電池の製造方法。The step of arranging an electrode material including an electrode active material and a binder on a current collector, and hot pressing the current collector on which the electrode material is arranged at a temperature at which the binder melts , a step of manufacturing an electrode comprising 30 to 60 vol%, giving a strain stress to the electrode subjected to cold pressing to the electrodes, and the stroke you an electrode filling factor and 40 to 70% by volume, given the strain stress A step of disposing a wound type electrode in a cylindrical container that is wound with a positive electrode and a negative electrode that are opposed to each other through a separator , and injecting an electrolyte into the container to swell the electrode and A process for generating a compressive stress between the two, a method for manufacturing a lithium ion secondary battery. 電極活物質と結着剤とを含む電極材を集電体に配する行程と、該電極材が配された集電体をコールドプレスする行程と、該電極材を前記結着剤が溶融する温度で加熱し、電極充填率が30〜60体積%となる電極を製造する行程と、該電極にコールドプレスを施し該電極に歪み応力を与え、電極充填率を40〜70体積%とする行程と、該歪み応力が与えられた電極を含む正極及び負極をセパレータを介して対向させ倦回する倦回式電極を円筒容器内に配する行程と、該容器内に電解液を注入することにより前記電極を膨潤させ前記容器との間で圧縮応力を発生させる行程と、を有するリチウムイオン2次電池の製造方法。A step of arranging an electrode material including an electrode active material and a binder on a current collector, a step of cold pressing the current collector on which the electrode material is arranged, and the binder melts the electrode material heated to a temperature, a step of manufacturing an electrode in which the electrode filling rate is 30 to 60 vol%, giving a strain stress to the electrode subjected to cold pressing to the electrodes, electrode filling factor and 40 to 70 vol% A stroke, a stroke in which a positive electrode and a negative electrode including an electrode to which a strain stress is applied are opposed to each other through a separator and wound in a cylindrical container, and an electrolyte is injected into the container A process for swelling the electrode and generating a compressive stress with the container.
JP08730898A 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery Expired - Fee Related JP3956478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08730898A JP3956478B2 (en) 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08730898A JP3956478B2 (en) 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH11288739A JPH11288739A (en) 1999-10-19
JP3956478B2 true JP3956478B2 (en) 2007-08-08

Family

ID=13911215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08730898A Expired - Fee Related JP3956478B2 (en) 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3956478B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649696B2 (en) * 2000-02-04 2011-03-16 パナソニック株式会社 Method for producing electrode for non-aqueous electrolyte secondary battery
JP4830180B2 (en) * 2000-07-03 2011-12-07 パナソニック株式会社 Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP2005276516A (en) * 2004-03-23 2005-10-06 Nec Tokin Corp Secondary battery and its manufacturing method
JP5541957B2 (en) * 2010-04-13 2014-07-09 シャープ株式会社 Multilayer secondary battery
JP5636965B2 (en) * 2011-01-05 2014-12-10 トヨタ自動車株式会社 Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery
KR20150022264A (en) * 2013-08-22 2015-03-04 삼성에스디아이 주식회사 Method of preparing a lithium secondary battery and lithium secondary battery prepared by the method
JP6126546B2 (en) * 2014-03-26 2017-05-10 株式会社日立製作所 Method and apparatus for producing negative electrode for lithium ion secondary battery
CN115224366A (en) * 2021-04-16 2022-10-21 北京好风光储能技术有限公司 Preparation method of battery
JP7268081B2 (en) * 2021-04-28 2023-05-02 プライムプラネットエナジー&ソリューションズ株式会社 Electrode sheet manufacturing method
CN114527178B (en) * 2022-03-17 2024-03-29 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, battery and preparation method thereof

Also Published As

Publication number Publication date
JPH11288739A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP2016103338A (en) Manufacturing method for cathode for lithium ion secondary battery
JP3956478B2 (en) Method for manufacturing lithium ion secondary battery
JPH1055823A (en) Battery
JP5114857B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP2000149905A (en) Solid electrolyte battery
JP3475001B2 (en) Manufacturing method of non-aqueous electrolyte battery
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
US6114062A (en) Electrode for lithium secondary battery and method for manufacturing electrode for lithium secondary battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP3109497B2 (en) Lithium secondary battery and method of manufacturing the same
JP3263198B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2671387B2 (en) Cylindrical lithium secondary battery
JPH05159803A (en) Manufacture of solid secondary battery
JP4436464B2 (en) Lithium ion battery
JP2003157903A (en) Manufacturing method of nonaqueous secondary cell
JPH04259764A (en) Lithium secondary battery
US20220238891A1 (en) Electrode and electricity storage device
KR101373723B1 (en) Manufacturing method of cathode of lithium primary battery
JPH10241731A (en) Polymer solid electrolyte battery and manufacture thereof
JP3702568B2 (en) Organic electrolyte secondary battery
CN112635842B (en) Solid-state battery and processing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees