[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3952093B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP3952093B2
JP3952093B2 JP33661996A JP33661996A JP3952093B2 JP 3952093 B2 JP3952093 B2 JP 3952093B2 JP 33661996 A JP33661996 A JP 33661996A JP 33661996 A JP33661996 A JP 33661996A JP 3952093 B2 JP3952093 B2 JP 3952093B2
Authority
JP
Japan
Prior art keywords
positive
negative electrode
leads
battery
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33661996A
Other languages
Japanese (ja)
Other versions
JPH10172534A (en
Inventor
久和 樋口
剛文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP33661996A priority Critical patent/JP3952093B2/en
Publication of JPH10172534A publication Critical patent/JPH10172534A/en
Application granted granted Critical
Publication of JP3952093B2 publication Critical patent/JP3952093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正負電極をセパレータを介して巻回又は積層し、これらの正負電極をリードを介して正負極端子に接続した電池に関する。
【0002】
【従来の技術】
巻回型のリチウムイオン2次電池は、図3に示すように、帯状の正極1と負極2と2枚のセパレータ3,3を重ね合わせて巻回する。正極1は、帯状のアルミニウム箔1aの表裏面に正極活物質1bを塗布したものであり、負極2は、帯状の銅箔2aの表裏面に負極活物質2bを塗布したものである。そして、正極1上辺部の適宜箇所には、複数本の正極リード4が下端部を接続固定され、負極2の適宜箇所には、複数本の負極リード5が下端部を接続固定されている。正極リード4は、縦に細長いアルミニウムの箔からなり、負極リード5は、縦に細長い銅の箔からなる。セパレータ3,3は、これら正負電極1,2よりも少し幅広の帯状の薄い絶縁性の不織布等を用いる。
【0003】
上記正負電極1,2と2枚のセパレータ3,3は、互い違いに重ね合わせて巻回することにより、図4に示すような電池エレメント6を構成する。この際、複数本の正負極リード4,5は、この電池エレメント6の上端からランダムに突出する。そこで、図5に示すように、正極リード4は、これらの上端部をまとめて、図示しない電池ケースに取り付けられた正極端子7に接続固定する。また、複数本の負極リード5も、これらの上端部をまとめて、負極端子8に接続固定する。ただし、これらの正極リード4と負極リード5は、ランダムな位置から突出するので、正負極端子7,8に接続する際に互いに接触する場合がある。このため、これらの正負極リード4,5は、予めポリプロピレン等の絶縁テープを両面に貼って、接触による短絡を防止するようになっている。
【0004】
【発明が解決しようとする課題】
上記リチウムイオン2次電池は、正負極端子7,8が外部で短絡すると、電池内部の正負極リード4,5に大きな外部短絡電流が流れることになる。ところが、従来は、正負極リード4,5がこの外部短絡電流に耐え得るような設計になっていなかった。従って、外部短絡が発生し正負極リード4,5に外部短絡電流が流れると、発熱によってアルミニウムや銅の箔が溶融して切断されることにより溶断し、この際に絶縁テープも溶融飛散するので、切断部分がむき出しとなる。しかも、正負極リード4,5のいずれか一方のみが溶断するとは限らず、双方が共に溶断する場合もあるので、これら正極リード4と負極リード5の露出した切断部分が互いに接触して内部短絡を起こすおそれがある。
【0005】
このため、従来のリチウムイオン2次電池では、外部短絡が発生した場合に、電池内部の正負極リード4,5が共に溶断することがあり、このために内部短絡を起こすおそれがあるという問題があった。
【0006】
なお、この問題は、上記巻回型のリチウムイオン2次電池に限らず、正負極リード4,5が電池エレメント6の一端からランダムに突出する構造の電池一般に共通するものであり、この電池エレメント6を楕円状に巻回した楕円型の電池にも共通する。
【0007】
ただし、正負電極1,2とセパレータ3,3を巻回する際に、正極リード4と負極リード5をそれぞれ電池エレメント6の上端の左右に振り分けて突出させた場合や、正極リード4と負極リード5をそれぞれ電池エレメント6の上下端に分けて突出させた場合には、上記のように正負極リード4,5が共に溶断しても、これらが直接接触することはない。また、正負電極1,2をセパレータ3,3を介して積層する積層型の電池の場合にも、正極リード4と負極リード5の突出位置を容易に分離できるので、これらが直接接触するのを簡単に防止できる。しかし、このような電池であっても、正負極リード4,5が共に溶断すると、これらの露出した切断部分がそれぞれ異なる箇所で導電性の電池ケース等に接触する可能性があるので、この電池ケース等を介して内部短絡を起こすおそれがあるという問題は生じる。
【0008】
また、上記従来の電池は、外部短絡が発生した場合に、正負極リード4,5がいずれも溶断しない場合があり、この場合には外部短絡電流が流れ続けることになる。外部短絡のみが発生した場合には、外部短絡電流がそれぞれ複数本ずつの正負極リード4,5に分割されて流れるが、さらに内部短絡が発生すると、内部短絡電流が実際に接触した1本ずつの正負極リード4,5に集中的に流れるので、発熱量が増大し安全弁作動や電池破裂のおそれが高くなる。従って、このような内部短絡の発生を防止するために、従来から上記問題の解消が強く望まれていた。しかし、外部短絡のみが発生した場合にも、電池内部に大きな外部短絡電流が流れるので、これによる発熱によって安全弁作動や電池破裂のおそれを完全に回避することはできず、このために外部短絡電流も確実に遮断したいという要請が従来からある。そして、このような外部短絡電流を遮断するためにはCIDと称される電流回路遮断装置を設ければよいが、電池内部に別途CIDと称される電流回路遮断装置を取り付けると、電池スペースが圧迫されると共に、製造コストも上昇するという問題が発生する。
【0009】
本発明は、かかる事情に鑑みてなされたものであり、外部短絡が発生した場合に正負いずれか一方のリードのみを積極的に溶断させることにより、双方のリードの溶断による内部短絡の発生を防止できる電池を提供することを目的としている。
【0010】
【課題を解決するための手段】
請求項1の発明は、正負電極がセパレータを介して近接配置され、かつ、これらの正負電極がそれぞれ1本又は2本以上のリードを介して正負極端子に接続された電池において、正負いずれか一方の電極に接続されるリードを、その材質と総断面積に基づく溶断限界電流が外部短絡電流未満の値となるように設定し、他方の電極に接続されるリードを、その材質と総断面積に基づく溶断限界電流が外部短絡電流を超える値となるように設定することにより、正負極のリードに外部短絡電流が流れた場合に、一方の電極に接続されるリードのみが溶断し、他方の電極に接続されるリードは溶断されないようにしたことを特徴とする。
【0011】
請求項1の発明によれば、電池の外部で正負極端子間が短絡し、正負電極に接続されるリードにそれぞれ外部短絡電流が流れると、一方の電極に接続されるリードは、このリードの溶断限界電流を超える電流が流れることになるので、全て溶断して電極と端子間が遮断される。しかし、他方の電極に接続されるリードは、外部短絡電流が流れてもこのリードの溶断限界電流を超えることがないので、いずれも溶断することはない。従って、外部短絡が発生すると、確実に一方の電極に接続されるリードが溶断して外部短絡電流を遮断するので、これらのリードをヒューズとして機能させることができる。しかも、外部短絡が発生しても、他方の電極に接続されるリードが溶断することはないので、正負電極に接続されるリードが共に溶断して互いに直接又は電池ケース等を介して短絡することにより内部短絡を発生するおそれもなくすことができる。
【0012】
なお、溶断限界電流は、一方又は他方の電極に接続される1本又は2本以上のリードが溶断に至る限界の電流値であり、これらのリードの材質と総断面積に基づいて定まる値である。また、外部短絡電流は、その電池の端子電圧や内部抵抗によって定まる値である。
【0013】
【0014】
【0015】
【0016】
【0017】
【0018】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0019】
図1〜図2は本発明の一実施形態を示すものであって、図1は巻回型のリチウムイオン2次電池における電池エレメントの斜視図、図2は正負極リードを接続固定した正負電極とセパレータの展開斜視図である。なお、図3〜図5に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0020】
本実施形態は、巻回型のリチウムイオン2次電池について説明する。図2に示すように、本実施形態のリチウムイオン2次電池も、図3に示した従来例と同じ構成の正極1と負極2と2枚のセパレータ3,3を用いる。また、正極1と負極2の上辺部に、それぞれ従来例と同様の複数本の正極リード4と負極リード5が接続固定されている。
【0021】
ただし、負極リード5は、正極リード4に比べて箔の幅が半分以下に狭く形成されている。負極リード5は、厚さ70μm程度の銅の箔からなり、正極リード4は、厚さ100μm程度であるが、導電率が銅の7割程度のアルミニウムの箔からなるので、箔の幅が同じであれば、これらの許容電流もほぼ同一になる。従って、実際の負極リード5の許容電流は、正極リード4の許容電流の半分以下となる。また、正負極リード4,5が溶断に至る限界の溶断限界電流は、それぞれの許容電流に応じてこれよりも大きな値となるので、負極リード5の溶断限界電流は、正極リード4の溶断限界電流よりも十分に小さくなる。そして、負極リード5の溶断限界電流は、本実施形態のリチウムイオン2次電池が外部短絡を発生した場合に流れる外部短絡電流よりも小さく、かつ、正極リード4の溶断限界電流は、この外部短絡電流よりも大きくなるように設定されている。なお、これら正負極リード4,5の溶断限界電流や許容電流は、それぞれ複数本ずつの各正負極リード4,5における個々の溶断限界電流や許容電流を合計したものである。
【0022】
上記正負極リード4,5をそれぞれ接続固定した正負電極1,2は、2枚のセパレータ3,3を介して互い違いに重ね合わせて巻回し、図1に示すような電池エレメント6を構成させる。そして、この電池エレメント6の上端からランダムに突出した正極リード4の上端部をまとめて、正極端子7に接続固定すると共に、同じ上端からランダムに突出した負極リード5の上端部をまとめて、負極端子8に接続固定する。この際、各正負極リード4,5は、従来と同様に予めポリプロピレン等の絶縁テープを両面に貼っているので、互いに接触しても短絡するようなことはない。そして、これらの正負極端子7,8の上端部のみを外部に突出させてこの電池エレメント6を図示しない電池ケース内に収納し電解液を充填して密封することによりリチウムイオン2次電池を完成する。
【0023】
上記構成のリチウムイオン2次電池は、外部で正負極端子7,8の間が短絡し外部短絡電流が流れると、負極リード5に溶断限界電流を超える電流が流れることになるので、これらの負極リード5が全て溶断して負極2と負極端子8との間が遮断される。従って、外部短絡が発生した場合には、確実に負極リード5が溶断して外部短絡電流を遮断するので、これらの負極リード5を電流遮断手段として機能させることができる。また、正極リード4は、溶断限界電流が外部短絡電流よりも大きいので、外部短絡が発生しても溶断することはない。従って、負極リード5が溶断し絶縁テープが溶融飛散して露出した切断部分が正極リード4に接触するようなことがあったとしても、この正極リード4は絶縁テープによって被覆されているので、内部短絡が発生するおそれはない。
【0024】
なお、本実施形態では、外部短絡電流が負極リード5の溶断限界電流と正極リード4の溶断限界電流との間になるように設定したが、外部短絡電流とは無関係に負極リード5の許容電流が正極リード4の許容電流の半分以下となるように設定してもよい。この場合、外部短絡の発生により流れる外部短絡電流が負極リード5の許容電流を大きく超えた場合にのみ、これらの負極リード5が溶断して負極2と負極端子8との間を遮断する。しかし、正極リード4の許容電流は負極リード5の許容電流の2倍以上あるため、外部短絡電流がこの正極リード4の許容電流を超えていたとしても、負極リード5の方が先に溶断して外部短絡電流を遮断するので、正極リード4の溶断は回避される。従って、この場合には、外部短絡が発生した場合に必ず外部短絡電流を遮断できるとは限らないが、正負極リード4,5が共に溶断するおそれはないので、内部短絡の発生を確実に防止することができる。
【0025】
また、上記実施形態では、負極リード5側の溶断限界電流や許容電流を小さくしたが、正極リード4側を小さくしても同様の効果を得ることができる。正負極リード4,5の溶断限界電流や許容電流は、本実施例のような箔の幅だけでなく、箔の厚さや箔の材質又は正負極リード4,5の本数によって調整することができる。さらに、上記実施形態では、各正負極リード4,5をそれぞれ1枚ものの均質なアルミニウムや銅の箔で構成したが、これらの材質は任意であり、この材質や断面積が途中で変更されるものであってもよい。この場合、正負極リード4,5の溶断限界電流や許容電流は、各正負極リード4,5における個々の溶断限界電流や許容電流が最も小さい部分に基づいて定まる。また、正極リード4と負極リード5は、本実施形態のように複数本ずつに限らず、1本ずつのみの場合であってもよい。
【0026】
さらに、上記実施形態では、リチウムイオン2次電池について説明したが、正負電極1,2を正負極リード4,5を介して正負極端子7,8に接続する電池であれば、他の種類の2次電池や1次電池にも同様に実施可能である。また、巻回型に限らず楕円型の電池にも同様に実施可能である。ただし、正負極リード4,5をそれぞれ電池エレメント6の上端の左右に振り分けて突出させた電池の場合や、正負極リード4,5をそれぞれ電池エレメント6の上下端に分けて突出させた電池の場合、又は、正負電極1,2をセパレータ3,3を介して積層した積層型の電池であって正負極リード4,5をそれぞれ分離して突出させたものの場合には、もともと正負極リード4,5の双方が溶断したとしても、これらが直接接触して内部短絡が生じることはない。しかし、このような電池であっても、正負極リード4,5が共に溶断した場合には、これらの露出した切断部分がそれぞれ異なる箇所で導電性の電池ケース等に接触する可能性はあるので、本発明により正負極リード4,5双方の溶断を防止すれば、電池ケース等を介した間接的な内部短絡を防止することができるようになる。
【0027】
さらに、上記実施形態では、正負極リード4,5の両面に従来と同様の絶縁テープを貼り付けているが、いずれか一方又は両方の正負極リード4,5の周囲を隙間を開けて絶縁部材で覆うようにしてもよい。絶縁部材は、正負極リード4,5の箔の幅と同じかこれより大きい内径のものを用いれば、少なくともこの箔の表裏面側に隙間を開けることができる。絶縁材としてこのような絶縁部材を用いると、正負極リード4,5が溶断した場合に、箔の縁が接触する内径部分には多少の熱損傷を受けることがあっても、隙間部分によって絶縁部材全体が溶融するようなことはなくなるので、これら正負極リード4,5の絶縁は保持される。従って、この場合には、外部短絡電流により正負極リード4,5の双方が溶断したとしても、少なくとも正負極リード4,5のいずれか一方の切断部分は絶縁部材で絶縁されて露出することはないので、内部短絡の発生を確実に防止することができる。また、この場合には、正負極リード4,5の双方が溶断しても内部短絡を防止できるので、上記実施形態のように正負極リード4,5のいずれか一方の溶断限界電流や許容電流を小さくする必要もなくなる。
【0028】
【発明の効果】
以上の説明から明らかなように、本発明の電池によれば、外部短絡が発生した場合に、いずれか一方のリードの電流遮断機能により外部短絡電流を確実に遮断できるので、別途電池内に電流遮断装置を設ける必要がなくなる。
【0029】
また、外部短絡が発生してリードが溶断する場合に、正負電極に接続されるリードのいずれか一方のみが溶断するようにして、双方のリードが溶断することにより内部短絡が発生するおそれをなくし、安全弁作動や電池破裂を確実に防止することができる。
【0030】
さらに、外部短絡が発生してリードが溶断した場合に、少なくとも正負電極に接続されるリードのいずれか一方の周囲が隙間を開けて絶縁部材で覆われるので、このリードが溶断しても切断部分が露出するようなことがなくなり、内部短絡が発生するおそれをなくすことができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示すものであって、巻回型のリチウムイオン2次電池における電池エレメントの斜視図である。
【図2】 本発明の一実施形態を示すものであって、正負極リードを接続固定した正負電極とセパレータの展開斜視図である。
【図3】 従来例を示すものであって、正負極リードを接続固定した正負電極とセパレータの展開斜視図である。
【図4】 従来例を示すものであって、正負電極とセパレータを巻回して構成した電池エレメントの斜視図である。
【図5】 従来例を示すものであって、巻回型のリチウムイオン2次電池における電池エレメントの斜視図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 正極リード
5 負極リード
7 正極端子
8 負極端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery in which positive and negative electrodes are wound or laminated via a separator and these positive and negative electrodes are connected to positive and negative terminals via leads.
[0002]
[Prior art]
As shown in FIG. 3, the wound type lithium ion secondary battery is formed by winding a belt-like positive electrode 1, a negative electrode 2, and two separators 3, 3. The positive electrode 1 is obtained by applying a positive electrode active material 1b to the front and back surfaces of a strip-like aluminum foil 1a, and the negative electrode 2 is obtained by applying a negative electrode active material 2b to the front and back surfaces of a belt-like copper foil 2a. A plurality of positive electrode leads 4 are connected and fixed at appropriate positions on the upper side of the positive electrode 1, and a plurality of negative electrode leads 5 are connected and fixed at appropriate positions on the negative electrode 2. The positive electrode lead 4 is made of a vertically elongated aluminum foil, and the negative electrode lead 5 is made of a vertically elongated copper foil. For the separators 3 and 3, strip-like thin insulating nonwoven fabric or the like that is slightly wider than the positive and negative electrodes 1 and 2 is used.
[0003]
The positive and negative electrodes 1 and 2 and the two separators 3 and 3 are alternately overlapped and wound to constitute a battery element 6 as shown in FIG. At this time, the plurality of positive and negative leads 4, 5 protrude at random from the upper end of the battery element 6. Therefore, as shown in FIG. 5, the positive electrode lead 4 is connected and fixed to the positive electrode terminal 7 attached to a battery case (not shown) by collecting these upper end portions together. Further, the plurality of negative electrode leads 5 are also connected and fixed to the negative electrode terminal 8 by gathering the upper ends thereof together. However, since the positive electrode lead 4 and the negative electrode lead 5 protrude from random positions, they may come into contact with each other when connecting to the positive and negative terminals 7 and 8. For this reason, these positive and negative electrode leads 4 and 5 are preliminarily pasted with insulating tape such as polypropylene on both surfaces to prevent short circuit due to contact.
[0004]
[Problems to be solved by the invention]
In the lithium ion secondary battery, when the positive and negative terminals 7 and 8 are short-circuited outside, a large external short-circuit current flows through the positive and negative electrodes 4 and 5 inside the battery. However, conventionally, the positive and negative electrode leads 4 and 5 have not been designed to withstand this external short-circuit current. Therefore, when an external short circuit occurs and an external short circuit current flows through the positive and negative electrode leads 4 and 5, the aluminum or copper foil is melted and cut by heat generation, and the insulating tape is melted and scattered at this time. The cut part is exposed. In addition, only one of the positive and negative electrode leads 4 and 5 is not always blown, and both may be blown together. Therefore, the exposed cut portions of the positive electrode lead 4 and the negative electrode lead 5 are in contact with each other to cause an internal short circuit. There is a risk of causing.
[0005]
For this reason, in the conventional lithium ion secondary battery, when an external short circuit occurs, the positive and negative electrode leads 4 and 5 inside the battery may be fused together, which may cause an internal short circuit. there were.
[0006]
This problem is not limited to the above-described wound type lithium ion secondary battery, and is common to batteries having a structure in which the positive and negative electrode leads 4 and 5 randomly protrude from one end of the battery element 6. The same applies to an elliptical battery in which 6 is wound in an elliptical shape.
[0007]
However, when the positive and negative electrodes 1 and 2 and the separators 3 and 3 are wound, the positive electrode lead 4 and the negative electrode lead 5 are distributed to the left and right of the upper end of the battery element 6 respectively, or the positive electrode lead 4 and the negative electrode lead When 5 is divided into the upper and lower ends of the battery element 6 and protrudes, even if the positive and negative electrode leads 4 and 5 are fused together as described above, they are not in direct contact with each other. Also, in the case of a stacked battery in which the positive and negative electrodes 1 and 2 are stacked via the separators 3 and 3, the protruding positions of the positive electrode lead 4 and the negative electrode lead 5 can be easily separated, so that they are in direct contact with each other. It can be easily prevented. However, even in such a battery, when the positive and negative electrode leads 4 and 5 are fused together, there is a possibility that these exposed cut portions may come into contact with a conductive battery case or the like at different locations. There is a problem that an internal short circuit may occur through the case or the like.
[0008]
In the conventional battery, when an external short circuit occurs, both the positive and negative electrode leads 4 and 5 may not melt, and in this case, the external short circuit current continues to flow. When only an external short-circuit occurs, the external short-circuit current flows divided into a plurality of positive and negative leads 4 and 5, respectively. However, when an internal short-circuit occurs, the internal short-circuit current actually contacts each one Therefore, the amount of heat generation increases and the risk of safety valve operation and battery rupture increases. Therefore, in order to prevent the occurrence of such an internal short circuit, it has been strongly desired to eliminate the above problem. However, even when only an external short-circuit occurs, a large external short-circuit current flows inside the battery.Therefore, it is not possible to completely avoid the risk of safety valve operation or battery rupture due to heat generation. In the past, there has been a demand for reliable blocking. In order to cut off such an external short-circuit current, a current circuit cut-off device called CID may be provided. However, if a current circuit cut-off device called CID is separately installed inside the battery, the battery space is reduced. There is a problem that the manufacturing cost increases as the pressure is reduced.
[0009]
The present invention has been made in view of such circumstances. When an external short circuit occurs, only one of the positive and negative leads is actively melted to prevent the occurrence of an internal short circuit due to the melting of both leads. It aims to provide a battery that can be used.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a battery in which positive and negative electrodes are arranged close to each other via a separator, and each of these positive and negative electrodes is connected to positive and negative terminals via one or more leads, respectively. Set the lead connected to one electrode so that the fusing limit current based on the material and the total cross-sectional area is less than the external short-circuit current, and connect the lead connected to the other electrode to the material and the total cut By setting the fusing limit current based on the area to a value that exceeds the external short-circuit current, when the external short-circuit current flows through the positive and negative leads, only the lead connected to one electrode is fused, while the other The leads connected to the electrodes are not fused .
[0011]
According to the invention of claim 1, when the positive and negative terminals are short-circuited outside the battery and an external short-circuit current flows through the leads connected to the positive and negative electrodes, the lead connected to one of the electrodes is Since a current exceeding the fusing limit current flows, all the fusing is performed and the gap between the electrode and the terminal is interrupted. However, since the lead connected to the other electrode does not exceed the fusing limit current of this lead even if an external short-circuit current flows, none of the leads is blown. Therefore, when an external short circuit occurs, the lead connected to one of the electrodes is surely melted and the external short circuit current is interrupted, so that these leads can function as a fuse. Moreover, even if an external short circuit occurs, the leads connected to the other electrode will not melt, so the leads connected to the positive and negative electrodes will melt together and short-circuit each other directly or via a battery case, etc. This eliminates the possibility of an internal short circuit.
[0012]
The fusing limit current is a limit current value at which one or more leads connected to one or the other electrode reach fusing, and is a value determined based on the material and total cross-sectional area of these leads. is there. The external short-circuit current is a value determined by the terminal voltage and internal resistance of the battery.
[0013]
[0014]
[0015]
[0016]
[0017]
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
1 and 2 show an embodiment of the present invention. FIG. 1 is a perspective view of a battery element in a wound lithium ion secondary battery, and FIG. 2 is a positive and negative electrode with positive and negative electrode leads connected and fixed. FIG. In addition, the same number is attached | subjected to the structural member which has a function similar to the prior art example shown in FIGS.
[0020]
In the present embodiment, a wound type lithium ion secondary battery will be described. As shown in FIG. 2, the lithium ion secondary battery of this embodiment also uses a positive electrode 1, a negative electrode 2, and two separators 3 and 3 having the same configuration as that of the conventional example shown in FIG. In addition, a plurality of positive electrode leads 4 and negative electrode leads 5 similar to those in the conventional example are connected and fixed to the upper sides of the positive electrode 1 and the negative electrode 2, respectively.
[0021]
However, the negative electrode lead 5 is formed so that the foil width is less than half that of the positive electrode lead 4. The negative electrode lead 5 is made of a copper foil having a thickness of about 70 μm, and the positive electrode lead 4 is made of an aluminum foil having a conductivity of about 70% of copper, but the width of the foil is the same. If so, these allowable currents are almost the same. Therefore, the actual allowable current of the negative electrode lead 5 is less than half of the allowable current of the positive electrode lead 4. Further, since the fusing limit current at which the positive and negative leads 4 and 5 reach fusing is larger than this depending on the allowable current, the fusing limit current of the negative lead 5 is the fusing limit of the positive lead 4. It is sufficiently smaller than the current. The fusing limit current of the negative electrode lead 5 is smaller than the external short circuit current that flows when the lithium ion secondary battery of this embodiment generates an external short circuit, and the fusing limit current of the positive electrode lead 4 is the external short circuit. It is set to be larger than the current. The fusing limit currents and allowable currents of the positive and negative electrode leads 4 and 5 are the sum of the fusing limit currents and allowable currents of the plurality of positive and negative electrode leads 4 and 5, respectively.
[0022]
The positive and negative electrodes 1 and 2 to which the positive and negative electrode leads 4 and 5 are respectively connected and fixed are alternately overlapped and wound via two separators 3 and 3 to form a battery element 6 as shown in FIG. Then, the upper ends of the positive leads 4 protruding randomly from the upper ends of the battery elements 6 are collected and fixed to the positive terminal 7, and the upper ends of the negative leads 5 protruding randomly from the same upper ends are collected together. Connect and fix to terminal 8. At this time, since each of the positive and negative electrode leads 4 and 5 is preliminarily pasted with an insulating tape such as polypropylene on both sides as in the prior art, it does not short-circuit even if it contacts with each other. Then, only the upper ends of the positive and negative terminals 7 and 8 are protruded to the outside, the battery element 6 is housed in a battery case (not shown), filled with an electrolyte and sealed to complete a lithium ion secondary battery. To do.
[0023]
In the lithium ion secondary battery having the above-described configuration, when the positive and negative terminals 7 and 8 are short-circuited externally and an external short-circuit current flows, a current exceeding the fusing limit current flows through the negative electrode lead 5. All the leads 5 are melted and the gap between the negative electrode 2 and the negative electrode terminal 8 is cut off. Therefore, when an external short circuit occurs, the negative electrode lead 5 is surely melted and the external short circuit current is interrupted, so that these negative electrode leads 5 can function as current interrupting means. In addition, since the fusing limit current is larger than the external short circuit current, the positive electrode lead 4 is not blown even if an external short circuit occurs. Therefore, even if the negative electrode lead 5 is melted and the cut portion exposed by melting and scattering of the insulating tape comes into contact with the positive electrode lead 4, the positive electrode lead 4 is covered with the insulating tape. There is no risk of a short circuit.
[0024]
In this embodiment, the external short-circuit current is set to be between the fusing limit current of the negative electrode lead 5 and the fusing limit current of the positive electrode lead 4, but the allowable current of the negative electrode lead 5 is independent of the external short-circuit current. May be set to be equal to or less than half of the allowable current of the positive electrode lead 4. In this case, only when the external short circuit current that flows due to the occurrence of the external short circuit greatly exceeds the allowable current of the negative electrode lead 5, the negative electrode lead 5 is melted and the negative electrode 2 and the negative electrode terminal 8 are disconnected. However, since the allowable current of the positive electrode lead 4 is more than twice the allowable current of the negative electrode lead 5, even if the external short circuit current exceeds the allowable current of the positive electrode lead 4, the negative electrode lead 5 melts first. Thus, the external short circuit current is interrupted, so that fusing of the positive electrode lead 4 is avoided. Therefore, in this case, it is not always possible to cut off the external short-circuit current when an external short-circuit occurs, but the positive and negative leads 4 and 5 are not likely to melt together, so that the occurrence of an internal short-circuit is reliably prevented. can do.
[0025]
In the above embodiment, the fusing limit current and the allowable current on the negative electrode lead 5 side are reduced, but the same effect can be obtained even if the positive electrode lead 4 side is reduced. The fusing limit current and allowable current of the positive and negative electrode leads 4 and 5 can be adjusted not only by the width of the foil as in this embodiment, but also by the thickness of the foil, the material of the foil, or the number of positive and negative electrode leads 4 and 5. . Furthermore, in the above embodiment, each of the positive and negative electrode leads 4 and 5 is composed of a single piece of homogeneous aluminum or copper foil, but these materials are arbitrary, and the material and cross-sectional area are changed in the middle. It may be a thing. In this case, the fusing limit current and allowable current of the positive and negative electrode leads 4 and 5 are determined based on the portion where the individual fusing limit current and allowable current in the positive and negative electrode leads 4 and 5 are the smallest. Moreover, the positive electrode lead 4 and the negative electrode lead 5 are not limited to a plurality of each as in the present embodiment, but may be only one each.
[0026]
Further, in the above embodiment, the lithium ion secondary battery has been described. However, other types of batteries can be used as long as the batteries connect the positive and negative electrodes 1 and 2 to the positive and negative terminals 7 and 8 through the positive and negative leads 4 and 5. The present invention can be similarly applied to a secondary battery and a primary battery. Further, the invention can be similarly applied to an elliptical battery as well as a wound type. However, in the case of a battery in which the positive and negative electrode leads 4, 5 are respectively projected to the left and right of the upper end of the battery element 6, or in the battery in which the positive and negative electrode leads 4, 5 are respectively projected to the upper and lower ends of the battery element 6. In the case of a laminated battery in which the positive and negative electrodes 1 and 2 are laminated via the separators 3 and 3 with the positive and negative electrode leads 4 and 5 protruding separately from each other, the positive and negative electrode leads 4 are originally provided. , 5 do not cause an internal short circuit due to direct contact with each other. However, even in such a battery, when the positive and negative electrode leads 4 and 5 are fused together, there is a possibility that these exposed cut portions may come into contact with a conductive battery case or the like at different locations. If the fusing of both the positive and negative electrode leads 4 and 5 is prevented according to the present invention, an indirect internal short circuit through the battery case or the like can be prevented.
[0027]
Further, in the above embodiment, the same insulating tape as the conventional one is attached to both surfaces of the positive and negative electrode leads 4, 5, but an insulating member is formed with a gap around one or both of the positive and negative electrode leads 4, 5. You may make it cover with. If an insulating member having an inner diameter equal to or larger than the foil width of the positive and negative electrode leads 4 and 5 is used, a gap can be formed at least on the front and back surfaces of the foil. When such an insulating member is used as an insulating material, even when the positive and negative electrode leads 4 and 5 are blown, the inner diameter portion where the edge of the foil contacts may be somewhat damaged by heat, so that it is insulated by the gap portion. Since the entire member is not melted, the insulation between the positive and negative electrode leads 4 and 5 is maintained. Therefore, in this case, even if both the positive and negative electrode leads 4 and 5 are melted by the external short-circuit current, at least one of the cut portions of the positive and negative electrode leads 4 and 5 is insulated and exposed by the insulating member. Therefore, the occurrence of an internal short circuit can be reliably prevented. In this case, an internal short circuit can be prevented even if both the positive and negative electrode leads 4 and 5 are fused, so that the fusing limit current or allowable current of either the positive or negative electrode leads 4 and 5 as in the above embodiment. There is no need to reduce the size.
[0028]
【The invention's effect】
As is clear from the above description, according to the battery of the present invention, when an external short circuit occurs, the external short circuit current can be reliably interrupted by the current interrupt function of either one of the leads. There is no need to provide a shut-off device.
[0029]
In addition, when an external short circuit occurs and the lead is blown, only one of the leads connected to the positive and negative electrodes is blown to eliminate the possibility of an internal short circuit due to the melting of both leads. , Safety valve operation and battery rupture can be reliably prevented.
[0030]
Furthermore, when an external short circuit occurs and the lead is melted, at least one of the leads connected to the positive and negative electrodes is covered with an insulating member with a gap between them. Is not exposed, and the possibility of an internal short circuit can be eliminated.
[Brief description of the drawings]
FIG. 1, showing an embodiment of the present invention, is a perspective view of a battery element in a wound lithium ion secondary battery.
FIG. 2 is a developed perspective view of a positive and negative electrode and a separator to which positive and negative electrode leads are connected and fixed, according to an embodiment of the present invention.
FIG. 3 is a developed perspective view of a positive and negative electrode and a separator to which positive and negative electrode leads are connected and fixed, showing a conventional example.
FIG. 4 is a perspective view of a battery element that shows a conventional example and is configured by winding positive and negative electrodes and a separator.
FIG. 5 is a perspective view of a battery element in a wound type lithium ion secondary battery, showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead 5 Negative electrode lead 7 Positive electrode terminal 8 Negative electrode terminal

Claims (1)

正負電極がセパレータを介して近接配置され、かつ、これらの正負電極がそれぞれ1本又は2本以上のリードを介して正負極端子に接続された電池において、
正負いずれか一方の電極に接続されるリードを、その材質と総断面積に基づく溶断限界電流が外部短絡電流未満の値となるように設定し、他方の電極に接続されるリードを、その材質と総断面積に基づく溶断限界電流が外部短絡電流を超える値となるように設定することにより、正負極のリードに外部短絡電流が流れた場合に、一方の電極に接続されるリードのみが溶断し、他方の電極に接続されるリードは溶断されないようにしたことを特徴とする電池。
In a battery in which positive and negative electrodes are arranged close to each other via a separator, and each of these positive and negative electrodes is connected to positive and negative terminals via one or more leads,
The lead connected to one of the positive and negative electrodes is set so that the fusing limit current based on the material and the total cross-sectional area is less than the external short circuit current, and the lead connected to the other electrode is made of the material When the external short-circuit current flows through the positive and negative leads, only the lead connected to one of the electrodes is blown The battery is characterized in that the lead connected to the other electrode is not melted .
JP33661996A 1996-12-17 1996-12-17 battery Expired - Lifetime JP3952093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33661996A JP3952093B2 (en) 1996-12-17 1996-12-17 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33661996A JP3952093B2 (en) 1996-12-17 1996-12-17 battery

Publications (2)

Publication Number Publication Date
JPH10172534A JPH10172534A (en) 1998-06-26
JP3952093B2 true JP3952093B2 (en) 2007-08-01

Family

ID=18301034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33661996A Expired - Lifetime JP3952093B2 (en) 1996-12-17 1996-12-17 battery

Country Status (1)

Country Link
JP (1) JP3952093B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497380B2 (en) 1998-06-02 2004-02-16 日本碍子株式会社 Lithium secondary battery
KR100624953B1 (en) * 2004-11-29 2006-09-18 삼성에스디아이 주식회사 Lithium secondary battery
JP4488426B2 (en) * 2005-06-08 2010-06-23 富士重工業株式会社 Storage device control device
JP2007335232A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JPH10172534A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
US9059459B2 (en) Secondary battery
JP4220331B2 (en) Secondary battery safety device and secondary battery equipped with the same
US9496540B2 (en) Secondary battery having electrode with self cutting part to be destructed on application of over-current
JP5704645B2 (en) Secondary battery
JPH11345630A (en) Lithium secondary battery
KR101388354B1 (en) The complex protection device of blocking the abnormal state of current and voltage
JP6151550B2 (en) Protective element
KR20130133162A (en) Current collecting terminal for electrochemical cells
CN112886154A (en) Secondary battery and assembly for secondary battery
JPH08185850A (en) Lithium ion secondary battery
JPH10188946A (en) Rectangular battery with inner short circuit protecting device
JPH1167188A (en) Lead terminal for secondary battery and lithium secondary battery
JP3952093B2 (en) battery
JPH10214614A (en) Battery
JP2001202946A (en) Secondary battery with nonaqueous electrolytic solution
CN208256795U (en) Secondary cell and connection component for it
JPH1167190A (en) Thermal fuse and lithium secondary battery provided therewith
KR102280596B1 (en) High current protection element for secondary battery and battery pack including that
US6218040B1 (en) Automatic circuit breaker for a battery
JP3807186B2 (en) Battery pack
JPH05274994A (en) Current fuse
EP3793032A1 (en) Terminal busbar
WO2021060008A1 (en) Secondary battery
KR101243553B1 (en) Lithium rechargeable battery having a lead plate
US20230402723A1 (en) Battery pack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

EXPY Cancellation because of completion of term