JP3946183B2 - White polyester film - Google Patents
White polyester film Download PDFInfo
- Publication number
- JP3946183B2 JP3946183B2 JP2003365901A JP2003365901A JP3946183B2 JP 3946183 B2 JP3946183 B2 JP 3946183B2 JP 2003365901 A JP2003365901 A JP 2003365901A JP 2003365901 A JP2003365901 A JP 2003365901A JP 3946183 B2 JP3946183 B2 JP 3946183B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- white polyester
- polyester film
- polyester
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920006267 polyester film Polymers 0.000 title claims description 28
- 229920000728 polyester Polymers 0.000 claims description 24
- 239000010419 fine particle Substances 0.000 claims description 19
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000010408 film Substances 0.000 description 95
- 239000010410 layer Substances 0.000 description 40
- 238000000034 method Methods 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 238000005282 brightening Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000009998 heat setting Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229920001634 Copolyester Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、白色ポリエステルフィルムに関し、高い反射率と光沢を備えた白色ポリエステルフィルムに関する。 The present invention relates to a white polyester film, and relates to a white polyester film having high reflectance and gloss.
液晶ディスプレイにおいて従来、ディスプレイの背面からライトを当てるバックライト方式が採用されていたが、近年、特開昭63−62104号公報に示されるようなサイドライト方式が、薄型で均一に照明できるメリットから、広く用いられるようになっている。このサイドライト方式とはある厚みを持ったアクリル板などのエッジより冷陰極管などの照明を当てる方式で、網点印刷のために、照明光が均一に分散され、均一な明るさをもった画面が得られる。この方式では、画面の背面でなくエッジ部に照明を設置するためバックライト方式より薄型にできる。この場合、照明光の画面背面への逃げを防ぐ為に画面の背面に反射板を設置する必要がある。反射板を液晶表示装置内に固定するために通常は接着が行なわれるため、反射板には、接着性とともに、光の高い反射性および光の高い拡散性が要求される。 In the past, a backlight system in which light is applied from the back of the display has been adopted in liquid crystal displays. However, in recent years, the sidelight system as disclosed in JP-A-63-62104 is thin and can be illuminated uniformly. , Has come to be widely used. This sidelight method is a method of illuminating a cold cathode tube or the like from an edge of an acrylic board or the like with a certain thickness. For halftone printing, the illumination light is evenly distributed and has a uniform brightness. A screen is obtained. This method can be made thinner than the backlight method because the lighting is installed not at the back of the screen but at the edge. In this case, it is necessary to install a reflector on the back of the screen in order to prevent the illumination light from escaping to the back of the screen. Adhesion is usually performed in order to fix the reflection plate in the liquid crystal display device. Therefore, the reflection plate is required to have high light reflectivity and high light diffusibility as well as adhesion.
この目的に沿う液晶ディスプレイ反射板用に適したポリエステルフィルムを得る方法として、酸化チタンを含有せしめる方法が知られている。これは比較的安価にできる方法である。たとえば特公平8−16175号公報に記載されている。ただし、非相溶樹脂と酸化チタンを添加するだけでは反射率と拡散性を十分に調整することができず、できあがって液晶ディスプレイは画面の明るさが十分でなく、表面光沢度の調整を行うと反射率が変化してしまい、バックライトの明かり斑やフィルムに欠陥があると欠陥として目立ちやすい。さらに接着性も変化してしまい液晶表示装置内への設置のために接着のための表面処理の必要がでてくるという不都合がある。 As a method of obtaining a polyester film suitable for a liquid crystal display reflector that meets this purpose, a method of incorporating titanium oxide is known. This is a method that can be made relatively inexpensive. For example, it is described in Japanese Patent Publication No. 8-16175. However, the reflectance and diffusivity cannot be adjusted sufficiently by simply adding an incompatible resin and titanium oxide. As a result, the LCD display is not bright enough and the surface gloss is adjusted. The reflectance will change, and if there are defects in the light spots on the backlight or the film, it will be noticeable as a defect. Furthermore, the adhesiveness is also changed, and there is a disadvantage that a surface treatment for adhesion is required for installation in the liquid crystal display device.
また、酸化チタンなどの無機微粒子を高濃度添加した場合には、反射効率の向上こそ期待できるが、たとえば50重量%添加した場合、不活性粒子濃度が非常に高いため、破断が多発し製膜することが非常に困難である。不活性粒子濃度が非常に高い場合の破断の頻度を低下させる現実的な手段として共重合化したポリエステルを用いる方法もとり得るが、実質的に共重合化していないポリエステルを用いた場合に比較して熱収縮率が極めて高くなり、熱寸法安定性が悪いフィルムしか得られない。 In addition, when high concentration of inorganic fine particles such as titanium oxide is added, it can be expected that the reflection efficiency is improved. For example, when 50% by weight is added, the concentration of inert particles is so high that the film breaks frequently and forms a film. It is very difficult to do. As a practical means of reducing the frequency of breakage when the inert particle concentration is very high, a method using a copolymerized polyester can be used, but compared with a case where a polyester that is not substantially copolymerized is used. Only a film with a very high thermal shrinkage and poor thermal dimensional stability can be obtained.
本発明は、かかる従来技術の問題点を解決することを課題とし、実用上十分な可視光領域の反射性能を備え、フィルムの表裏面それぞれの光沢度をコントロールすることができ、そのまま接着により設置することができ、高濃度に無機微粒子を添加しても安定して製膜でき、光源からの熱による寸法変化に対しても安定であり、液晶ディスプレイや内照式電飾看板用の反射板用基材として好適に用いることのできる白色ポリエステルフィルムを提供することを目的とする。 The present invention has an object to solve the problems of the prior art, has a practically sufficient reflection performance in the visible light region, can control the glossiness of the front and back surfaces of the film, and is installed by bonding as it is. Reflective plate for liquid crystal displays and interior lighting signboards that can be stably formed even when inorganic fine particles are added at high concentration, and is stable against dimensional changes due to heat from the light source. An object of the present invention is to provide a white polyester film that can be suitably used as a base material for an automobile.
本発明者らは、白色ポリエステルフィルムを鋭意検討した結果本発明に到達した。すな
わち本発明は、フィルムを構成するポリエステルと非相溶な樹脂を実質的に含有しない白色ポリエステルフィルムであって、波長400〜700nmにおける平均反射率がフィルムの少なくとも一方の面について90%以上であり、フィルムの一方の面と他方の面との光沢度(60°)の差が5〜80である白色ポリエステルフィルムである。
The inventors of the present invention have arrived at the present invention as a result of intensive studies on a white polyester film. That is, the present invention is a white polyester film that substantially does not contain a resin that is incompatible with the polyester constituting the film, and the average reflectance at a wavelength of 400 to 700 nm is 90% or more for at least one surface of the film. The white polyester film has a difference in glossiness (60 °) between one side and the other side of the film of 5 to 80.
以下、本発明を詳細に説明する。
[ポリエステル]
本発明の白色ポリエステルフィルムは、ポリエステルと無機粒子を含有するポリエステル樹脂組成物からなる。
Hereinafter, the present invention will be described in detail.
[polyester]
The white polyester film of the present invention comprises a polyester resin composition containing polyester and inorganic particles.
ポリエステルとしては、ジカルボン酸成分とジオール成分とからなるポリエステルを用いる。ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、2,6―ナフタレンジカルボン酸、4,4’―ジフェニルジカルボン酸、アジピン酸、セバシン酸を挙げることができる。ジオールとしては、例えばエチレングリコール、1,4―ブタンジオール、1,4―シクロヘキサンジメタノール、1,6―ヘキサンジオールを挙げることができる。これらのポリエステルの中で、ポリエステルポリエチレンテレフタレートが好ましい。 As the polyester, a polyester composed of a dicarboxylic acid component and a diol component is used. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, adipic acid, and sebacic acid. Examples of the diol include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol. Of these polyesters, polyester polyethylene terephthalate is preferred.
ポリエステルとしては、高濃度の無機微粒子を添加しても安定して製膜できることから共重合ポリエステルが好ましい。この共重合ポリエステルとしては、融点が250℃以下、好ましくは245℃以下、さらに好ましくは240℃以下のものを用いるとよい。共重合成分としては、アジピン酸、セバシン酸、フタル酸、イソフタル酸、2,6―ナフタレンジカルボン酸、5―ナトリウムスルホイソフタル酸などのジカルボン酸成分を用いることができ、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分を用いることができる。共重合ポリエチレンテレフタレートを用いる場合、共重合成分として、イソフタル酸、ナフタレンジカルボン酸、シクロヘキサンジメタノールが好ましい。 As the polyester, a copolyester is preferable because a stable film can be formed even when high concentration inorganic fine particles are added. As this copolyester, a polyester having a melting point of 250 ° C. or lower, preferably 245 ° C. or lower, more preferably 240 ° C. or lower may be used. As the copolymer component, dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, and 5-sodium sulfoisophthalic acid can be used, and diethylene glycol, neopentyl glycol, poly Diol components such as alkylene glycol can be used. When copolymerized polyethylene terephthalate is used, isophthalic acid, naphthalenedicarboxylic acid, and cyclohexanedimethanol are preferred as the copolymerization component.
共重合成分の割合は、全ジカルボン酸成分あたり、好ましくは1〜30モル%、さらに好ましくは3〜25モル、さらに好ましくは5〜20モル%、特に好ましくは7〜15モル%である。1モル%未満であると無機微粒子を含有する層、例えば10重量%以上の無機粒子を含有するフィルムにおいて延伸応力が高くなり、製膜できないことがある。30モル%を超えると熱寸法安定性に欠けたフィルムになったり、製膜すらできない状況に陥る可能性があり、また、表面拡散光の調整のための粗さの調整もできない可能性がある。 The ratio of the copolymerization component is preferably 1 to 30 mol%, more preferably 3 to 25 mol, further preferably 5 to 20 mol%, and particularly preferably 7 to 15 mol% per total dicarboxylic acid component. If it is less than 1 mol%, the layer containing inorganic fine particles, for example, a film containing 10% by weight or more of inorganic particles has a high stretching stress and may not be formed. If it exceeds 30 mol%, there is a possibility that the film lacks thermal dimensional stability, or even a film cannot be formed, and the roughness for adjusting the surface diffused light may not be adjusted. .
ポリエステルには、公知の各種添加剤、たとえば、酸化防止剤、帯電防止剤、紫外線吸収剤が添加されていても良い。 Various known additives such as an antioxidant, an antistatic agent and an ultraviolet absorber may be added to the polyester.
[無機微粒子]
本発明の白色ポリエステルフィルムは、フィルムを構成する樹脂組成物の重量100重量%あたり無機微粒子を10〜80重量%、好ましくは15〜70重量%、さらに好ましくは20〜60重量%、特に好ましくは25〜55重量含有する。無機微粒子の含有量が10重量%未満であると必要な反射光や白度が得られない。無機微粒子の含有量が80重量%を超えると製膜時に切断が発生しやすい。無機微粒子としては、酸化チタン、硫酸バリウム、炭酸カルシウムおよび二酸化珪素からなる群から選ばれる少なくとも1種類の無機微粒子が好ましい。なお、酸化チタンのうちでもルチル型のものはアナターゼ型のものよりも光線を長時間ポリエステルフィルムに照射した後の黄変が少なく、色差の変化を抑制するのに適していることから好ましい。
[Inorganic fine particles]
The white polyester film of the present invention is 10 to 80% by weight, preferably 15 to 70% by weight, more preferably 20 to 60% by weight, particularly preferably 100% by weight of inorganic fine particles per 100% by weight of the resin composition constituting the film. Contains 25 to 55 weights. When the content of the inorganic fine particles is less than 10% by weight, necessary reflected light and whiteness cannot be obtained. If the content of the inorganic fine particles exceeds 80% by weight, cutting is likely to occur during film formation. As the inorganic fine particles, at least one kind of inorganic fine particles selected from the group consisting of titanium oxide, barium sulfate, calcium carbonate, and silicon dioxide is preferable. Of the titanium oxides, the rutile type is preferable because it has less yellowing after being irradiated on the polyester film for a longer time than the anatase type and is suitable for suppressing changes in color difference.
無機微粒子の平均粒径は、好ましくは0.1〜3.0μm、さらに好ましくは0.2〜2.5μm、さらに好ましくは0.3〜2.0μmである。平均粒径が0.1μm未満のものは分散性が極端に悪くなり、粒子の凝集が起こるため、生産工程上のトラブルが発生し易く、フィルムに粗大突起を形成し、光沢の劣ったフィルムになる可能性があり好ましくなく、3.0μmを超えるとフィルムの表面が粗くなり、光沢が低下するばかりか、適切な範囲に光沢度をコントロールすることが困難となり好ましくない。 The average particle size of the inorganic fine particles is preferably 0.1 to 3.0 μm, more preferably 0.2 to 2.5 μm, and further preferably 0.3 to 2.0 μm. When the average particle size is less than 0.1 μm, the dispersibility becomes extremely poor, and the particles are aggregated. Therefore, troubles in the production process are likely to occur, and coarse protrusions are formed on the film, resulting in a film with poor gloss. If it exceeds 3.0 μm, the surface of the film becomes rough and gloss is lowered, and it is difficult to control the gloss to an appropriate range.
無機微粒子のなかでも特にルチル型酸化チタンは、分散性を向上させるために、ステアリン酸等の脂肪酸およびその誘導体等を用いて処理して用いると、フィルムの光沢度を一層向上させることができるので好ましい。 Among inorganic fine particles, rutile titanium oxide, in particular, can improve the glossiness of the film when treated with a fatty acid such as stearic acid and its derivatives in order to improve dispersibility. preferable.
なお、ルチル型酸化チタンを用いる場合には、ポリエステルに添加する前に、精製プロセスを用いて、粒径調整、粗大粒子除去を行うことが好ましい。精製プロセスの工業的手段としては、粉砕手段で例えばジェットミル、ボールミルを適用することができ、分級手段としては、例えば乾式もしくは湿式の遠心分離を適用することができる。なお、これらの手段は2種以上を組み合わせ、段階的に精製しても良い。 In addition, when using a rutile type titanium oxide, it is preferable to perform a particle size adjustment and coarse particle removal using a refinement | purification process, before adding to polyester. As industrial means of the purification process, for example, a jet mill or a ball mill can be applied as a pulverizing means, and as a classification means, for example, dry or wet centrifugation can be applied. In addition, these means may combine 2 or more types and refine | purify in steps.
また、無機微粒子をポリエステルに含有させる方法としては各種の方法を用いることができる。その代表的な方法として、下記のような方法を挙げることができる。(ア)ポリエステル合成時のエステル交換反応もしくはエステル化反応終了前に添加、もしくは重縮合反応開始前に添加する方法。(イ)ポリエステルに添加し、溶融混練する方法。(ウ)上記(ア)または(イ)の方法において不活性粒子を多量添加したマスターペレットを製造し、これらと添加剤を含有しないポリエステルとを混練して所定量の添加物を含有させる方法。(エ)上記(ウ)のマスターペレットをそのまま使用する方法。 Moreover, various methods can be used as a method of incorporating inorganic fine particles into polyester. The following method can be mentioned as the typical method. (A) A method of adding before transesterification or esterification reaction at the time of polyester synthesis or adding before the start of polycondensation reaction. (A) A method of adding to polyester and melt-kneading. (C) A method of producing master pellets to which a large amount of inert particles are added in the method (a) or (b) above, and kneading these with a polyester not containing an additive to contain a predetermined amount of additive. (D) A method of using the master pellet of (c) as it is.
なお、前記(ア)のポリエステル合成時に添加する方法を用いる場合には、酸化チタンにおいてはグリコールに分散したスラリーとして、反応系に添加することが好ましい。
本発明では、特に上記(ウ)または(エ)の方法をとることが好ましい。
In addition, when using the method added at the time of the said polyester synthesis | combination of (a), it is preferable to add to a reaction system as a slurry disperse | distributed to glycol in titanium oxide.
In the present invention, it is particularly preferable to take the above method (c) or (d).
一般的に無機微粒子は、凝集して粗大凝集粒子となることが多い。本発明では、粗大凝集粒子の個数を減らすに、製膜時のフィルターとして線径15μm以下のステンレス鋼細線よりなる平均目開き10〜100μm、好ましくは平均目開き20〜50μmの不織布型フィルターを用い、溶融ポリマーを濾過することが好ましい。 In general, inorganic fine particles often aggregate to become coarse aggregated particles. In the present invention, in order to reduce the number of coarse agglomerated particles, a non-woven filter having an average opening of 10 to 100 μm, preferably an average opening of 20 to 50 μm, made of a stainless steel fine wire having a wire diameter of 15 μm or less is used as a filter during film formation. It is preferred to filter the molten polymer.
[添加剤]
ポリエステル組成物には、添加剤として、酸化アルミニウム、酸化マグネシウムやアクリル樹脂、尿素樹脂、メラミン樹脂のような有機フィラー、ポリエチレン、ポリプロピレン、エチレン−プロピレンターポリマー、オレフィン系アイオノマーのような他の樹脂、酸化防止剤、紫外線吸収剤、蛍光増白剤、等を本発明の範囲を逸脱しない範囲内で、必要に応じて混合して含有することができる。
[Additive]
In the polyester composition, as additives, aluminum oxide, magnesium oxide, acrylic resin, urea resin, organic filler such as melamine resin, other resins such as polyethylene, polypropylene, ethylene-propylene terpolymer, olefinic ionomer, Antioxidants, ultraviolet absorbers, fluorescent brighteners, and the like can be mixed as necessary without departing from the scope of the present invention.
また、蛍光増白剤を用いる場合、蛍光増白剤は、ポリエステル組成物に対する濃度として好ましくは0.005〜0.2重量%、さらに好ましくは0.01〜0.1重量%の範囲で配合するといよい。蛍光増白剤の添加量が0.01重量%未満では350nm付近の波長域の反射率が十分でなく、反射板とした時に照度が十分なものとならないことから好ましくない。0.2重量%を越えると、蛍光増白剤の持つ特有の色が現れてしまうため好ましくない。蛍光増白剤としては、例えばOB−1(イーストマン社製)、Uvitex−MD(チバガイギー社製)、JP−Conc(日本化学工業所製)を用いることができる。 When using a fluorescent brightening agent, the fluorescent brightening agent is preferably added in a range of 0.005 to 0.2% by weight, more preferably 0.01 to 0.1% by weight as a concentration relative to the polyester composition. Then finally. If the addition amount of the fluorescent brightening agent is less than 0.01% by weight, the reflectance in the wavelength region near 350 nm is not sufficient, and the illuminance is not sufficient when the reflector is used. If it exceeds 0.2% by weight, a specific color of the fluorescent whitening agent appears, which is not preferable. As the fluorescent brightening agent, for example, OB-1 (manufactured by Eastman), Uvitex-MD (manufactured by Ciba Geigy), or JP-Conc (manufactured by Nippon Chemical Industry Co., Ltd.) can be used.
また、本発明の白色ポリエステルフィルムは、フィルムを構成するポリエステルと非相溶な樹脂を実質的に含有しないことが好ましい。非相溶な樹脂を含有させ、その界面でのボイドでもって反射率や白度を設計された白色ポリエステルフィルムは両面の光沢度差を付けるために延伸温度を変更するとボイドの形成状況が変化し、反射率や白度に影響を与えることがある。 Moreover, it is preferable that the white polyester film of this invention does not contain substantially resin incompatible with the polyester which comprises a film. A white polyester film that contains an incompatible resin and is designed for reflectivity and whiteness with voids at the interface changes the formation of voids when the stretching temperature is changed to provide a difference in glossiness on both sides. May affect reflectivity and whiteness.
[製膜]
本発明における白色ポリエステルフィルムは、単一の層からなる単層フィルムであってもよく、複数の層からなる積層フィルムであってもよい。複数の層からなる場合、例えば、A層/B層の2層構成であっても良く、A層/B層/A層あるいはA層/B層/C層の3層構成であってもよく、これらの構成を含む4層以上の構成であっても良い。
[Film formation]
The white polyester film in the present invention may be a single layer film composed of a single layer or a laminated film composed of a plurality of layers. In the case of a plurality of layers, for example, a two-layer configuration of A layer / B layer may be employed, or a three-layer configuration of A layer / B layer / A layer or A layer / B layer / C layer may be employed. Further, a configuration of four or more layers including these configurations may be used.
製膜上の容易さと効果を考慮すると単層あるいは2層あるいはA層/B層/A層からなる3層の形態が特に良好である。またフィルムの片面または両面に、他の機能を付与するために、他の層をさらに積層した積層体としても良い。ここでいう他の層とは、透明なポリエステルフィルム、金属薄膜やハードコート層、インク受容層などが挙げられる。 Considering the easiness and effect on film formation, the form of single layer or two layers or three layers comprising A layer / B layer / A layer is particularly good. Moreover, in order to provide other functions to one side or both sides of the film, a laminate in which other layers are further laminated may be used. Examples of the other layers include transparent polyester films, metal thin films, hard coat layers, and ink receiving layers.
本発明のフィルムを製造する方法の一例を説明する。単層フィルムの場合は、ダイから溶融したポリマーを押し出し未延伸シートを製造する。積層フィルムの場合はフィードブロックを用いた同時多層押出し法により、積層未延伸シートを製造する。すなわちA層を形成するポリマーの溶融物とB層を形成するポリマーの溶融物を、フィードブロックを用いてA層/B層/A層となるように積層し、ダイに展開して押出しを実施する。この時、フィードブロックで積層されたポリマーは積層された形態を維持している。 An example of the method for producing the film of the present invention will be described. In the case of a single layer film, an unstretched sheet is produced by extruding a molten polymer from a die. In the case of a laminated film, a laminated unstretched sheet is produced by a simultaneous multilayer extrusion method using a feed block. That is, the polymer melt for forming the A layer and the polymer melt for forming the B layer are laminated using a feed block so as to be A layer / B layer / A layer, and then developed on a die and extruded. To do. At this time, the polymer laminated by the feed block maintains the laminated form.
ダイより押出された未延伸シートは、キャスティングドラムで冷却固化され、未延伸フィルムとなる。この未延伸状フィルムをロール加熱、赤外線加熱等で加熱し、縦方向に延伸して縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。延伸温度はポリエステルのガラス転移点(Tg)以上の温度、更にはTg〜70℃高い温度とするのが好ましい。 The unstretched sheet extruded from the die is cooled and solidified by a casting drum to form an unstretched film. This unstretched film is heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The stretching temperature is preferably a temperature equal to or higher than the glass transition point (Tg) of the polyester, and more preferably a temperature higher by Tg to 70 ° C.
調整しようとするフィルム面側の延伸温度を高めに設定すればするほど、本構成のフィルム表面が粗化し、逆に延伸温度を低めに設定すればするほどフィルム表面は平坦化の方向に向かい、フィルム表面での光沢度すなわち拡散光を調整することが可能になり、実質的にフィルムの色目や反射率、熱寸法安定性等あるいはフィルムの構成変更することなく、本記載の光沢度の範囲を実現できる。 The higher the stretching temperature on the film surface side to be adjusted, the rougher the film surface of this configuration, and the lower the stretching temperature, the more the film surface goes in the direction of flattening. It is possible to adjust the glossiness on the film surface, that is, the diffused light, and the glossiness range described in this description can be substantially reduced without changing the film color, reflectance, thermal dimensional stability, etc. or the composition of the film. realizable.
本発明の白色ポリエステルフィルムの光沢度は、フィルムの一方の面と他方の面の光沢度の差が5〜80、好ましくは7〜75、さらに好ましくは10〜70である。表裏差が80を越えるとフィルム表裏面での温度差が大きくなり過ぎ、延伸斑やひどい場合には破断に至る事がある。表裏差が5未満であると、受容シート、反射板シートのそれぞれの用途で共用されうる範囲から逸脱してしまうため、また十分に良好な接着性を備えないことから好ましくない。 The glossiness of the white polyester film of the present invention is such that the difference in glossiness between one side and the other side of the film is 5 to 80, preferably 7 to 75, more preferably 10 to 70. If the difference between the front and back surfaces exceeds 80, the temperature difference between the front and back surfaces of the film becomes too large, and in the case of stretch spots or severe damage, the film may be broken. If the difference between the front and back sides is less than 5, it deviates from the range that can be commonly used for the receiving sheet and the reflector sheet, and it is not preferable because it does not have sufficiently good adhesiveness.
延伸倍率は、用途の要求特性にもよるが、縦方向、縦方向と直交する方向(以降、横方向と呼ぶ)とも、好ましくは2.5〜4.0倍、さらに好ましくは2.8〜3.9倍である。2.5倍未満とするとフィルムの厚み斑が悪くなり良好なフィルムが得られず、4.0倍を超えると製膜中に破断が発生し易くなり好ましくない。 The draw ratio is preferably 2.5 to 4.0 times, more preferably 2.8 to both the longitudinal direction and the direction orthogonal to the longitudinal direction (hereinafter referred to as the transverse direction), although depending on the required characteristics of the application. 3.9 times. If it is less than 2.5 times, the thickness unevenness of the film is deteriorated and a good film cannot be obtained, and if it exceeds 4.0 times, breakage tends to occur during film formation, which is not preferable.
縦延伸後のフィルムは、続いて、横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、これら処理はフィルムを走行させながら行う。横延伸の処理はポリエステルのガラス転移点(Tg)より高い温度から始める。そしてTgより(5〜70)℃高い温度まで昇温しながら行う。横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが通常逐次的に昇温する。例えばテンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。先の縦延伸で述べた様に横延伸温度においても延伸温度の調整により、フィルム表面の状態を調整できるが、先に1軸方向に延伸してしまっているため、2段目(ここでの横延伸)としての調整は効果が低いため、好ましくは1段目(ここでは縦延伸)で行ったほうがより調整しやすい。横延伸の倍率は、この用途の要求特性にもよるが、好ましくは2.5〜4.5倍、さらに好ましくは2.8〜3.9倍である。2.5倍未満するとフィルムの厚み斑が悪くなり良好なフィルムが得られず、4.5倍を超えると製膜中に破断が発生し易くなる。 Subsequently, the film after longitudinal stretching is subjected to lateral stretching, heat setting, and thermal relaxation in order to form a biaxially oriented film. These processes are performed while the film is running. The transverse stretching process starts from a temperature higher than the glass transition point (Tg) of the polyester. And it is performed while raising the temperature to (5 to 70) ° C. higher than Tg. Although the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), the temperature is usually raised sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone. As described in the previous longitudinal stretching, the state of the film surface can be adjusted by adjusting the stretching temperature even at the lateral stretching temperature. However, since the film has been stretched in the uniaxial direction first, the second stage (here Since adjustment as transverse stretching is less effective, the adjustment is preferably performed in the first stage (longitudinal stretching here). The transverse stretching ratio is preferably 2.5 to 4.5 times, more preferably 2.8 to 3.9 times, although it depends on the required characteristics of this application. If it is less than 2.5 times, the thickness unevenness of the film is deteriorated and a good film cannot be obtained, and if it exceeds 4.5 times, breakage tends to occur during film formation.
横延伸後のフィルムは両端を把持したまま(Tm―20〜80)℃で定幅または10%以下の幅減少下で熱処理して熱収縮率を低下させるのがよい。これより高い温度であるとフィルムの平面性が悪くなり、厚み斑が大きくなり好ましくない。また、熱処理温度が(Tm―80)℃より低いと熱収縮率が大きくなることがある。また、熱固定後フィルム温度を常温に戻す過程で(Tm―20〜80)℃以下の領域の熱収縮量を調整する為に、把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1〜1.2%の速度ダウンすなわち弛緩(以降この値を弛緩率という)を実施する。より好ましくは0.2〜1.0%の弛緩率、さらに好ましくは0.3〜0.9%の弛緩率を実施し縦方向の熱収縮率を調整する。また、フィルム横方向は両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることもできる。 The film after transverse stretching is preferably heat-treated at a constant width or a width reduction of 10% or less at a temperature (Tm-20 to 80) while holding both ends to reduce the thermal shrinkage. When the temperature is higher than this, the flatness of the film is deteriorated, and the thickness unevenness becomes large, which is not preferable. On the other hand, if the heat treatment temperature is lower than (Tm-80) ° C., the thermal shrinkage rate may increase. Also, in order to adjust the heat shrinkage in the region below (Tm-20-80) ° C in the process of returning the film temperature to room temperature after heat setting, both ends of the film being gripped are cut off and the film is pulled in the vertical direction Can be adjusted and relaxed in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, and preferably the speed is reduced by 0.1 to 1.2%, that is, relaxation (hereinafter this value is referred to as the relaxation rate). More preferably, a relaxation rate of 0.2 to 1.0%, more preferably a relaxation rate of 0.3 to 0.9% is performed to adjust the heat shrinkage rate in the longitudinal direction. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, so that a desired heat shrinkage rate can be obtained.
このようにして得られる本発明の白色ポリエステルフィルムの85℃の熱収縮率は、好ましくは縦方向、横方向ともに0.7%以下、さらに好ましくは0.6%以下、最も好ましくは0.5%以下である。フィルムの厚みは、好ましくは25〜250μm、さらに好ましくは30〜220μm、さらに好ましくは40〜200μmである。25μm以下であると、反射率が低下し、250μmを超えるとこれ以上厚くしても反射率の上昇が望めないことから好ましくない。 The white polyester film of the present invention thus obtained has a heat shrinkage rate of 85 ° C. of preferably 0.7% or less, more preferably 0.6% or less, and most preferably 0.5% in both the vertical and horizontal directions. % Or less. The thickness of a film becomes like this. Preferably it is 25-250 micrometers, More preferably, it is 30-220 micrometers, More preferably, it is 40-200 micrometers. If the thickness is 25 μm or less, the reflectance is lowered, and if it exceeds 250 μm, the reflectance cannot be increased even if it is thicker than this, which is not preferable.
本発明の白色ポリエステルフィルムの少なくとも一方の表面の反射率は波長400〜700nmの平均反射率でみて90%以上、さらに好ましくは92%以上、さらに好ましくは94%以上である。90%未満であると十分な反射率を得ることができない。 The reflectance of at least one surface of the white polyester film of the present invention is 90% or more, more preferably 92% or more, further preferably 94% or more in terms of the average reflectance at a wavelength of 400 to 700 nm. If it is less than 90%, sufficient reflectance cannot be obtained.
従来の技術では表面の光沢度、すなわち表面での光の拡散性、をフィルムの表面と裏面について個別に調整しなおかつ高い反射率を備えた白色ポリエステルフィルムを得ることはできなかったが、本構成のポリエステルフィルムを用いれば、使用されるフィルム表面の光拡散性を考慮してフィルムの表面と裏面の光沢度を個別にコントロールし、高い反射率と接着性を備えたフィルムを得ることができる。 In the conventional technology, the glossiness of the surface, that is, the light diffusibility on the surface, could not be individually adjusted for the front and back surfaces of the film, and a white polyester film with high reflectance could not be obtained. If the polyester film is used, the glossiness of the front and back surfaces of the film is individually controlled in consideration of the light diffusibility of the film surface to be used, and a film having high reflectance and adhesiveness can be obtained.
本発明によれば、実用上十分な可視光領域の反射性能を備え、フィルムの表裏面それぞれの光沢度をコントロールすることができ、十分に良好な接着性を備え、高濃度に無機微粒子を添加しても安定して製膜でき、光源からの熱による寸法変化に対しても安定であり、液晶ディスプレイや内照式電飾看板の反射板用基材として好適に用いることのできる白色ポリエステルフィルムを提供することができる。 According to the present invention, practically sufficient visible light region reflection performance is provided, the glossiness of each of the front and back surfaces of the film can be controlled, sufficiently good adhesiveness is added, and inorganic fine particles are added at a high concentration A white polyester film that can be stably formed, is stable against dimensional changes due to heat from the light source, and can be suitably used as a substrate for a reflector of a liquid crystal display or an internally illuminated signboard Can be provided.
以下、実施例により本発明を詳述する。
なお、各特性値は以下の方法で測定した。
(1)フィルム厚み
フィルムサンプルをエレクトリックマイクロメーター(アンリツ製 K−402B)にて、10点厚みを測定し、平均値をフィルムの厚みとした。
Hereinafter, the present invention will be described in detail by way of examples.
Each characteristic value was measured by the following method.
(1) Film thickness A film sample was measured for 10-point thickness with an electric micrometer (K-402B manufactured by Anritsu), and the average value was taken as the thickness of the film.
(2)各層の厚み
サンプルを三角形に切り出し、包埋カプセルに固定後、エポキシ樹脂にて包埋する。そして、包埋されたサンプルをミクロトーム(ULTRACUT−S)で縦方向に平行な断面を50nm厚の薄膜切片にした後、透過型電子顕微鏡を用いて、加速電圧100kvにて観察撮影し、写真から各層の厚みを測定し、平均厚みを求めた。
(2) Thickness of each layer A sample is cut into triangles, fixed to an embedded capsule, and then embedded in an epoxy resin. Then, after embedding the sample with a microtome (ULTRACUT-S) into a thin film section having a thickness of 50 nm in parallel with the microtome, the specimen was observed and photographed with a transmission electron microscope at an acceleration voltage of 100 kv. The thickness of each layer was measured and the average thickness was determined.
(3)反射率
分光光度計(島津製作所製UV−3101PC)に積分球を取り付け、BaS04白板を100%とした時の反射率を400〜700nmにわたって測定した。得られたチャートより2nm間隔で反射率を読み取った。上記の範囲内で平均値を求めた上、次の基準で判定した。
○:全測定領域において反射率90%以上
△:測定領域において平均反射率90%以上で1部分90%未満がある
×:全測定領域において平均反射率が90%未満
(3) an integrating sphere attached to the reflectance spectrophotometer (Shimadzu UV-3101PC), the reflectance when BaS0 4 white plate was 100% was measured over 400 to 700 nm. The reflectance was read from the obtained chart at intervals of 2 nm. The average value was determined within the above range, and then judged according to the following criteria.
○: Reflectance 90% or more in the entire measurement region Δ: Average reflectance 90% or more in the measurement region and less than 90% in one part ×: Average reflectance in the entire measurement region is less than 90%
(4)延伸性
縦方向2.9倍、横方向3.6〜3.7倍に延伸して製膜し、安定に製膜できるか観察した。下記基準で評価した。
○:1時間以上安定に製膜できる
×:1時間以内に切断が発生し、安定な製膜ができない。
(4) Stretchability The film was stretched 2.9 times in the longitudinal direction and 3.6 to 3.7 times in the transverse direction to form a film, and it was observed whether the film could be stably formed. Evaluation was made according to the following criteria.
○: Stable film formation for 1 hour or more ×: Cutting occurs within 1 hour, and stable film formation cannot be performed.
(5)熱収縮率
85℃に設定されたオーブン中でフィルムを無緊張状態で30分間保持し、加熱処理前後の標点間距離を測定し、下記式により熱収縮率(85℃熱収縮率)を算出した。
熱収縮率%=((L0−L)/L0)×100
L0:熱処理前の標点間距離
L :熱処理後の標点間距離
(5) Thermal shrinkage rate The film was held in an oven set at 85 ° C. for 30 minutes in an unstrained state, the distance between the gauge points before and after the heat treatment was measured, and the thermal shrinkage rate (85 ° C. thermal shrinkage rate) according to the following formula: ) Was calculated.
Thermal shrinkage% = ((L0−L) / L0) × 100
L0: Distance between gauge points before heat treatment L: Distance between gauge points after heat treatment
(6)ガラス転移点(Tg)、融点(Tm)
示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、昇温速度20m/分で測定を行った。
(6) Glass transition point (Tg), melting point (Tm)
Using a differential scanning calorimeter (TA Instruments 2100 DSC), the measurement was performed at a heating rate of 20 m / min.
(7)光沢度(60°)
JIS規格Z8741に準拠し、日本電色工業(株)製のグロスメーター「VGS−SENSOR」を用いて測定した。入射角、受光角ともに60°にてフィルムの片面ずつN=5測定し、それぞれの面の平均値を用いた。
(7) Glossiness (60 °)
In accordance with JIS standard Z8741, the measurement was performed using a gloss meter “VGS-SENSOR” manufactured by Nippon Denshoku Industries Co., Ltd. N = 5 was measured for each side of the film at an incident angle and a light receiving angle of 60 °, and the average value of each side was used.
(8)接着性
フィルム面に厚さ5μmのアクリルハードコート層を形成させ、碁盤目のクロスカット(1mm2のマス目を100個)を施し、その上に24mm幅のセロハンテープ(ニチバン製)を貼り付け、180°の剥離角度で急激に剥がした後、剥離面を観察し、下記の基準で評価を行った。
5:剥離面積が10%未満・・・・・・・・接着力が極めて良好
4:剥離面積が10%以上20%未満・・・接着力良好
3:剥離面積が20%以上30%未満・・・接着力やや良好
2:剥離面積が30%以上40%未満・・・接着力不良
1:剥離面積が40%以上・・・・・・・・接着力極めて不良
(8) Adhesiveness An acrylic hard coat layer with a thickness of 5 μm is formed on the film surface, and a cross cut (100 squares of 1 mm 2 ) is applied thereon, and a 24 mm wide cellophane tape (manufactured by Nichiban) is provided thereon. Was peeled off rapidly at a peeling angle of 180 °, and then the peeled surface was observed and evaluated according to the following criteria.
5: Peeling area is less than 10% ············································································ 4・ ・ Adhesive strength is slightly good 2: Peeling area is 30% or more and less than 40% ・ ・ ・ Inadequate adhesion 1: Peeling area is 40% or more ・ ・ ・ ・ ・ ・ ・ ・ Adhesion is extremely poor
[実施例1〜8]
表1に示す各共重合化された樹脂に表1に示す無機微粒子を添加し、それぞれ280℃に加熱された2台の押出機に供給し、A層ポリマー、B層ポリマーをA層とB層がA/B/Aとなるような3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを記載された延伸温度にてそれぞれのフィルム面(ここではA面側、B面側と表記する)を加熱し長手方向(縦方向)に2.9倍延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き120℃に加熱された雰囲気中で長手に垂直な方向(横方向)に3.6の倍率で延伸した。その後テンター内で表2の温度で熱固定を行い、表2に示す温度領域にて記入された縦方向の弛緩、横方向の幅入れを行い、室温まで冷やして二軸延伸フィルムを得た。得られたフィルムの反射板基材としての物性は表2の通りであった。いずれも接着性の評価は少なくとも片面側が4以上(良好)であった。
[Examples 1 to 8]
The inorganic fine particles shown in Table 1 are added to each copolymerized resin shown in Table 1, and supplied to two extruders each heated to 280 ° C., and the A layer polymer and the B layer polymer are converted into A layer and B The three layers were fed using a three-layer feed block device such that the layers were A / B / A, and formed into a sheet from a die while maintaining the laminated state. Further, the unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 25 ° C. is heated at the described stretching temperature at each of the film surfaces (herein referred to as A-side and B-side) in the longitudinal direction ( The film was stretched 2.9 times in the longitudinal direction) and cooled with a roll group at 25 ° C. Subsequently, the film was stretched at a magnification of 3.6 in the direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 ° C. while being held at both ends of the longitudinally stretched film with clips. Thereafter, heat setting was performed in the tenter at the temperature shown in Table 2, longitudinal relaxation and lateral width entered in the temperature range shown in Table 2 were performed, and the resultant was cooled to room temperature to obtain a biaxially stretched film. Table 2 shows the physical properties of the obtained film as a reflector substrate. In any case, the evaluation of adhesiveness was 4 or more (good) on at least one side.
[実施例9、10]
実施例1〜8の作製方法を単層(すなわち1台の押出機にて樹脂を押出し)にし、表1、2に記載した以外は同様に行った。いずれも接着性の評価は少なくとも片面側が4以上(良好)であった。
[Examples 9 and 10]
The production methods of Examples 1 to 8 were carried out in the same manner except that they were made into a single layer (that is, the resin was extruded by one extruder) and listed in Tables 1 and 2. In any case, the evaluation of adhesiveness was 4 or more (good) on at least one side.
[比較例1]
表1、2に記載した条件にて作製した。縦方向、横方向の弛緩を実施していないため、熱収縮率に対して劣っている。また、表裏の延伸温度を調整していないものは、表裏の光沢度の差がついていないものとなった。接着性の評価は両面とも極めて不良であった。
[Comparative Example 1]
It produced on the conditions described in Table 1,2. Since relaxation in the vertical and horizontal directions is not performed, the heat shrinkage rate is inferior. Moreover, the thing which did not adjust the extending | stretching temperature of front and back was a thing without the difference in the glossiness of front and back. The evaluation of adhesiveness was extremely poor on both sides.
[比較例2]
表1、2に示す条件で製膜した。無機微粒子の含有量が少なく反射率が劣っていた。接着性の評価は両面とも良好以上であったが、光沢度が高いフィルムとして使用せざるを得ないものであった。
[Comparative Example 2]
Films were formed under the conditions shown in Tables 1 and 2. The content of inorganic fine particles was small and the reflectance was poor. The evaluation of adhesiveness was good or better on both sides, but it had to be used as a film with high glossiness.
[比較例3]
表1に示す条件で製膜した。フィルム厚みが不足であり、反射率が劣っていた。
[Comparative Example 3]
A film was formed under the conditions shown in Table 1. The film thickness was insufficient and the reflectivity was inferior.
[比較例4]
表1に示す条件で製膜した。共重合されていない樹脂を用いており、延伸性が極めて低く、製膜時の切断が多発しそのため、フィルムサンプルが作製できなかった。
[Comparative Example 4]
A film was formed under the conditions shown in Table 1. Since a non-copolymerized resin was used, the stretchability was extremely low, and the film was frequently cut during film formation, so that a film sample could not be produced.
[比較例5]
表1に示す条件で製膜した。共重合化されている割合が低く、延伸性の低下を招いた為、製膜時の切断が多発した。そのため、測定できなかった。
[Comparative Example 5]
A film was formed under the conditions shown in Table 1. Since the ratio of copolymerization was low and the stretchability was lowered, cutting during film formation occurred frequently. Therefore, it was not possible to measure.
[比較例6]
A層の樹脂としてポリエチレンテレフタレートを用いこの層に無機微粒子として炭酸カルシウムを14重量%、B層の樹脂としてポリエチレンテレフタレートに非相溶樹脂であるポリメチルペンテン樹脂を10重量%、ポリエチレングリコール1重量%混合し、フィルムを作製した。表1、2に示すが、反射率が劣った結果であった。
[Comparative Example 6]
Polyethylene terephthalate is used as the resin for the A layer, 14% by weight of calcium carbonate is used as inorganic fine particles in this layer, 10% by weight of the polymethylpentene resin that is incompatible with polyethylene terephthalate is used as the resin for the B layer, and 1% by weight of polyethylene glycol A film was prepared by mixing. As shown in Tables 1 and 2, the reflectance was inferior.
本発明のポリエステルフィルムは、光線の反射率が高く、熱寸法変化の特性に優れ、かつ、光沢度がフィルムの両面コントロールされており、各種の反射板、中でも特に液晶ディスプレイの反射板や太陽電池のバックシートに最適に用いることができる。 The polyester film of the present invention has high light reflectivity, excellent thermal dimensional change characteristics, and glossiness is controlled on both sides of the film. Various reflectors, especially reflectors for liquid crystal displays and solar cells. It can be optimally used for the back sheet.
紙代替、すなわちカード、ラベル、シール、宅配伝票、ビデオプリンタ用受像紙、インクジェット、バーコードプリンタ用受像紙、ポスター、地図、無塵紙、表示板、白板、感熱転写、オフセット印刷、テレフォンカード、ICカードなどの各種印刷記録に用いられる受容シートの基材として用いることができる。また、商品や店舗の宣伝に、あるいは駅の案内表示板等に使用する内照式電飾看板や液晶表示装置の反射板用基材、太陽電池のバックシートに好適に用いることができる。 Paper replacement, ie cards, labels, stickers, delivery slips, video printer paper, ink jet, barcode printer paper, posters, maps, dust-free paper, display boards, white boards, thermal transfer, offset printing, telephone cards, ICs It can be used as a base material for receiving sheets used for various printing records such as cards. Moreover, it can be suitably used for advertising of products and stores, or for internally illuminated signboards used for station information display boards, substrates for reflectors of liquid crystal display devices, and back sheets of solar cells.
Claims (5)
リエステルフィルム。 The white polyester film according to claim 1, wherein the heat shrinkage rate at 85 ° C is 0.7% or less in both the longitudinal direction and the transverse direction.
少なくとも1種類の無機微粒子を10〜80重量%含有する、請求項1記載の白色ポリエ
ステルフィルム。 The white polyester film according to claim 1, comprising 10 to 80% by weight of at least one inorganic fine particle selected from the group consisting of titanium oxide, barium sulfate, calcium carbonate, and silicon dioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003365901A JP3946183B2 (en) | 2003-10-27 | 2003-10-27 | White polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003365901A JP3946183B2 (en) | 2003-10-27 | 2003-10-27 | White polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005125700A JP2005125700A (en) | 2005-05-19 |
JP3946183B2 true JP3946183B2 (en) | 2007-07-18 |
Family
ID=34644418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003365901A Expired - Fee Related JP3946183B2 (en) | 2003-10-27 | 2003-10-27 | White polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3946183B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210012995A (en) | 2018-05-18 | 2021-02-03 | 도레이 카부시키가이샤 | White polyester film |
KR20230015314A (en) | 2020-05-22 | 2023-01-31 | 도레이 카부시키가이샤 | LED substrate, laminate, and manufacturing method of LED substrate |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3584612A1 (en) * | 2004-11-12 | 2019-12-25 | Toray Industries, Inc. | White film and backlight using same |
JP4896454B2 (en) * | 2005-07-11 | 2012-03-14 | 帝人デュポンフィルム株式会社 | Laminated film |
CN101346227B (en) * | 2005-12-22 | 2011-03-16 | 三菱树脂株式会社 | Reflective film |
JP4715510B2 (en) * | 2005-12-28 | 2011-07-06 | 東洋紡績株式会社 | Light diffusion film |
JP5204375B2 (en) * | 2006-01-06 | 2013-06-05 | 帝人デュポンフィルム株式会社 | Polyester film for solar cell back surface protective film |
CN101375185B (en) * | 2006-02-03 | 2011-07-06 | 东丽株式会社 | Film for surface light source reflection member |
JP2007208179A (en) * | 2006-02-06 | 2007-08-16 | Teijin Dupont Films Japan Ltd | Plastic film for rear surface protective film of solar cell, and rear surface protective film of solar cell |
JP4971690B2 (en) * | 2006-06-02 | 2012-07-11 | 帝人デュポンフィルム株式会社 | Biaxially stretched film |
JP5108271B2 (en) * | 2006-10-02 | 2012-12-26 | 帝人デュポンフィルム株式会社 | Biaxially stretched laminated polyester film |
CN102269831B (en) * | 2006-10-27 | 2013-09-18 | 东丽株式会社 | White polyester film for light reflective plate |
JP5239448B2 (en) * | 2007-06-04 | 2013-07-17 | 東レ株式会社 | Antistatic white polyester film |
JP5456962B2 (en) * | 2007-10-01 | 2014-04-02 | 帝人デュポンフィルム株式会社 | Laminated film |
JP4988853B2 (en) * | 2007-11-08 | 2012-08-01 | 帝人デュポンフィルム株式会社 | Laminated film |
JP5080217B2 (en) * | 2007-11-26 | 2012-11-21 | 帝人デュポンフィルム株式会社 | Laminated film |
JP2009155427A (en) * | 2007-12-26 | 2009-07-16 | Teijin Dupont Films Japan Ltd | White film for optical duct |
US20110203643A1 (en) * | 2008-12-16 | 2011-08-25 | Techno Polymer Co., Ltd. | Solar cell backsheet and solar cell module provided with same |
CN102362217B (en) | 2009-03-25 | 2015-09-30 | 帝人杜邦薄膜日本有限公司 | White film for reflector |
CN102549053B (en) * | 2009-09-29 | 2013-11-06 | 东洋纺织株式会社 | Polyester film for solar cells |
US8975322B2 (en) | 2011-04-13 | 2015-03-10 | Maruo Calcium Co., Ltd. | Calcium carbonate filler for resin, process for producing the same, and resin composition containing the filler |
KR102041284B1 (en) | 2012-10-12 | 2019-11-06 | 마루오 칼슘 가부시키가이샤 | Calcium carbonate filler for resin, and resin composition containing said filler |
JP6356405B2 (en) * | 2013-10-28 | 2018-07-11 | 帝人フィルムソリューション株式会社 | White polyester film |
US9926428B2 (en) | 2014-02-28 | 2018-03-27 | Maruo Calcium Co., Ltd. | Calcium carbonate filler for resin and resin composition including said filler |
JP6701790B2 (en) * | 2015-02-27 | 2020-05-27 | 東レ株式会社 | Polyester film |
CN110837141A (en) * | 2018-08-17 | 2020-02-25 | 宁波长阳科技股份有限公司 | High-glossiness high-reflectivity polyester reflecting film and preparation method thereof |
TWI739162B (en) * | 2019-09-26 | 2021-09-11 | 台灣龍盟複合材料股份有限公司 | Stone paper, its manufacturing method and its manufacturing system |
-
2003
- 2003-10-27 JP JP2003365901A patent/JP3946183B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210012995A (en) | 2018-05-18 | 2021-02-03 | 도레이 카부시키가이샤 | White polyester film |
US11541647B2 (en) | 2018-05-18 | 2023-01-03 | Toray Industries, Inc. | White polyester film |
KR20230015314A (en) | 2020-05-22 | 2023-01-31 | 도레이 카부시키가이샤 | LED substrate, laminate, and manufacturing method of LED substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2005125700A (en) | 2005-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3946183B2 (en) | White polyester film | |
JP4275138B2 (en) | Polyester film for reflector | |
JP5173417B2 (en) | Laminated film | |
JPH04239540A (en) | White polyester film | |
JP3734172B2 (en) | Laminated polyester film | |
JP4971690B2 (en) | Biaxially stretched film | |
JP4971689B2 (en) | Laminated film | |
JP4927246B2 (en) | Coextrusion laminated polyester film | |
JP4734237B2 (en) | Method for producing laminated film for reflector | |
JP4782617B2 (en) | Polyester laminated film roll | |
JP2007328150A (en) | White reflection film | |
JP4933737B2 (en) | Laminated polyester film | |
JP5021974B2 (en) | Laminated film | |
JP4563822B2 (en) | Biaxially oriented laminated film | |
JP2010221455A (en) | White laminated polyester film | |
JP5147470B2 (en) | Laminated biaxially stretched polyester film | |
JP5108271B2 (en) | Biaxially stretched laminated polyester film | |
JP4896454B2 (en) | Laminated film | |
JP2007322875A (en) | Reflection film | |
JP2009122220A (en) | Laminated film | |
JP2007015108A (en) | Laminated polyester film | |
JP2005074882A (en) | Laminated film for vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070410 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |